流体力学基本知识

合集下载

第4章 流体基本知识

第4章 流体基本知识
粘性作用表现不出来-------流体静力学为无黏性流体的力学 模型。
注:不是流体没有粘性
一、流体的静压强定义:
流体的压强(pressure) :在流体内部或固体壁面所存在的单位 面积上 的法向作用力 流体静压强(static pressure):流体处于静止状态时的压强。
p
lim
A0
P A
4、稳定流和非稳定流
定常流动(steady flow) :流动物理参数不随时间而变化
如:p f ( x, y, z), u f ( x, y, z, )
非定常流动(unsteady flow) :流动物理参数随时间而变化
如:p f ( x, y, z, t ), u f ( x, y, z, t )
式中μ——黏度或黏滞系数(viscosity or absolute viscosity)。
黏度的单位是:N.s/m2或Pa.s 黏度μ的物理意义:表征单位速度梯度作用下的切应力, 反映了流体黏性的动力性质,所以μ又被称为动力黏度。 与动力黏度μ对应的是运动黏度υ(kinematic viscosity),二 者的关系是
V 0
V 0
V
V
G V
三、流体的压缩性与膨胀性 1、压缩性: 定义:在一定的温度下,流体的体积随压强升高而缩 小的性质 表示方法:体积压缩系数β (The coefficient of compressibility)
1 dV V dp
(1/Pa)
2、膨胀性: 定义: 在一定的压强下,流体的体积随温度的升 高而增大的性质 表示方法:温度膨胀系数α(the coefficient of expansibility)
特别注意:流体静压强的分 布规律只适用于静止、同种、 连续的流体。

流体力学知识点大全

流体力学知识点大全

流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。

以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。

液体和气体都具有易于流动的特点。

2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。

3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。

速度矢量的大小和方向决定了流体中每一点的速度和运动方向。

4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。

压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。

5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。

流体动力学包括流体的运动方程、速度场描述和流动量的计算等。

6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。

而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。

7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。

而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。

8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。

流体的黏度越大,流体粘性越大,流动越缓慢。

黏性对于流体的层流和湍流特性有重要影响。

9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。

当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。

10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。

流体力学基础知识

流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。

其单位是牛顿,N。

单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。

其单位是N/kg。

2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。

3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。

4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。

其单位为N/(㎡·s),以符号Pa·s表示。

运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。

国际单位制单位㎡/s。

动力黏度μ与运动黏度ν的关系:μ=ν·ρ。

5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。

毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。

6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。

(P12,还需看看书,了解什么是以上三种模型!)。

第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。

2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。

两水头中的压强P必须采用相对压强表示。

b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。

3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。

工程流体力学知识点总结

工程流体力学知识点总结

工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。

它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。

2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。

它是流体物理学的基本内容,是工程流体力学的基础理论。

它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。

3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。

它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。

4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。

流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。

它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。

5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。

它是工程流体力学中的重要内容,也是工程设计的重要基础。

二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。

它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。

流体入门知识点总结图解

流体入门知识点总结图解

流体入门知识点总结图解一、流体的基本概念1. 流体概念流体是一种物质的状态,是指在外力作用下能够流动的物质,包括液体和气体。

流体具有流动性、变形性和粘性。

2. 流体性质密度:流体的质量与单位体积的比值。

比重:流体的密度与水的密度的比值。

粘度:流体的内部阻力,决定了流体的黏稠度。

3. 流体静力学基本假设(1)流体是连续的。

(2)流体是不可压缩的。

(3)流体是静止的或者静止状态的流体。

二、流体静力学1. 压力(1)压力的定义:单位面积上的力。

(2)压强:单位面积上的压力。

(3)流体的压力:液体或气体内各点的压力都相等,且在不同深度的液体中,压力与深度成正比。

2. 压力的传递液体传压:液体内各点的压力是平行的,且在各点的压力相等。

气体传压:气体内各点的压力也是平行的,但是气体的密度非常的小,所以气体的传压效应并不显著。

3. 浮力物体在液体中浸没时,液体对物体产生的向上的浮力。

浮力的大小与物体的体积成正比。

三、流体动力学1. 流体的动力学特性流体力学包括了流体的流动、旋转、涡动和湍流等特性。

2. 流体流动的分类(1)按流动程度分类:层流流动和湍流流动。

(2)按流动速度分类:亚临界流动、临界流动和超临界流动。

(3)按流动方向分类:一维流动、二维流动和三维流动。

3. 流速和流量流速:单位时间内流体通过单位横截面积的速度。

流量:单位时间内流体通过横截面的体积。

四、基本流体方程1. 连续性方程连续性方程描述了流体的流动过程中质量的守恒,表现为质量流量的守恒。

\[A_1 v_1 = A_2 v_2\]2. 动量方程动量方程描述了流体在流动过程中的动量守恒。

动量方程可以用来计算流体在流动中所受的压力和阻力。

\[F = \frac{{\Delta p}}{{\Delta t}}\]3. 质能方程质能方程描述了流体在流动过程中的能量守恒。

质能方程可以用来计算流体内能和外力对流体的功率变化。

五、流体流动的控制方程1. 泊松方程泊松方程描述了流体的流动与液体的静力平衡。

流体力学基础知识

流体力学基础知识

流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。

这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。

3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。

4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。

粘度越大,阻力越大,流动性越差。

气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。

二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。

液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。

②液体内任一点的各个方向的静压力均相等。

2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。

3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。

用Pj表示。

②表压力(或称相对压力):以大气压力Pa为零算起的。

用Pb表示。

③真空:绝对压力小于大气压力,即表压Pb为负值。

绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。

因此,压力和流速是流体运动的基本要素。

②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。

单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。

流量可分为体积流量Qv和质量流量Qm。

Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。

流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。

密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。

重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。

比容是密度的倒数,它表示单位质量流体所占有的体积。

流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。

通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。

对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。

膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。

用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。

二、流体静力学流体静力学主要研究静止流体的力学规律。

静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。

2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。

流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。

作用在平面上的静水总压力可以通过压力图法或解析法来计算。

对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。

三、流体动力学流体动力学研究流体的运动规律。

连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。

对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。

伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。

其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。

流体力学水力学知识点总结

流体力学水力学知识点总结

流体力学水力学知识点总结一、流体力学基础知识1. 流体的定义:流体是一种具有流动性的物质,包括液体和气体。

流体的特点是没有固定的形状,能够顺应容器的形状而流动。

2. 流体的性质:流体具有压力、密度、粘性、浮力等基本性质。

这些性质对于流体的流动行为具有重要的影响。

3. 流体静力学:研究流体静止状态下的力学性质,包括压力分布、压力力和浮力等。

流体静力学奠定了流体力学的基础。

4. 流体动力学:研究流体在外力作用下的运动规律,包括速度场、流线、流量、动压、涡量等。

流体动力学研究的是流体的流动行为及其相关问题。

5. 流动方程:流体力学的基本方程包括连续方程、动量方程和能量方程。

这些方程描述了流体的运动规律,是解决流体力学问题的基础。

6. 流体模型:流体力学的研究对象是真实流体,但通常会采用模型来简化问题。

常见的模型包括理想流体模型、不可压缩流体模型等。

二、水力学基础知识1. 水的性质:水是一种重要的流体介质,具有密度大、粘性小、表面张力大等特点。

这些性质对于水力学问题具有重要影响。

2. 水流运动规律:水力学研究水的流动规律,包括静水压力分布、流速分布、流线形状等。

3. 基本水力学定律:包括质量守恒定律、动量守恒定律和能量守恒定律。

这些定律是解决水力学问题的基础。

4. 水流的计算方法:水力学中常用的计算方法包括流速计算、水头损失计算、管道流量计算等,这些方法是解决水力学工程问题的重要手段。

5. 水力学工程应用:水力学在工程中具有广泛的应用,包括水利工程、水电站设计、城市供水排水系统等方面。

6. 液体静力学:水力学中涉及了静水压力、浮力、气压等液体静力学问题。

这些问题对水力工程设计和建设具有重要影响。

三、近年来的流体力学与水力学研究进展1. 流固耦合问题:近年来,液固耦合问题成为流体力学与水力学领域的重点研究方向。

在这个方向上的研究主要涉及流固耦合现象的模拟、流固耦合系统的动力学特性等方面。

2. 多相流动问题:多相流动是指不同相的流体在空间和时间上相互混合流动的现象。

流体力学基础知识汇总

流体力学基础知识汇总

流体力学基础知识汇总流体力学是研究流体静力学和流体动力学的学科。

流体力学是物理学领域中的一个重要分支,广泛应用于工程学、地球科学、生物学等领域。

本文将从流体力学的基础知识出发,概述流体力学的相关内容。

一、流体静力学流体静力学研究的是静止的流体以及受力平衡的流体。

静止的流体不受外力作用时,其内部各点的压力相等。

根据帕斯卡定律,压强在静止的流体中均匀分布。

流体静力学的重要概念包括压强、压力、密度等。

压强是单位面积上受到的力的大小,而压力是单位面积上受到的力的大小和方向。

密度是单位体积内质量的多少,与流体的压力和温度有关。

二、流体动力学流体动力学研究的是流体在受力作用下的运动规律。

流体动力学的重要概念包括流速、流量、雷诺数等。

流速是单位时间内流体通过某一截面的体积。

流速与流量之间存在着直接的关系,流量等于流速乘以截面积。

雷诺数是描述流体流动状态的无量纲参数,用于判断流体流动的稳定性和不稳定性。

三、伯努利定律伯努利定律是流体力学中的一个重要定律,描述了流体在沿流线方向上的压力、速度和高度之间的关系。

根据伯努利定律,当流体在流动过程中速度增加时,压力会降低;当流体在流动过程中速度减小时,压力会增加。

伯努利定律在飞行、航海、液压等领域有着重要的应用。

四、黏性流体黏性流体是指在流动过程中会发生内部层滑动的流体。

黏性流体的流动过程受到黏性力的影响,黏性力会导致流体的内部发生剪切变形。

黏性流体的流动规律可以通过纳维-斯托克斯方程来描述。

黏性流体在润滑、液体运输、地质勘探等领域有着广泛的应用。

五、边界层边界层是指在流体与固体表面接触的区域,流体的速度在边界层内逐渐从0增加到与远离表面的流体速度相等。

边界层的存在会导致流体的阻力增加。

研究边界层的特性可以帮助理解流体与固体的相互作用,对于设计高效的流体系统具有重要意义。

流体力学是研究流体静力学和流体动力学的学科。

流体力学的基础知识包括流体静力学、流体动力学、伯努利定律、黏性流体和边界层等内容。

流体力学知识点

流体力学知识点

流体力学知识点
流体力学(Fluid mechanics)是研究在不压缩前提下运动的流体(包括气体和液体)运动规律及其在实际问题中的应用的科学。

下面是一些流体力学的知识点:
1. 流体概念:流体是指那些具有自由形态的物质,包括液体和气体。

与之相对的是固体,它们的形状和容积是固定的。

2. 流量和流速:流量是指在单位时间内流体穿过某一截面积的体积,通常用Q表示。

流速是流体穿过单位截面的速度,通常用v表示。

3. 黏性:黏性是流体抵抗形变的能力,也就是流体对于剪切力的反应。

黏性可以影响流体的流动行为,如引起粘滞力、涡旋等。

4. 涡旋和湍流:涡旋是流体中的一种自旋结构,能够影响周围流体的运动。

当流速足够高或管道过窄时,涡旋可以导致湍流,这对于流体的传输和控制有重要的影响。

5. 流体静力学:流体静力学是研究静止流体的行为和力学性质的学科,例如容器中的压强、静水压、浮力,以及流体静态的稳定性和压强分布等。

6. 流体动力学:流体动力学是研究流体在运动状态下行为和性质的学科。

它主要研究流体的动量、能量、质量守恒,并探讨流体在各种条件下的运动规律。

以上是一些流体力学的基本知识点,涵盖了流体特性、流动规律、流体静力学和流体动力学等方面。

流体力学在许多领域有广泛的应用,如工程、航天、海洋、气象等,都离不开对流体物理规律的深入理解和应用。

流体力学知识点

流体力学知识点

流体力学知识点流体力学是研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、化工、生物医学等。

下面我们来一起了解一些流体力学的重要知识点。

一、流体的性质流体具有易流动性,即它们在微小的切应力作用下就会发生连续的变形。

流体的密度和黏度是两个重要的物理性质。

密度是指单位体积流体的质量。

对于均质流体,密度是一个常数;对于非均质流体,密度会随位置而变化。

例如,空气在不同高度的密度不同。

黏度则反映了流体内部的内摩擦力。

黏度大的流体,如蜂蜜,流动起来比较困难;而黏度小的流体,如水,流动相对容易。

二、流体静力学流体静力学主要研究静止流体的压力分布规律。

帕斯卡定律指出,在密闭容器内,施加于静止液体上的压力将以等值传递到液体各点。

这在液压系统中有着重要的应用。

另一个重要的概念是浮力。

当物体浸没在流体中时,它受到的浮力等于排开流体的重量。

这就是阿基米德原理。

例如,船舶能够漂浮在水面上,就是因为受到的浮力等于其自身的重量。

三、流体运动学流体运动学关注流体的运动方式和描述方法。

流线是用来描述流体流动的重要概念。

流线是在某一瞬时,在流场中画出的一条空间曲线,在该曲线上,流体质点的速度方向与曲线相切。

流量是指单位时间内通过某一截面的流体体积或质量。

四、流体动力学流体动力学研究流体运动与受力之间的关系。

伯努利方程是流体动力学中的一个关键方程,它表明在理想流体的稳定流动中,沿着一条流线,总水头(位置水头、压力水头和速度水头之和)保持不变。

例如,在水平管道中,流速大的地方压力小,流速小的地方压力大。

这可以解释为什么飞机机翼上方的流速快、压力低,从而产生升力。

五、黏性流体的流动实际流体都具有黏性。

在黏性流体的流动中,会产生内摩擦力,导致能量损失。

层流和湍流是两种常见的流动状态。

层流时,流体的质点作有规则的平行运动,各层之间互不干扰;而湍流时,流体的质点作不规则的随机运动。

《流体力学基础知识》课件

《流体力学基础知识》课件
流体粘性
流体抵抗剪切力的性质,粘性大小与流体的种类和温度有关。
流动模型
根据流体的粘性和流动特性,建立各种流动模型,如层流、湍流等。
06
流体力学在工程中的应用
流体输送与管道设计
总结词
流体输送与管道设计是流体力学在工程 中的重要应用之一,主要涉及流体在管 道中的流动规律和设计原则。
VS
详细描述
在工业生产和城市供水中,需要利用流体 力学的原理进行管道设计和流体输送,以 实现高效、低能耗的流体传输。管道设计 需要考虑流体的流速、压力、粘度等参数 ,以及管道的材质、直径、长度等因素, 以确保流体输送的稳定性和可靠性。
流体力学的发展历程
要点一
总结词
流体力学的发展历程及重要事件
要点二
详细描述
流体力学的发展历程可以追溯到古代,但直到17世纪才真 正开始形成独立的学科。在17世纪到20世纪期间,许多科 学家和工程师为流体力学的发展做出了重要贡献,如伯努 利、欧拉、斯托克斯等。随着科技的发展,流体力学在理 论和实践方面都取得了巨大的进步,为人类社会的进步和 发展做出了重要贡献。
3
流体流动的连续性原理
在流场中任取一元流管,流进和流出该元流的流 量相等。
流体流动的能量传递与转换
压力能传递
流体在流动过程中,压力能可以传递给其他流体 或转化为其他形式的能量。
动能转换
流体的动能可以转换为其他形式的能量,如压能 、热能等。
热能传递
流体在流动过程中,可以与周围介质进行热能交 换,实现热量的传递。
流体流动的阻力与损失
摩擦阻力
流体在管道中流动时,由于流体的粘性和管壁的粗糙度,会产生 摩擦阻力。
局部阻力
流体在通过管道中的阀门、弯头等局部构件时,会产生局部阻力。

流体力学基本知识

流体力学基本知识
即真空度=大气压强– 绝对压强 绝对压强越高,表压愈大;真空度越大,绝对压强愈低。
第二节 流体静力学的基本概念
▪ 2、压强的计量单位
▪ (1)定义式:
▪ 国际单位制(SI)制:1N/m2=1Pa;
1bar=105 Pa
▪ 工程制: 1kgf/cm2=1kg×9.8065[m/s2]/10–4[m2]

=9.8065×104 Pa
第二节 流体静力学的基本概念
▪ (2)用大气压表示: ▪ 1atm(标准大气压)=1.033 kgf/cm2 ▪ =1.033×9.8065×104 Pa=1.0133×105 Pa ▪ =1.0133 bar
第二节 流体静力学的基本概念
(3)用液柱的高度表示: p=F/A=ρVg/A=ρ(AZ)g/A=ρZg
力增大,动力消耗增大,操作费用增大; 当V一定时,u减小,则d增大,管材费用增加,流动
阻力减小,动力消耗减小,操作费用减小;在允许 范围内,从长远利益考虑,一般选择管径较大者。
第三节 管内流体流动的基本方程式
二、流体运动的类型 1、有压流: 流体在压差作用下流动,流体各个过流断面的
整个周界都与固体壁相接触,没有自由表面,这种流体流 动为有压流。 2、无压流: 流体在重力作用下流动,流体各个过流断面的 部分周界与固体壁相接触,具有自由表面,这种流体流动 为无压流。 3、稳定流动:流体在管道中流动时,若任一点的流速、压 力等有关物理参数都不随时间改变,仅随位置改变,即 u=f(x,y,z),ut=ut+△t,则这样的流动为稳定流动。 4、不稳定流动:流体在管道中流动时,若任一点的流速、 压力等有关物理参数不仅随位置改变,而且随时间发生部 分或全部改变,即u=f(x,y,z,t),ut≠ut+△t,这样的流 动为不稳定流动

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理

大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。

与固体相比,流体具有易变形、易流动的特点。

流体的主要物理性质包括密度、压强和黏性。

密度是指单位体积流体的质量,用ρ表示。

对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。

压强是指流体单位面积上所受的压力,通常用 p 表示。

在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。

黏性是流体内部抵抗相对运动的一种性质。

黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。

二、流体静力学流体静力学主要研究静止流体的力学规律。

(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。

(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。

浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。

三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。

对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。

(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。

其表达式为p +1/2ρv² +ρgh =常量。

即在同一流线上,压强、动能和势能之和保持不变。

伯努利方程有着广泛的应用。

例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。

四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。

(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。

阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。

流体力学相关知识点

流体力学相关知识点

流体力学相关知识点流体力学是一门研究流体(液体和气体)的力学行为的学科。

以下是流体力学中的一些基本概念和知识点:1. 牛顿粘性定律:流体力学中的内摩擦力或粘性力,与相对速度梯度和接触面面积成正比,与流体的物理属性(粘度)有关。

2. 伯努利定理:在不可压缩、无粘性的理想流体中,流体的总能量(动能+势能)沿流线保持不变。

3. 斯托克斯定理:在重力和表面张力作用下的粘性流体,如果流动是小扰动引起的,则流线是围绕封闭曲线的闭合曲线。

4. 泊肃叶定律:在一定条件下,粘性流体在管道中流动时,其流量Q与管道半径r,流体粘度μ及管道长度L成正比,与压强差ΔP成正比。

5. 库塔流定理:在二维不可压缩、无粘性的理想流体中,如果存在一个封闭的不可穿透的曲线(库塔流线),则在该曲线所包围的区域内,存在一个与之相对应的稳定流体运动。

6. 欧拉方程:描述了流体运动的动量变化率等于外力(体积力与表面力之和)对该流体微元的作用。

7. 雷诺方程:描述了粘性流体在管内层流时,其动量方程如何受到粘性的影响。

8. 纳维-斯托克斯方程:描述了考虑粘性效应的流体运动的动量、能量和组分变化等基本方程。

9. 普朗特边界层方程:描述了流体在物体表面附近形成边界层后,边界层的动量、能量和组分变化等基本方程。

10. 流体静力学:研究流体静止时的平衡状态及对固体壁面的压力和作用力。

11. 流体动力学:研究流体运动的基本规律,包括速度场、压力场、温度场等。

12. 湍流理论:研究湍流的形成、发展和衰减机理,建立湍流模型并求解湍流运动的基本方程。

13. 流动稳定性理论:研究流体运动的稳定性问题,分析流体微小扰动的发展和演化过程。

14. 计算流体力学:通过数值方法求解流体力学的基本方程,模拟和分析流体运动的规律和特性。

以上是流体力学中的一些基本概念和知识点,它们是理解和解决实际工程问题的基础。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。

它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。

下面将对流体力学的一些重要知识点进行总结。

一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。

比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。

2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。

膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。

液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。

3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。

粘性的大小用动力粘度μ 或运动粘度ν 来表示。

牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。

4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。

表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。

二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。

2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。

3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。

4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。

真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。

5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。

6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。

流体力学基本知识

流体力学基本知识

二、流动的两种形态——层流和紊流 流体在流动过程中,呈现出两种不同的流 动形态。当液体流速较低时,呈现为成层 成束的流动,各流层见并无质点的掺混现 象,这种流态就是层流。加大流速到一定 程度,质点或液团相互混掺,流速愈大, 混掺程度愈烈,这种流态就成为紊流。 判断流动形态,雷诺氏用无因次量纲——雷 诺数Re来判别。
(二)流速系数C经验公式 (1)曼宁公式 (2)海澄-威廉公式
五、局部水头损失 在实际水力计算中,局部水头损失可以采 用流速水头乘以局部阻力系数后得到,即 v2 hj=ζ 2 g (1-35) 式中ζ——局部阻力系数。ζ值多是根据管配件、 附件不同,由实验测出。 v——过流断面的平均流速;它应与ζ值 相对应。除注明外,一般用阻力后的流速; g——重力加速度。
第二节 流体静压强及其分布规律
流体静止是运动中的一种特殊状态。 由于流体静止时不显示其黏滞性,不存在 切向应力,同时认为流体也不能承受拉力, 不存在由于粘滞性所产生运动的力学性质。 因此,流体静力学的中心问题是研究流体 静压强的分布规律。
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
或者写为
p1
v12
2g
p2
2 v2ห้องสมุดไป่ตู้
2g
h12
实际气体总流的能量方程与液体总流的能量方程比 较,除各项单位以压强来表达气体单位体积平均 能量外,对应项意义基本相近
第四节 流动阻力和水头损失
一、流动阻力和水头损失的两种形式 (一)沿程阻力和沿程水头损失 流体在长直管(或明渠)中流动,所受的摩擦 阻力称为沿程阻力。为了克服沿程阻力而消耗的 单位重量流体的机械能量,称为沿程水头损失hf。 (二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫使 主流脱离边壁而形成漩涡,流体质点间产生剧烈 地碰撞,所形成的阻力称局部阻力。为了克服局 部阻力而消耗的重力密度流体的机械能量称为局 部水头损失hj。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究.3 流体力学的研究方法:理论、数值、实验.4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力.作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变.常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔA Vτ法向应力周围流体作用的表面力切向应力AP p ∆∆=A T ∆∆=τAFA ∆∆=→∆limδAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 AT A ∆∆=→∆limτ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比.即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知-- 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型.(3) 压缩性和膨胀性压缩性:流体受压,体积缩小,密度增大,除去外力后能恢复原状的性质。

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。

2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。

3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。

4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。

二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。

2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。

3、流体的流动受力不受力,受力的变化很小。

4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。

三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。

2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。

3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。

4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。

6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。

四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A R x
1.4恒定流的连续性方程和能量方程 1.4.1恒定流的连续性方程
恒定流连续性方程是流体运动的基本方程之一,它的形式简 单但是应用广泛。
1Q1 2Q2
11 22 2 1
如图所示水箱水管系统,水从水箱流经直径为d=2.5cm的管道流 入大气中。当出口流速为10m/s时,求质量流量Qg=? 【解】根据公式Qg=ρ Av= ρ 1/4π d2v =1000 ×1/4 ×3.14 ×0.0252 × 10=4.9kg/s 答:所以水的质量流量Qg为4.9kg/s。
5.元流和总流
6.过流断面、流量和断面平均流速 过流断面是流体运动时,与元流或总流全部流线正交的横断面, 用 A表示。 均匀流的 过流断面为平面;渐变流的过流断面可视为平面; 非均匀流的过流断面为曲面。
流量是流体运动时单位时间内通过过流断面的流体的多少。
Q=vA


湿周:过流断面上流体与固体面接触的周界,用x表示, 单位为m或cm。 水力半径:
1.1.5作用于流体上的力 作用于流体上的力包括质量力和表面力两大类 1.质量力 质量力是指作用在流体每个质点上的力,其大小与流体的质量 成正比。常见的质量力有重力和各种惯性力(如直线加速运动时 的直线惯性力和圆周运动时的离心力等)。 2.表面力 表面力是指作用在流体表面上的力,其大小与受力表面的面积 成正比。它包括有表面切向力(摩擦力)和法向力(压力)。

1 (t-t0 )
0

图示为一采暖系统,水温升高 后引起体积膨胀,为防止管道 及散热器片涨裂设置上部水箱, 已知系统内的水的总体积 V=8m3,加热前后温差为 △t=50℃,水的膨胀系数 α =0.005,求膨胀水箱的最小 容积。

1.1.3黏性

流体的黏性是在流动中呈现出来的。当相邻的流体层有相 对移动时,各层之间因具有黏性而产生摩擦力。摩擦力使 流体摩擦而生热,流体的机械能部分地转化为热能而损失 掉。所以,运动流体的机械能总是沿程减少的。
p1
12
2g
p2
2 2
2g
hl12
将上列各项数值代入上式,并且忽略过流断面1—1、2—2之间能量损失,在1—2 之间为连续流条件下,可得:
0 0 196 11.8
所以
2 v2
2 9.8
0
v2
2 9.8 196 18m / s 11.80
1.1.1流体的密度和容重 单位体积的流体所具有的质量称为密度,用ρ表示(kg/m3)。
m V
单位体积流体的重量(力)称为容重。用γ表示(N/m3)。

G V
由牛顿第二定律G=mg,可知流体的容重和密度有如下的关系
γ=ρg
1.1.2流体的压缩性和热膨胀性 当流体所受压力增大时,其体积缩小,密度增大,这种性质称 为流体的压缩性。流体压缩性的大小,一般用压缩系数β来表示。 流体因温度升高使原有的体积增大,密度减小的性质称为流体 的热膨胀性。热膨胀性的大小用热膨胀系数α来表示。 在建筑设备工程中,除水击和热水循环系统外,一般计算均不 考虑液体的压缩性和热膨胀性。
p=P-Pa
相对压强为负值时,流体处于低压状态,通常用真空度(或真空 压强)来度量流体的真空程度。用pk表示,即
pk=Pa-P=- p
真空度实际上等于负的相对压强的绝对值,有时也称为“负压 ”。某点的真空度愈大,说明它的绝对压强越小。真空度达到 最大值时,绝对压强为零,处于完全真空状态;真空度的最小 值为零,即绝对压强等于当地大气压强。真空度在0~98KN/m2 的范围内变动。 1.2.4压强的测量 ⒈液柱测压计 ⒉压力表和真空表
l v2 d 2g

v2 2g
水泵的吸水管装置如图所示。设水泵的最大许可真空度为 pk =7mH20,工作流量Q=8.3L/s,吸水管直径d=80㎜,长度l= lOm,弯头局部阻力系数:ξ 弯头=0.7,ξ 底阀=8,求水泵的最大 许可安装高度Hs。(λ =0.04)
【解】以吸水井的水面为基准面,列断面0-0,与1—1的能量 方程式为: 2
hl ,12 hf hj
1.5.2流动的两种型态——层流和紊流 实际流体的运动存在有两种不同的状态,即层流和紊流。
判断流动状态,雷诺用雷诺数Re来判别,对于圆形管道
Re
vd

1.5.3沿程水头损失
hf
1.5.4局部水头损失
l v2 d 2g
hj
v2 2g
hl hf hj
实际气体的恒定总流能量方程
Pl ,1 2 ( gZ1 P 1
2 v1
2
) ( gZ 2 P2
2 v2
2
)
由于气体密度很小,式中重力位能可以忽略不计,方程简化 为
p1


2 1
2g
p2

2 2
2g
hw12
如图所示一轴流风机。直径d=200mm,吸入管的测压管水柱高 h=20mm,空气的容重ra=11.80N/m3,求轴流风机的风量(假定进 口损失很小,可以忽略不计)。
【解】 风机在实际工程中经常用到,它从大气中吸入空气,进入吸入管段,然后 经过风机加压,送至需要的地方,本题就是关于风机的吸入管段的,因为吸入管段 中的流量为Q=Sv,其中S为已知,故需用气体总量的能量方程式求出流速v。过流 断面1—1取在距进口较远的大气中,流速很小,即是≈0,1--1断面上大气压强为已 知,即相对压强p1≈0。2—2过流断面取在水银测压计的渐变流断面上,则此断面 上压强已知,相对压强为: p2=-γh=-9 800N/m3×0.02m=-196N/m2 此外,若能量方程所需基面取为轴流风机的水平中心轴线,用气体能量方程式:
3.流线和迹线 它上面所有流体质点在该时刻的流速矢量都与这条曲线相切, 这条曲线就称为该时刻的一条流线。 流体中某一个质点在连续时间内的运动轨迹称为迹线,它反映 了流场中某一特定质点在不同时刻的运动轨迹。
4.均匀流和非均匀流 均匀流是流体运动时流线是平行直线的流动。非均匀流是流体 运动时流线不是平行直线的流动。
将以上各值代入前式,得
1.652 Hs 7 1.91 4.95m 2 9.81
一般情况下,室内给水管道中局部水头损失不必进行详细计 算,可以按下列给水管网沿程水头损失的百分数估算: 生活给水管网——25%~30%; 生活、消防共用给水管网——20%; 生产、生活、消防共用给水管网——20%; 生产、消防共用给水管网——15%; 消火栓系统消防给水管网——10%。

内容主要包括建筑设备基本知识、给水、 排水、消防、采暖、燃气、通风与空气调 节、供配电、照明、安全用电与防雷、建 筑弱电系统
第一章 流体力学基本知识
了解流体力学的主要内容;掌握流体的主要物 理性质;掌握流体静压强的分布规律和压强表 示方式;掌握流体运动的基本规律和流体能量 损失。
1.1
流体的主要物理性质
封闭水箱如图示,已知自由面压强 Po=130000Pa,箱外当地大气压强 Pa=101325Pa,求A点的绝对压强和相对 压强
如图所示封闭水箱中,水深h=l.5m的A 点上安装一压力表,其中心距A点Z=0.5 m,压力表读数为4.9kN/m2,求水面相 对压强P0=? 【解】:根据公式: P0+γ (hZ)=P表 则:P0=4.9-9.8×(1.5-0.5)=-4.9 kPa。 答:水面相对压强P0为-4.9kPa。
总水头线:各端面上的总水头顶点连成的一条线(图中虚线)。在 实际水流中由于水头损失的存在,所以总水头线总是沿流程下 降的倾斜线。 总水头坡度或水力坡度:总水头线沿流程的降低值 与沿程长度 的比值 hl ,12
i
l
测压管水头线:各过流断面的测压管水头 连成的一条线(图中实 线)。测压管水头线可能上升,可能下降,也可能水平,可能 是直线也可能是曲线。
如图所示的管段,已知dl=2.Ocm,d2=4.5cm,d3=7.5cm,流量 Q=5L/s,求各管段的平均流速
1.4.2恒定总流能量方程式
hl ,1 2 H1 H 2 ( Z1
P 1


2 1v1
2g
) (Z 2
P2


2 2 v2
2g
)
能量方程式中每一项的单位都是长度,位置水头、压强水头 和流速水头可用测压管和测速管测出,它们都可以在断面上 用铅直线段在图中表示出来。这就对方程式各项在流动过程 中的变化关系以更形象的描述。如图所示。
1.3
流体运动基本规律
1.3.1基本概念 1.恒定流动和非恒定流动
2.压力流和无压流、射流 压力流是流体在压差作用下流动时,流体整个周围都和固体壁 面相接触,没有自由表面。 无压流是液体在重力作用下流动时,液体的部分周界与固体壁 面相接触,部分周界与气体相接触,形成自由表面。 射流指流体的整个周界都包围在液体或气体之中。
1.2
流体静压强的基本概念
1.2.1流体静压强及其特性 流体静压强具有两个重要特性: 1.流体静压强永远垂直于作用面,并指向该作用面的内法 线方向。 2.静止流体中任一点的静压强只有一个值,与作用面的方 向无关,即任意点处各方向的静压强均相等。 1.2.2流体静压强的分布规律 PB=Po+γh
1.2.3压强的度量和单位 流体静压强有两种表示方法。 1.绝对压强 以绝对真空为零算起的压强,用P表示。绝对压强永远是正值 2.相对压强 以当地大气压强Pa为零算起的压强,一般的压力表测量出的压 强即为此压强,用p表示。相对压强可以是正值,也可以是负值 。当某点的绝对压强高于大气压强时,相对压强值为正,相对压 强的正值称为正压(即压力表读数);某点的绝对压强低于大气压 强时,相对压强值为负,相对压强的负值称为负压。 相对压强与绝对压强之间的关系用下式表示
相关文档
最新文档