数学物理方程与特殊函数 第二章课后答案
数学物理方程第一章、第二章习题全解
18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
数学物理方程第二版答案
的通解可以写成
u
F x at Gx at hx
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
t 0 : u x ,
解:令 h x u v 则
u x . t
v h x u u v , h x 2 u h x u x x x x
( ESu x ) x
利用微分中值定理,消去 x ,再令 x 0 得
若 s( x) 常量,则得
( x)
即得所证。
2u u = ( E ( x) ) 2 x x t
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由, (3)端点固定在弹性支承上,试 分别导出这三种情况下所对应的边界条件。
2u u g [(l x) ] 。 2 x x t
5. 验证
u ( x, y , t )
1 t x y
2 2 2
在锥 t x y >0 中都满足波动方程
2 2 2
2u 2u 2u 1 2 2 2 在锥 t x y >0 内对变量 2 2 证:函数 u ( x, y, t ) 2 2 2 2 t x y t x y
t有
G(x+at) 常数.
即对任何 x, G(x) C 0 又 G(x)=
1 1 x C ( x) ( )d 2 2a x0 2a
所以 ( x), ( x) 应满足
( x)
或
1 x ( )d C1 (常数) a x0 1 ' (x)+ ( x) =0 a
( x) (1 ) 2
若 E ( x) E 为常量,则得
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方程与特殊函数试题及答案
数学物理方程与特殊函数试题及答案猜你喜欢: 1. 2. 3. 4. 5.数学物理方程与特殊函数是一门专业性比拟强的课程,要学好这门课程,同学们还是要用心去学才能学好数学物理方程与特殊函数。
下面是给大家的数学物理方程与特殊函数试题及答案,欢送大家学习参考。
1.对于一般的二阶线性偏微分方程0(1) 它的特征方程为,假设在域内ACB那么此域内称(1) 椭圆型假设在域内B那么此域内称(1)为抛物型假设在域内 B 那么此域内称(1)为双曲型。
2. 第一类格林公式第二类格林公式 . 已那么 ;而函数按1xP的展开式4.一维热传导方程可用差分方程似代替。
二维拉普拉斯方程可用差分方0 近似代替。
5. 勒让德多项式的正交性???。
二.用别离变量法求?的解。
(15分) 解:用别离变量法求解,先设满足边界条件且是变量被别离形式的特解为tTxXtxu?代入方程(1)上式左端不含有x,右端不含有t,从而得到两个线性常微分方程解(6)得 x由(2)得,及相应的固有函数为xlnBxXnn?sin? 7?? ,再由(5)得,? 由(7),(8)得由(1),(3)得又由(3) 得所以,原定解问题的解为?三.求方程? 的解。
(15分) 解:对(1)两端积分的通解为任意二阶可导函数,令(4)满足(2),(3)得解之得6(5),(6)代入(4)得u 四.求柯西问题的解。
(12分) 解;先确定所给方程的特征线。
为此,写出它的特征方程 dy2-2dxdy-3dx20 它的两族积分曲线为作特征变换4?经过变换原方程化它的通解为中21ff 是两个任意二次连续可微的函数。
方程(1)的通解为由(2。
工程数学:数学物理方程与特殊函数
工程数学:数学物理方程与特殊函数
工程数学是数学在科技制造领域的理论基础和实用应用学科,也是科研创新、技术进
步和社会发展进程中的重要组成部分。
它是人类在技术实践及理论分析中发明的知识体系
与计算机编程技术相结合的总和。
比较准确地说,它是一门研究利用数学、物理学及实验
数据解决工程技术问题的学科,旨在提供工程技术问题的快速简便解法。
数学物理方程是工程数学中最为重要的组成部分,它指从理论物理学研究导出的数学
模型,它们常用多项式、椭圆型函数或其他函数来描述客观物理现象。
基于该数学模型,
利用数值方法和分析方法求解,学者们可以获得更多的结果,如最优控制、常微分方程等。
特殊函数是数学中一类特殊的确定的函数,有的是与物理学有关的,特殊的函数往往
比普通的函数表示更加容易精确。
特殊函数有很多种,如正弦函数、指数函数、双曲函数、伽马函数、映射函数、高斯函数等。
特殊函数在工程数学中有着重要的应用,如具有理论
实用价值的狭义积分、初值问题、最优控制等,其中使用了特殊函数。
总之,数学物理方程与特殊函数是工程数学中不可或缺的内容,它们是实现科技制造
领域理论研究和现实应用的基础。
数学物理方程与特殊函数第五版
数学物理方程与特殊函数第五版1量子力学方程和特殊函数量子力学方程和特殊函数是数学物理学中非常重要的概念,它们被用来表达物理系统的运动方式以及物理里面的函数运算。
它们是现代数学物理的基础和重要的概念,从相对论到量子化认识的物理理论,数学物理学家都使用这些方程和函数。
2量子力学方程无论使用什么物理理论,量子力学方程都是免不了的。
它的出现可以说是相对论的另一个重要突破,它模拟了量子效应,在显微镜下认识微观世界,有助于科学家们进行更深入的研究。
量子力学方程主要有Schrödinger方程、Heisenberg方程、Pauli方程、Fermi–Dirac方程等等,用于描述物理里面的粒子之间的相互作用、以及物理系统的动态演变。
3特殊函数特殊函数是指在数学物理学中定义的函数,它们中有很多是现代数学物理学家发明的,如对数函数、指数函数、分式函数、圆函数、椭圆函数等等。
这些函数以简单的公式来定义某种类型的函数,可以用来解决相关的理论物理学问题和方程,用来计算物理量与动作等。
特殊函数也可以用来表示物理学里面某个系统的特殊性能,如量子级数和分子振动频率等。
4《数学物理方程与特殊函数》《数学物理方程与特殊函数》是现代数学物理的一本重要的参考书,主要介绍了量子力学方程以及更多的特殊函数,如对数函数、指数函数、泊松分布、玻尔兹曼分布等。
书中深入浅出的介绍了这些函数的原理和运用,对数学物理学家有很大的帮助,其内容不仅仅是广受欢迎的数学物理理论,同样也包括了实际应用,有助于理解这些理论和函数的实际用途。
5总结量子力学方程和特殊函数在现代数学物理学里非常重要的概念,通过他们,我们研究物理系统的运动,模拟量子效应,了解微观世界,进一步深入物理实验,进而让物理学发展出更多不同的方向和理论。
《数学物理方程与特殊函数》是一本重要的参考书,介绍量子力学和特殊函数,并结合实际应用,为我们探求物理真理之路提供重要依据。
苏教版必修1第二章学生版同步练习函数的概念与图象参考答案1
必修1第2章 函数的概念与图象 参考答案第1课 函数的概念与图象(1) 1.①②③④;2.①③④;3.0,0,14,2n -;4.R ; 5.{|,x x R ∈且2}x ≠±;6.(1){|2x x ≥,且3}x ≠;(2){|1x x ≤,且4}x ≠-; 7.(1){0,3,8};(2)(,1]-∞;(3)[3,0)-.8.()|23|f x x =-,0()f x x =等; 9.()32f x x =-,2()f x x =,6()7f x x=-等; 10.解:若0k =,则()f x =其定义域为R ;若0k ≠,则20(4)430k k k >⎧⎨∆=-⨯⨯≤⎩,解得304k <≤; 综上所述,实数k 的取值范围为3[0,]4.第2课 函数的概念与图象(2)1.B ;2.D ;3.A ;4.(1)2,(2)3,(3)0,(4)1()f x <2()f x ; 5.(1)定义域(,0)(0,)-∞+∞U ,值域(,0)(0,)-∞+∞U ; (2)定义域(,0)(0,)-∞+∞U ,值域(,1)(1,)-∞+∞U .拓展延伸:6.解:2,[2,3)1,[1,2)()0,[0,1)1[1,0)2[2,1)x x f x x x x ⎧⎪∈⎪⎪∈⎪=∈⎨⎪-∈-⎪-∈--⎪⎪⎩M M7.分析:一般地,称x a =为||x a -的零点.对于含绝对值的函数问题,可先根据零点将区间(,)-∞+∞分成若干个区间(成为零点分段法),将函数转化为不含绝对值的分段函数,画出函数的图象,利用图象解决问题.解:函数|1||2|2y x x =++--的零点是1x =-和2x =,所以21,1,1,12,23, 2.x x y x x x --<-⎧⎪=-≤<⎨⎪-≥⎩作出函数的图象(如图),从函数的图象可以看出,函数的值域为[1,)+∞第3课 函数的概念与图象(3)1.C ;2.C ;3.1852,[0,)y x x =∈+∞;4.215S x x =-+,(0,15);5.44.1m ;6.3-;7.(1)350,(2)4;8.4480320()y x x=++,(0,4)x ∈. 9.(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个依题意:0600.02(100)51x --=,即0625150x -=,0550x =. ∴ 当一次订购量为550个时,每个零件的实际出厂价恰好降为51元;(2)依题意,并结合(1),我们需要分三种情况来列出函数P f x =()的表达式.当0100<≤x 时,P =60;当100550<<x 时,P x x=--=-600021006250.(); 当x ≥550时,P =51.所以600100,()62100550,5051550,x x N x P f x x x N x x N<≤∈⎧⎪⎪==-<<∈⎨⎪≥∈⎪⎩ ; (3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则()2200100,4022100550,5011550,x x x N x L P x x x x N xx x N <≤∈⎧⎪⎪=-=-<<∈⎨⎪≥∈⎪⎩当x =500时,L =6000;当x =1000时,L =11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元. 第4课 函数表示方法(1)1.C ;2. A ;3.B ;4.30;5.[1,)+∞;6.[1,11];7.(1)设()(0)f x kx b k =+≠,则(())()()f f x kf x b k kx b b =+=++2k x kb b =++,由题意,293k x kb b x ++=+,∴2(9)30k x kb b -++-=恒成立,∴29030k kb b ⎧-=⎨+-=⎩,解得334k b =⎧⎪⎨=⎪⎩或332k b =-⎧⎪⎨=-⎪⎩,∴3()34f x x =+或3()32f x x =--.(2)设21()()25(0)2f x a x a =-+<,即21()254f x ax ax a =-++, 设方程()0f x =的两根为1x ,2x ,则121a x x a -+=-=,1212512544a x x a a+==+,由题意,221213x x +=,∴21212()213x x x x +-=,∴12512()134a-+=,∴4a =-,此时,方程()0f x =即260x x --=,其根的判别式2(1)4(6)250∆=--⨯-=>,∴2()4424f x x x =-++.8.解:由图象可知,抛物线开口向上,顶点为(1,1)-,当3x =时,1y =, 设2()(1)1(0)f x a x a =-->,则2(3)(31)11f a =--=,解得12a =, ∴21()(1)12f x x =--,令21()(1)102f x x =--=,解得11x =21x =,结合图象知函数的定义域为[1-, ∴21()(1)12f x x =--,[1x ∈-.9.解:,0,()0,0.x x f x x ≥⎧=⎨<⎩∴当0x ≥时,(())()f f x f x x ==,当0x <时,(())(0)0f f x f ==,选D .10.解:当04x <≤时,114222y AB BP x x =⨯⨯=⨯⨯=; 当48x <≤时,1144822y AB BC =⨯⨯=⨯⨯=;当812x <<时,11(12)24222y AB AP AB x x =⨯⨯=⨯⨯-=-.∴2,(0,4],()8,(4,8],242,(8,12).x x y f x x x x ∈⎧⎪==∈⎨⎪-∈⎩第5课 函数的表示方法(2)1.B ;2.D ;3.D ; 4.[1,)-+∞,3(,0)(0,)2-∞U ; 5.45x -,[2,4];6.15{2,,1,}22--;7.2x +,3x +,x n +; 8.2(202),(0,10)y x x x =-∈;9.由于题目问的是“只可能是”,故解决问题的方法是寻找各选项所给图形中是否存在矛盾,从而排除不正确的选项.如选项B ,由直线过原点知0b =,但由抛物线的对称轴不是y 轴知0b ≠,矛盾.类似地可以判断,选项A 、D 都有矛盾,故选C . 10.D .第6课 函数的单调性(1)1. ()C ;2.()C ;3.()B 4. ()D ; 5.()B ; 6.①②. 7.设,11)1)(1()]1)([(11)()(,1121222121122222112121<<<---+-=---=-<<<-x x x x x x x x a x ax x ax x f x f x x Θ)()(0.0)1)(1(01,02122212112x f x f a x x x x x x >>∴>--∴>+>-∴时当此时f (x )为减函数.当a>0时,f(x 1)<f(x 2),此时f(x)为增函数.8.由.32060<-⎩⎨⎧<+<a b b a a 得即抛物线顶点横坐标<3,又开口向下,所以二次函数f (x )在[)∞+3上递增.[))()3(.3,,3,3πππf f >∴<+∞∈且Θ。
数学物理方程与特殊函数老师给题答案汇总
1.证明二维laplace 方程 在极坐标下 证:2.长为l 的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q 进入(即单位时间内通过单位截面积流入的热量为q ), 杆的初始温度分布为x (l-x ) / 2 ,试写出相应的定解问题。
解:对于杆上的一个微元d x ,流入的热量为:温度变化所需的热量为:两式相等:定解问题为:02222=∂∂+∂∂y u x u 22,arctan y x x y+==ρθθρθρρθθρθθsin ,cos 221cos ,sin /1122222=∂∂=⋅+=∂∂=∂∂-=-⋅+=∂∂y x y x x y x y x y x 2222222222222sin cos cos 2sin sin ρθθρθρρθθρθρθθρ∂∂-∂∂+∂∂+∂∂∂+∂∂=∂∂u u u u u y u x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2222222222222sin sin sin 2sin cos ρθθρθρρθθρθρθθρ∂∂+∂∂+∂∂+∂∂∂-∂∂=∂∂u u u u u x u ρρθρρ∂∂+∂∂+∂∂=∂∂+∂∂u u u y u x u 11222222222ρθθθρθθρρcos sin ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u y u y u y u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=θρρρρρu u ρθθθρsin cos ∂∂-∂∂=u u 02222=∂∂+∂∂y ux u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂θρρρρρu u3.设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为零,又没有外力作用,求弦作横向振动时的位移函数u(x,t)。
解如果琴弦像上图的方法来放置,是不是边界条件将不再是齐次的。
4.解下列问题解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤=>=∂∂=∂∂><<∂∂=∂∂lxxxutxt luxtut lxxuatu),()0,(,0),(,0),0(,,222ϕ)()(),(tTxXtxu=XTaXT''='2XXTaT''='22=+'=+''TaTXXλλ⎩⎨⎧='='<<=+'')(,0)0(lXXlxXXλ)()(),()()0(),0(='=∂∂='=∂∂tTlXxt lutTXxtu)(,0)0(='='lXX,3,2,1,22=⎪⎭⎫⎝⎛==nlnnnπβλsin)(=-='lBlXββ)0(=='βAXxlnBXnnπcos=lnnπβ=xBxAXββcossin+=2=+''XXβ2>=βλBX=BAxX+==''X=λ==BAll eBeAlXββββ--=')()0(=-='ββBAXxx BeAeXββ-+=2=-''XXβ2<-=βλ2=+'TaTλ=λ0='T00T A=>λ02222=+'nnTlnaTπtlnanneAT2222π-=nnnTXu=xlneC tlnanππcos2222-=CAB==∑∑∞=-∞=+==1cos2222ntlnannnxlneCCuuππTXu=xlneBA tlnannππcos2222-=001()d2l lC x xlϕ==⎰022()cos d2(1)1()lnnnC x x xl llnπϕπ=⎡⎤=--⎣⎦⎰xx=)(ϕ5.达朗贝尔公式推导 解:做如下代换得:所以 因为所以所以 又因为 因为 所以所以得:即因此⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=>+∞<<∞-∂∂=∂∂x x t x u x x u t x x u a t u ),()0,(),()0,(0,,22222ψϕ⎪⎭⎫ ⎝⎛∂∂⋅-∂∂=t a x 121⎪⎭⎫ ⎝⎛∂∂⋅+∂∂=t a x 121)()(21at x f at x f u -++=ηηη∂∂∂∂+∂∂∂∂=∂∂t t x x ξξξ∂∂∂∂+∂∂∂∂=∂∂t t x x a t 2ηξ-=2ηξ+=x at x -=ηat x +=ξ)()(21ηξf f u +=)(ξξf u =∂∂02=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂ηξηξu u t a x ∂∂⋅-∂∂=∂∂1ηt a x ∂∂⋅+∂∂=∂∂1ξ011=⎥⎦⎤⎢⎣⎡∂∂⋅-∂∂⎥⎦⎤⎢⎣⎡∂∂⋅+∂∂u t a x t a x 0122=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂⋅-⎪⎭⎫ ⎝⎛∂∂u t a x 0122222=⎪⎪⎭⎫ ⎝⎛∂∂⋅-∂∂u t a x 0122222=∂∂⋅-∂∂t u a x u )()()()0,(21x x f x f x u ϕ=+=)()()()0,(21x x f a x f a t x u ψ='-'=∂∂C a x f x f x +=-⎰021d )(1)()(ξξψ2d )(21)(21)(01C a x x f x ++=⎰ξξψϕ2d )(21)(21)(02Ca x x f x --=⎰ξξψϕ2d )(21)(212d )(21)(2100C a at x C a at x u at x at x ---++++=⎰⎰-+ξξψϕξξψϕ[]11()()()d 22x atx at u x at x at a ϕϕψξξ+-=++-+⎰6.解定解问题解:令所以因为 所以得7.P81T1求方程0,1,22>>=∂∂∂y x y x yx u满足边界条件y y u x x u cos ),1(,)0,(2==的解解:用积分法求解:对y 进行积分)(2122x g y x x u ==∂∂,再对x 积分)()(612123y f x f y x u ++=利用边界条件得 ,再用一次边界条件用积分变换法求解:对y 取拉普拉斯变换利用边界条件 得22d 2d d 3d y x y x --x y +=η2=∂∂∂ηξu )()3()0,(21x f x f x x u +-==)()3(0)0,(21x f x f y x u '+-'==∂∂Cx f x f =+--)()3(3121Cx x f 4343)3(1-=-C x x f 4341)(21-=C x x f 4343)(2+=()2222343)(4343341y x C y x C y x u +=+++--=(d 3d )(d d )0y x y x =-+=)()3(21x y f x y f ++-=x y 3-=ξ)()(21ηξf f u +=y y f f y y u x f x f x u cos )()1(61),1(,)0()()0,(212221=++=+=⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<-∞>=∂∂-∂∂∂+∂∂x y x u x x u x y y u y x u x u ,0)0,(,)0,(,0,032222228.推导空间格林公式由高斯公式⎰⎰⎰⎰⎰ΓΩ++=∂∂+∂∂+∂∂dS x n R y n Q x n P dV z R y Q x P )],cos(),cos(),cos([)(推导 证:设函数u(x,y,z)和υ(x,y,z)在Γ+Ω上具有一阶连续偏导数,在Ω内具有连续的所有二阶偏导数。
必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)
第二章 一元二次函数、方程和不等式全章复习讲解 (含答案)【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子.2..不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:性质1 对称性:a b b a >⇔<; 性质2 传递性:,a b b c a c >>⇒>;性质3 加法法则(同向不等式可加性):()a b a c b c c R >⇔+>+∈;;性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc ,,.>⇒>⎧⎪=⇒=⎨⎪<⇒<⎩补充:除法法则:若a b >且0c =,则00a bc c ca b c c c⎧>⇒>⎪⎪⎨⎪<⇒<⎪⎩., 性质5 可加法则:,a b c d a c b d >>⇒+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅>; 性质7 可乘方性:()*00n n a b n a b N >>∈⇒>>;可开方性:()01a b n n N 且+>>∈>⇒要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法:1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.*①0a b a b ->⇔>; ②0a b a b -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小. ①1a a b b >⇔>; ②1a a b b <⇔<; ③1aa bb =⇔=. 要点诠释:若代数式a 、b 都为负数,也可以用作商法. 中间量法:若两个代数式a 、b 不容易直接判断大小,可引入第三个量c 分别与a 、b 作比较,若满足a b >且b c >,则a c >. 第三个量就是中间量. 这种方法就是中间量法,其实质是不等式的传递性.一般选择0或1为中间量.三、一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:】24b ac ∆=-0∆>0∆=0∆<函数()y f x = 的图象方程()=0f x#的解有两相异实根 1212,()x x x x <有两相等实根 122b x x a==-无实根不等式()0f x >的解集 {}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭*R不等式()0f x <的解集{}12x xx x <<∅ ∅要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.…四、解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根122b x x a==-; ③0∆<时,方程无解 (3)根据不等式,写出解集. 五、基本不等式1.对公式222a b ab +≥及2a b+≥. `(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”. 2.由公式222a b ab +≥和2a b+≥ ①2b aa b +≥(,a b 同号); ②2b aa b+≤-(,a b 异号);③20,0)112a b a b a b+≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.2a b+≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;-② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 要点诠释:1.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.2.利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③各项能取得相等的值.…【典型例题】类型一 不等式性质例1.对于实数a b c ,,判断以下说法的对错.(1)若a b >,则ac bc <; (2)若22ac bc >,则a b >; (3)若0a b <<, 则22a ab b >>; (4)若0a b <<, 则a b >; (5)若a b >,1a >1b, 则00a b ,><. ~举一反三:【变式1】如果a <b <0,那么下列不等式成立的是( ) A .B .a+c <b+cC .a ﹣c >b ﹣cD .a •c <b •c例2、比较下列两代数式的大小:(1)(5)(9)x x ++与2(7)x +;举一反三:—【变式1】比较22x x +与2x +的大小【变式2】已知0a b >>,则2222a b a b -+ _________a ba b-+ (填,,><=)类型二 解二次不等式例3. 解下列一元二次不等式(1)250x x -<; (2)2440x x -+>; (3)2450x x -+->:举一反三:【变式1】已知函数222,0,()2,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩解不等式f (x )>3.;【变式2】 不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3} 【变式3】下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集./【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键. 举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________.【变式2】已知关于x 的不等式20x ax b ++<的解集为(1,2),求x 的不等式210bx ax ++>的解集."【变式3】 若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 【变式4】 已知关于x 的不等式x 2+bx +c >0的解集为{x |x <-1或x >2},则b 2+c 2=( )A .5B .4C .1D .2例5.已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.【思路点拨】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数。
数理方程与特殊函数(10-11-2A)参考答案
10---11-2 数学物理方程与特殊函数(A 卷)参考答案一.填空题1,自由项,齐次方程,非齐次方程,初值条件,(第三类)边界条件,初边值(混合)问题; 2,函数()t z y x u u ,,,= 1),具有二阶连续偏导函数;2),满足方程; 3,()xt t x w =,;4,)cos(t x π-;5,[]1,1-,t x t ≤≤-;6,4122≤+<y x ;122<+y x ; 7,()x x 35213-;()32331481-x dxd ;无界的; 8,⎪⎩⎪⎨⎧=+≠;,122,,0n m n n m ()()().,2,1,021211 =+⎰-n dx x P x f n n 二.解:相应方程的特征方程为:0)(2)(322=-+dt dxdt dx ,即:31=dt dx ,1-=dtdx。
由此得积分曲线:13C t x =-,2C t x =+。
作特征变换:t x -=3ξ,t x +=η,则:ηξ∂∂+∂∂-=∂∂u u t u ,ηξ∂∂+∂∂=∂∂u u x u 3;22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u t u , 22222223ηηξξ∂∂+∂∂∂+∂∂-=∂∂∂u u u x t u ,222222239ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 。
代入原方程,整理得:02=∂∂∂ηξu,则通解为:()()ηξ21f f u +=,其中21,f f 是任意两个连续二次可微函数。
因此原方程通解为: ()()()t x f t x f t x u ++-=213,。
由初值条件有: ()()22133x x f x f =+,()()0321='+'-x f x f 。
由微分方程有:()()C x f x f =-2133 因此 ()449321Cx x f +=,()44121C x x f +=,()44322C x x f -=。
高中数学必修1(人教B版)第二章函数2.6知识点总结含同步练习题及答案
解:(1)(2)(3)(4)分别对应下面四个图象:f (x )=−4x 2⎧⎪⎪−e x e−x高考不提分,赔付1万元,关注快乐学了解详情。
答案:解析:A将函数 的图象向左平行移动一个单位,得到的图象,而它关于 轴对称,于是 是偶函数,则有 ,故 .f (x )=|x +1|+|x −a |g (x )=|x +2|+|x +1−a |y y =g (x )1−a =−2a =3答案:解析:3. 函数 的定义域为 ,若 与 都是奇函数,则 A . 是偶函数B . 是奇函数C .D . 是奇函数D(1)若 关于 对称,则 为周期函数,周期为 ;(2)若 关于 对称,则 为周期函数,周期为 ;(3)若 关于 对称,则 为周期函数,周期为 .由题知: 关于 对称,故 为周期函数且周期为 ,结合关于 对称,可知 关于 对称,所以 为奇函数.f (x )R f (x +1)f (x −1)()f (x )f (x )f (x )=f (x +2)f (x +3)f (x )(a ,0),(b ,0)f (x )2|b −a |f (x )x =a ,x =b f (x )2|b −a |f (x )x =a ,(b ,0)f (x )4|b −a |f (x )(−1,0),(1,0)f (x )4(1,0)f (x )(−3,0)f (x +3)答案:4. 已知过点 的二次函数 的图象如下图,给出下列论断:① ,② ,③,其中正确的论断是A .①③B .②C .②③D .③B (1,2)y =a +bx +c x 2abc >0a −b +c <0b <1()。
2023年大学_《高等数学》第四册(数学物理方法)课后习题答案下载
2023年《高等数学》第四册(数学物理方法)课后习题答案下载《高等数学》第四册内容简介第一篇复变函数论第一章复数与复变函数第一节复数1.1.1. 复数域1.1.2. 复平面1.1.3. 复数的模与幅角1.1.4. 复数的乘幂与方根第二节复变函数的基本概念1.2.1. 区域与约当曲线1.2.2. 复变函数的概念1.2.3. 复变函数的极限与连续性第三节复球面与无穷远点1.3.1. 复球面1.3.2. 闭平面上的几个概念习题第二章解析函数第一节解析函数的概念及哥西一黎曼条件 2.1.1. 导数的定义2.1.2. 哥西一黎曼条件2.1.3. 解析函数的定义第二节解析函数与调和函数的关系2.2.1. 共轭调和函数的求法2.2.2. 共轭调和函数的几何意义第三节初等解析函数2.3.1. 初等单值函数2.3.2. 初等多值函数习题第三章哥西定理哥西积分第一节复变积分的概念及其简单性质3.1.1. 复变积分的定义及其计算方法3.1.2. 复变积分的简单性质第二节哥西积分定理及其推广3.2.1. 哥西积分定理3.2.2. 不定积分3.2.3. 哥西积分定理推广到复围线的情形第三节哥西积分公式及其推广3.3.1. 哥西积分公式3.3.2. 解析函数的无限次可微性3.3.3. 模的最大值原理哥西不等式刘维尔定理摩勒纳定理第四节解析函数在平面场中的应用3.4.1. 什么叫平面场3.4.2. 复位势3.4.3. 举例习题第四章解析函数的幂级数表示第一节函数项级数的基本性质4.1.1. 数项级数4.1.2. 一致收敛的函数项级数第二节幂级数与解析函数4.2.1. 幂级数的敛散性4.2.2. 解析函数的幂级数表示第三节罗朗级数4.3.1. 双边幂级数的收敛圆环4.3.2. 解析函数的罗朗展式4.3.3. 罗朗展式举例第四节单值函数的孤立奇点4.4.1. 孤立奇点的`三种类型4.4.2. 可去奇点……习题第五章残数及其应用第六章保角变换第二篇数学物理方程第七章一维波动方程的付氏解第八章热传导方程的付氏解第九章拉普拉斯方程的圆的狄利克雷问题的付氏解第十章波动方程的达朗贝尔解第十一章数学物理方程的解的积分方式第十二章定解问题的适定性第十三章付里叶变换第十四章拉普拉斯变换第三篇特殊函数第十五章勒让德多项式球函数第十六章贝塞耳函数柱函数第十七章厄密多项式和拉盖尔多项式附录《高等数学》第四册目录本书内容为数学物理方法,包括复变函数论、数学物理方程、积分变换和特殊函数等部分,可供综合大学和师范学院物理类专业作为教材。
数学物理方程与特殊函数课后答案
29.0(,)11cos ,sin (,)(cos ,sin ),cos sin ;sin cos .sin cos ;s xx yy rr r r x y x y x r y laplace u u r u u u r rx r y r u x y u r r u u u u r u r u u u u ru θθθθθθθθθθθθθθθ+=++==⎧⎨=⎩∴==+⎧⎪⎨=−+⎪⎩=−⇒=∵ 证明方程在极坐标下为 证明: sin cos ;cos cos in .sin .sin ()cos ()sin sin cos cos r xx x r r u u r y r r u u u x x r r x u u r r r r θθθθθθθθθθθθθθθθθθ⎧∂∂∂⎛⎞⎧=−⎜⎟⎪⎪∂∂∂⎝⎠⎪⎪⇒⎨⎨∂∂∂⎛⎞⎪⎪+=+⎜⎟⎪⎪⎩∂∂∂⎝⎠⎩∂∂∂∂∂⎛⎞==−⎜⎟∂∂∂∂∂⎝⎠∂∂∂∂⎛⎞⎛=−−⎜⎟⎜∂∂∂∂⎝⎠⎝ 从而2222222222222sin cos sin cos sin cos sin cos sin cos sin .cos ()sin ()sin yy u u u u r r r r r r u u ur r r r u u u y y r r y θθθθθθθθθθθθθθθθθθθ⎞⎟⎠∂∂∂∂=+−+∂∂∂∂∂∂∂∂−++∂∂∂∂∂∂∂∂∂⎛⎞==+⎜⎟∂∂∂∂∂⎝⎠= 2222222222222cos cos sin sin cos sin cos cos sin sin cos sin cos cos .1u u r r r r u u u u r r r r r r u u ur r r r u u u u θθθθθθθθθθθθθθθθθθθθθθ∂∂∂∂⎛⎞⎛⎞++⎜⎟⎜⎟∂∂∂∂⎝⎠⎝⎠∂∂∂∂=−++∂∂∂∂∂∂∂∂+−+∂∂∂∂+=+ 所以 10.u +=21.(01,0),(0,)(1,)0,1,0.(2)2(,0)11,1,2(,0)(1);tt xx tu a u x t u t u t x x u x x x u x x x ⎧=<<>⎪==⎪⎪⎧⎪<≤⎪⎨⎪=⎨⎪⎪⎪−<<⎪⎩⎪⎪=−⎩求下列问题的解22(,)()().()()0,()()0.(0)(1)0.()()0,(0)(1)0.(),()si n n n u x t X x T t T t a T t X x X x X X X x X x X X n X x B λλλλπ=′′+=′′+===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 111212202n (1,2,).()cos sin (1,2,).(,)(cos sin )sin .42sin (1)sin sin .2n n n n n n n n x n T t C an t D an t n u x t a an t b an t n x n a x n xdx x n xdx n ππππππππππ∞===+==+⎡⎤=+−=⎢⎥⎣⎦∑∫∫ 代入另一常微分方程,得则其中 ()()14402244124(1)sin 11.44(,)(sin cos 11sin )sin .2nn nn b x x n xdx an n a n u x t an t an t n x n n a πππππππππ∞=⎡⎤=−=−−⎣⎦⎡⎤=+−−⎣⎦∫∑ 因此,所求定解问题的解为2(0,0),(0,)(,)0,(3)35(,0)3sin6sin ,22(,0)0.tt xx x t u a u x l t u t u l t x xu x l l u x ππ⎧=<<>⎪==⎪⎪⎨=+⎪⎪=⎪⎩ ()22(,)()().()()0,()()0.(0)()0.()()0,(0)()0.21(),(2n n u x t X x T t T t a T t X x X x X X l X x X x X X l n X l λλλπλ=′′+=′′+=′==′′+=⎧⎨′==⎩+=解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, ()()()()()()121)sin (0,1,2,).22121()cossin (0,1,2,).22212121(,)(cossin )sin .222235(3sin6sin 22n n n n n n n n n x B x n la n a n T t C t D t n l la n a n n u x t a tb t x l l l x x a l l ππππππππ∞=+==++=+=+++=+=+∑ 代入另一常微分方程,得则 其中 ()03,1;21)sin 6,2;20,12.0.3355(,)3cos sin 6cos sin .2222l n n n xdx n l l n b a a u x t t x t x l l l lπππππ=⎧+⎪==⎨⎪≠⎩==+∫、 因此,所求定解问题的解为3.4(0,0),(2)(0,)0,(,)0,(,0)().t xx x x u u x l t u t u l t u x x l x =<<>⎧⎪==⎨⎪=−⎩求下列定解问题的解:2(,)()().()4()0,()()0.(0)()0.()()0,(0)()0.(),()n n u x t X x T t T t T t X x X x X X l X x X x X X l n X x A lλλλπλ=′+=′′+=′′==′′+=⎧⎨′′==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 222()2()012000cos (0,1,2,).()(0,1,2,).1(,)cos .222().62()cos n n t ln n n t ln n l l n n x n l T t D e n n u x t a a e x l l a x l x dx l n a x l x xd l l πππππ−∞−=====+=−==−∑∫∫ 代入另一常微分方程,得则 其中 2222222()2212[1(1)].2[1(1)](,)cos .6n n n t ln l x n l l n u x t e x n lππππ∞−=−−+−=−−+−=+∑ 因此,所求定解问题的解为2110(01),,0,(1,)0,.,.rr r u u u r r r A u A θθθαθαθπα⎧++=<<⎪⎪⎨⎧≤≤⎪⎪=⎨⎪<≤⎪⎩⎩其中为已知常数22(,)()().()()()0,()()0.()()0,()(2).(),()cos sin n n n n u r R r r R r rR r R r n X x A n B n θθλθλθθλθθθπλθθ=Φ′′′+−=′′Φ+Φ=′′Φ+Φ=⎧⎨Φ=Φ+⎩==+解:应用分离变量法,令 代入方程分离变量,得求解固有值问题得,()2010(0,1,2,).()()()0,(0).()(0,1,2,).1(,)cos sin .212n n n n n n n n n r R r rR r R r R R r C r n u r a a n b n r Aa Ad a ααλθθθαθππ∞=−=′′′⎧+−=⎨<+∞⎩===++==∑∫ 代入另一常微分方程的定解问题得, 则 其中 112cos sin ,1sin 0.2(,)sin cos .n nn AA n d n n b A n d A A u x t r n n n ααααθθαππθθπααθππ−−∞======+∫∫∑ 因此,所求定解问题的解为0(0,0),(0,)0,(,)0(0),(,0)(1),lim (,)0(0),.xx yy y u u x l y u y u l y y x u x A u x y x l l A →∞⎧+=<<<<∞⎪⎪==≤<∞⎨⎪⎪=−=<<⎩其中为已知常数 2(,)()().()()0,()()0.(0)()0.()()0,(0)()0.(),()sin n n n u x y X x Y y X x X x Y y Y y X X l X x X x X X l n X x B lλλλπλ=′′+=′′−===′′+=⎧⎨==⎩==解:应用分离变量法,令 代入方程分离变量,得 由边界条件分离变量,得 求解固有值问题得, 10(1,2,).()(1,2,).(,)sin.22()sin .lim (,)0n n y y lln n n n n y y l ln n n l n n y n x n l Y y C e D e n n u x y a e b e x l x n A a b A l xdx l l l n u x y a ππππππππ−∞−=→∞==+=⎛⎞=+⎜⎟⎝⎠+=−==⇒∑∫ 代入另一常微分方程,得则 其中 10.2(,)sin .n n y l n A n u x t e x n l πππ∞−===∑因此,所求定解问题的解为()22228.-10.cos ,sin ,111(0),0.{cos sin }.,()xx yy x y a rr r r an a u u u x r y r u u u r a r r u A n B n u r a r θθθθθθθ+==+====⎧++=−<<⎪⎨⎪=⎩+= 在以原点为心,为半径的圆内,试求泊松方程 的解,使它满足边界条件解:令作极坐标变换,得由固有函数法,相应的固有函数系为 因此,设方程的解为[]()()()()()()()0002222cos ()sin .11,110,0210,323()0()n n n n n n n n n nn n nn n n n b r n a a r n a a a n r r nb b b r r a r A r B r n b r C r D θθ∞=−+⎧′′′+=−⎪⎪⎪′′′+−=≠⎨⎪⎪′′′+−=⎪⎩=+≠=+∑ 代入方程,得方程,的通解:, ()()2000(0),()0;(0),()0.()00()0.11()ln ,4(0),()n n n n n n n n r a a a b b a a r n b r a r A r B r a a a −<+∞=<+∞==≠==+−<+∞=. 由有界性条件及边界条件,得 , 方程的通解: 由有界性条件及边界条件,()()()()()220222220.1().41,.41,.a r a r u r a r u x y a x y θ=−=−⎡⎤=−+ 得 则定解问题的解为 化成直角坐标,则得21210.sin ,(2)(0,)0,(,)0(0),(,0)0,(,0)0(0);{sin }.(,)()sin .tt xx tn n n u a u t x l u t u l t t u x u x x l n x ln u x t u t x l n a u u l ππππ∞=⎧=+⎪⎪==≥⎨⎪==≤≤⎪⎩=⎛⎞′′+⎜⎟⎝⎠∑求下列问题的解:解:由固有函数法,相应的固有函数系为 设方程的解为 代入原方程,得()2111020(1),.(0)(0)0(1,2,),1()0;1()sin sin .n n n n t n a u u t l u u n n u t l an u t t d al l l a t t a a l ππτττππππ=≠⎛⎞′′+=⎜⎟⎝⎠′===≠===−⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠∫"" 由初始条件,得当时, 当时, 2(,)sin sin l l a u x t t t x a a l l ππππ⎛⎞⎛⎞=−⎜⎟⎜⎟⎝⎠⎝⎠ 故所求的解为2110(0,0),(3)(0,)0,(,)0,(,0)0.,{sin}.(,)()sin .sin 22sin [1(t xx n n n n l n u a u A x l t u t u l t u x n x ln u x t u t x l n A A A x l n A A A xdx l l n πππππ∞=∞=⎧=+<<>⎪==⎨⎪=⎩====−∑∑∫ 解:由固有函数法相应的固有函数系为 设方程的解为 并将展为: ,其中 222()023321)].2[1(1)],(0)0.2()[1(1)]2[1(1)][1].(,n n n n n n a t tn l n n a t n ln a A u u l n u Au t e d n Al e n au x πτπππτππ⎛⎞−−⎜⎟⎝⎠⎛⎞−⎜⎟⎝⎠−⎧⎛⎞′+=−−⎪⎜⎟⎨⎝⎠⎪=⎩=−−=−−−∫ 代入原方程可得得: 故所求的解为2233212)[1(1)][1]sin .n a tnl n Al n t e x n alπππ⎛⎞∞−⎜⎟⎝⎠==−−−∑()2211.224sin cos ,(2)(0,)0,(,)(0),(,0),(,0)()(0).(,)(,)().224sin cos ,(0,)(0ttxx t ttxx u a u x x l lu t u l t B t Bu x x u x x l x x l l u x t v x t w x v a v w x x l lv t w ππππ⎧=+⎪⎪==≥⎨⎪⎪==−≤≤⎩=+′′=+++求下列问题的解解:设问题的解为 将其代入上面的定解问题,得22222)0,(,)(),(,0)(),(,0)().224sincos 0,(0)0().4()sin.8(0,)0,(,)0,(,0)t tt xx v l t w l B Bv x w x x v x x l x l a w x x l lw w l B B l w t x x l a l v a v v t v l t v x ππππ⎧⎪⎪=+=⎨⎪⎪+==−⎩⎧′′+=⎪⎨⎪==⎩=+==== 化成下面两个问题:(1) , 解得: (2) 12222022340(),(,0)().(,)cos sin sin .0,4;24sin sin 8, 4.824()sin t n n n l n l n Bx w x v x x l x l n a n a n v x t a t b t x l l l n l n a x xdx l l a l l n an l b x l x xdx n a l n ππππππππππ∞=⎧⎪⎪⎨⎪⎪−=−⎩⎛⎞=+⎜⎟⎝⎠≠⎧⎪=−⋅=⎨−=⎪⎩=−⋅=∑∫∫ 解得: 其中, ()()43222441222[11].4[11]44(,)cos sin sin sin .844(,)(,)()1cossin 8nn n al l a n a n v x t t x t x a l l n a l l B l a u x t v x t w x x t x l a l l πππππππππ∞=−−−−=−+⎛⎞=+=+−⎜⎟⎝⎠∑ 则 因此,原问题的解为14..0,(2)(-)(),(-)().0().:0X X X X X X X x Be Ae Be A B λππππλ′′+=⎧⎨′′==⎩<=++=+−=−==⇒求下列问题的固有值与固有函数解:当时,方程的通解为 由边界条件,有, ; 得0()0.0().-0.:().0().sin ,X x X x Ax B A B A B A X x C X x A B A B A Bλππλ===++=+⇒==>=+−=++=− 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有22sin ;()0sin 0(1,2,);()cos sin .(0,1,2,),()cos sin .n n n n n n n n X x n n X x A nx B nx n n X x A nx B nx λλ+====+===+"""" 要不恒等于,则,得故,固有值 固有函数222()()0,(3)(1)()0.ln ,()0.0()00:x y x xy x y y y e x e x d y y d y x Be Bx A B Be τλτλττλ′′′⎧++=⎨==⎩==+=<=+=++=+=解:方程通过自变量代换 或 得: 当时,方程的通解为 由边界条件,有 , ; 得))0()0.0()ln .0,0.:()0.0()cos ln sin ln .0,A B y x y x A B A x B B A y x y x A B A x B x A λτλ==⇒===+=+===>=+=+= 当时,方程的通解为 由边界条件,有 得当时,方程的通解为 由边界条件,有()()2220;()00(1,2,);()sin ln .(1,2,),()sin ln .n n n n n n B y x n n y x B n x n n y x B n x λππλπ========"""" 要不恒等于,则,得 故,固有值 固有函数。
数学物理方程课后参考答案第二章
第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xuk t s x u k t s x u k dQ x x x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数理方程课后习题(带答案)
u0 X0T0 B0A0 C0
0
Tn
a2n22
l2
Tn
0
a2n22 t
Tn Ane l2
un XnTn
ABea2nl222t nn
cons l
xCea2nl222t n
cosn
l
x
un 0unC 0n 1Cnea2n l2 22tconlsx
数学物理方程与特殊函数
第2章习题选讲
u(uutx(,0x0,)at)2xx,20u2,,u(lx,t) 0,
由此可得:w (x)1
xt
dt
f()dC xA ,
a2 0 0
其中
C1 l(BAa 1 2 0 ldt0 tf()d),
数学物理方程与特殊函数
第2章习题选讲
然后用分离变量解
v(vt0,t)a2
2v x2 , 0, v(l,
t)
0,
0 x l,t 0 t 0
v(x,0) g(x) w(x), 0 x l
0xl1,0yl2 0yl2
u(x,0)0,u(x,l2)(x), 0xl1
uXY
XX0,
X(0)X(l1)0
0xl1
YY0
n n2 nl1 2,n1,2,3,L
n
Xn An sin l1 x
Yn
n2 2
l12
Yn
0
ny
ny
Yn Cnel1 Dne l1
数学物理方程与特殊函数
第2章习题选讲
un 1unn 1Cnenl1 yD nenl1 ysinnl1 x u(x,0)n 1CnDnsinnl1x0 u(x,l2)(x)n 1 C nenl1l2D nenl1l2 sinn l1x
高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案
描述:例题:2.函数的周期性函数的周期性如果存在非零实数 ,使得对函数 定义域 内的任意一个自变量 ,都有,那么称函数 是周期为 的函数,此时称 为函数 的一个周期.最小正周期如果一个周期函数的所有正周期中存在最小值,就称这个值为该函数的最小正周期.函数的对称性与周期性函数的对称性引起的周期性 :① 如果函数 关于直线 对称,且关于直线 对称,那么 是周期为 的函数.② 如果函数 关于点 对称,且关于点 对称,那么 是周期为 的函数.③ 如果函数 关于直线 对称,且关于点 对称,那么 是周期为 的函数.对于定义域为 的函数 ,给出下列命题:①若函数 满足条件 ,则函数 的图象关于点 对称;②若函数 满足条件 ,则函数 的图象关于 轴对称;③在同一坐标系中,函数 与 其图象关于直线 对称;④在同一坐标系中,函数 与 其图象关于 轴对称.其中,真命题的个数是( )A. B. C. D.解:D① 中取点 ,则关于点 对称点的坐标为 ,所以.因为 ,所以 ,所以,即 ① 正确;② 中若 ,令 ,有 ,则函数 的图象关于直线 轴对称,即 ② 正确.③中因为 与 的图象关于直线 对称,函数 与的图象可以由 与 的图象向右平移了一个单位而得到,从而可得函数 与 的图象关于直线 对称,即 ③ 正确;④在同一坐标系中,点 在函数 的图象上,则 在 的图象上,所以函数 与 其图象关于 轴对称.即 ④ 正确.综上,①②③④ 均为真命题.故选 D.R f (x )f (x −1)+f (1−x )=2f (x )(0,1)f (x )f (x −1)=f (1−x )f (x )y y =f (x −1)y =f (1−x )x =1y =f (1+x )y =f (1−x )y 1234(x ,f (x ))(0,1)(−x ,2−f (x ))2−f (x )=f (−x )f (x −1)+f (1−x )=2f (x )+f (−x )=22−f (x )=f (−x )f (1−x )=f (x −1)t =1−x f (t )=f (−t )y =f (x )y y =f (x )y =f (−x )x =0y =f (x −1)y =f (1−x )y =f (x )y =f (−x )y =f (x −1)y =f (1−x )x =1(x ,y )y =f (1+x )(−x ,y )y =f (1−x )y =f (1+x )y =f (1−x )y T y =f (x )I x f (x +T )=f (x )y =f (x )T T y =f (x )(a ≠b )y =f (x )x =a x =b y =f (x )2|a −b |y =f (x )(a ,0)(b ,0)y =f (x )2|a −b |y =f (x )x =a (b ,0)y =f (x )4|a −b |已知 在 上是奇函数,且 ,当 时, ,则 ______.解: .f (x )R f (x +4)=f (x )x ∈(0,2)f (x )=2x 2f (7)=−2f (7)=f (3)=f (−1)=−f (1)=−2f (x)[4,6]f在为减函数且如图所示:。