4.2.1 常用于描述频率特性的几种曲线
合集下载
4.2 典型环节的频率特性图
![4.2 典型环节的频率特性图](https://img.taocdn.com/s3/m/bfbaa28f71fe910ef12df8da.png)
2
G j arctg
2T 2T arctg 2 2 1 T 1 T
由此可知,振荡环节的对数频率特性不仅与ω有关,而且与ξ有关。根据对数特性计算
公式可知,振荡环节的低频渐近线为零分贝线,高频渐近线为斜率为-40dB/dec的直 1 线,高频渐近线与低频渐近线相交于T 处,对数相频曲线在φ=-90°弯点处是斜 T 对称的。其伯德图如图4.13所示,不同的ξ 值对应的曲线不同。
0, G j ; , G j 0 其相频特性为
V G j arctg arctg 90 U 0 其对数幅频特性为 1
L 20 lg G j 20 lg
1
20 lg
4.8所示。
4.2.3 积分环节频率特性图(2)
惯性环节的对数幅频特性曲线为折线,在低频段,渐近线为横坐标轴(零分贝线), 在高频段,渐近线为斜率为-20dB/dec,与横坐标轴交于 1 的直线。折点在T 1 T T 处,称ωT为转折(转角)频率。 惯性环节的对数相频特性曲线根据对数相频特性来改变ω,逐点求出φ(ω),然后作图 与对数相频特性图上。对数相频特性曲线在φ=-45°弯点处是斜对称的。
2 2 2
其对数相频特性为
G j 90
积分环节的幅频特性随ω增加而逐 渐减小,而相频特性曲线为-90°, 所以其奈氏图是与虚轴负段重合的 一条直线,如图4.7所示。 积分环节的对数幅频特性为一在 ω=1处穿越横轴、斜率为-20dB/dec 的直线,对数相频特性为 φ(ω)=-90°的直线,其伯德图如图
其对数幅频特性为
V 0 arctg 0 U K
L 20 lg G j 20 lg K
频率特性的基本概念
![频率特性的基本概念](https://img.taocdn.com/s3/m/4278c985bb68a98270fefa11.png)
T = 0 T = 0.3 T = 0.8
() = 0° () = 16.7 ° () = 38.7 °
T = 1 T
Friday, May 15, 2020
() = 45°
() = 90°
37
37
5 一阶微分环节
Im =
频率特性 G(j) = 1 + jT
(1)极坐标图
0
=0 Re
幅频特性为 A() 1 2T 2
以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Friday, May 15, 2020
16
Dec Dec Dec Dec
... 2 1 0 1 2
0 0.01 0.1 1 10 100
log
由于 以对数分度,所以零频率线在 处。
特性表示在同一个复数平面上。
12
Friday, May 15, 2020
12
在一阶RC滤波电路中,系统是一个典型的 一阶惯性环节,其频率特性为:
G( j)
1
jT 1
在输入不同频率的正弦信号下,计算出幅值、相 位并列表如下:
根据该表格 可以绘制出 一阶惯性环 节的奈奎斯
特图。
Im
ω ∞0
-45
ω=0 Re
(渐进线)近似表示。 对实验所得的频率特性用对数坐标表示,并用分
段直线近似的方法,可以很容易的写出它的频率 特性表达式。
Friday, May 15, 2020
26
二、典型环节的频率特性
1 .比例环节
其传递函数为 G(s) = K
频率特性为 G(j ) = K
(1)幅相频率特性
频率特性图形表示
![频率特性图形表示](https://img.taocdn.com/s3/m/83903af76c175f0e7dd13706.png)
性能分析(尤其是稳定性)时不需要绘制精确 的幅相特性曲线,只需绘制大致形状即可
G jH j
m2h
h
Ki j1i2j22ii j1
i1
i1
n2lv
l
jv jTi 1 Ti2j22iTi j1
i1
i1
(一) 放大环节(比例环节)
放大环节的传递函数为 G(s) K
其对应的频率特性是 G( j) K
当
1 T
时, G( j 1 )
T
1 0.707 G( j 1 ) 450
2
T
当 时, G( j) 0 G( j。) 900
当ω由零至无穷大变化时,惯性环节的频率特性在 G( j)平
面上是正实轴下方的半个圆周,证明如下:
G( j)
1
jT
1
1
1
T 2
2
T j 1 T 2 2
令
ReG
(
j
)
1
贝数,即 L() 20lg G( j) (dB) ;对数相频特性的纵轴也是
线性分度,它表示相角的度数,即 () G( j() 度)。通常
将这两个图形上下放置(幅频特性在上,相频特性在下),且 将纵轴对齐,便于求出同一频率的幅值和相角的大小,同时为 求取系统相角裕度带来方便。
开环对数频率特性图(对数坐标图或Bode图) 包括 开环对数幅频曲线 和 开环对数相频曲线
G( j) G1( j)G2 ( j)Gn ( j) G( j) G1 ( j) G2 ( j) Gn ( j) L() 20 lg G( j) 20 lg G1( j) 20 lg G2 ( j) 20 lg Gn ( j)
(3) 用渐近线表示幅频特性,使作图更为简单方便;
G jH j
m2h
h
Ki j1i2j22ii j1
i1
i1
n2lv
l
jv jTi 1 Ti2j22iTi j1
i1
i1
(一) 放大环节(比例环节)
放大环节的传递函数为 G(s) K
其对应的频率特性是 G( j) K
当
1 T
时, G( j 1 )
T
1 0.707 G( j 1 ) 450
2
T
当 时, G( j) 0 G( j。) 900
当ω由零至无穷大变化时,惯性环节的频率特性在 G( j)平
面上是正实轴下方的半个圆周,证明如下:
G( j)
1
jT
1
1
1
T 2
2
T j 1 T 2 2
令
ReG
(
j
)
1
贝数,即 L() 20lg G( j) (dB) ;对数相频特性的纵轴也是
线性分度,它表示相角的度数,即 () G( j() 度)。通常
将这两个图形上下放置(幅频特性在上,相频特性在下),且 将纵轴对齐,便于求出同一频率的幅值和相角的大小,同时为 求取系统相角裕度带来方便。
开环对数频率特性图(对数坐标图或Bode图) 包括 开环对数幅频曲线 和 开环对数相频曲线
G( j) G1( j)G2 ( j)Gn ( j) G( j) G1 ( j) G2 ( j) Gn ( j) L() 20 lg G( j) 20 lg G1( j) 20 lg G2 ( j) 20 lg Gn ( j)
(3) 用渐近线表示幅频特性,使作图更为简单方便;
2第二节频率特性的几种表示方法
![2第二节频率特性的几种表示方法](https://img.taocdn.com/s3/m/1dafdc2a915f804d2b16c175.png)
A(ω ) ϕ (ω ) ω =∞
P(ω )
ω =0
G(s) =
s +1 s2 + s +1
由于 | G ( jω ) |是偶函数, 所以当 ω 从 − ∞ → 0 和 0 → ∞ 变化时,奈魁 斯特曲线对称于实轴。 3
Wednesday, May 25, 2011
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。 波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度: 横坐标分度:它是以频率 ω 的对数值 log ω 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
第二节 频率特性的几种表示方法
Wednesday, May 25, 2011
1
频率特性可以写成复数形式: ( jω ) = P(ω ) + jQ(ω ) ,也可 G 以写成指数形式:G ( jω ) =| G ( jω ) | ∠G ( jω )。其中,P(ω ) 为实 频特性, (ω ) 为虚频特性; G ( jω ) |为幅频特性, G ( jω ) 为相频 Q | ∠ 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Dec Dec Dec Dec
− ∞...
0
−2 − 0.01
−1 − 0.1
0 1
1 10
2 100
log ω
ω
ω 由于 以对数分度,所以零频率线在 − ∞ 处。
Wednesday, May 25, 2011
P(ω )
ω =0
G(s) =
s +1 s2 + s +1
由于 | G ( jω ) |是偶函数, 所以当 ω 从 − ∞ → 0 和 0 → ∞ 变化时,奈魁 斯特曲线对称于实轴。 3
Wednesday, May 25, 2011
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。 波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度: 横坐标分度:它是以频率 ω 的对数值 log ω 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
第二节 频率特性的几种表示方法
Wednesday, May 25, 2011
1
频率特性可以写成复数形式: ( jω ) = P(ω ) + jQ(ω ) ,也可 G 以写成指数形式:G ( jω ) =| G ( jω ) | ∠G ( jω )。其中,P(ω ) 为实 频特性, (ω ) 为虚频特性; G ( jω ) |为幅频特性, G ( jω ) 为相频 Q | ∠ 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Dec Dec Dec Dec
− ∞...
0
−2 − 0.01
−1 − 0.1
0 1
1 10
2 100
log ω
ω
ω 由于 以对数分度,所以零频率线在 − ∞ 处。
Wednesday, May 25, 2011
频率特性的图示方法
![频率特性的图示方法](https://img.taocdn.com/s3/m/9af4c2716fdb6f1aff00bed5b9f3f90f77c64d7b.png)
对数相频特性:
由:
2.典型环节的Bode图
始于点(ωT ,0),斜率20dB/dec的直线
对数幅频特性:
低频段(ω<<ωT), 20lgG(j)20lgT-20lgT=0dB
高频段(ω>>ωT), 20lgG(j) 20lg-20lgT
故:
ωT : 转角频率
(5)一阶微分环节
对数相频特性:
=0, G(j)=0°;=T,G(j)=45°;=, G(j)=90°; 对数相频特性曲线对称于点(T,45°)
01
20lgG(j)= 20lg G(j)= 90o
02
对数幅频特性:过点(1,0)斜率20dB/dec的直线
03
对数相频特性:过点(0,90o )平行于横轴的直线
04
2.典型环节的Bode图
始于点(ωT ,0), 斜率-20dB/dec的直线
(4)惯性环节
令:
故:
对数幅频特性:
低频段(ω<<ωT)源自 20lgG(j)20lgT-20lgT=0dB
02
补充必要的几点,根据G(j)、G(j)和Re[G(j)]、Im[G(j)]的变化趋势以及G(j)所处的象限,作出Nyquist曲线的大致图形。
03
2.绘制Nyquist图的一般方法
例1 系统的传递函数
解 系统的频率特性
0
幅频:
相频:G(j) = -90o-arctgT
实频:
虚频:
积分环节改变了起始点(低频段)
根据上述特点,可以直接绘制系统的对数幅频特性
Bode图的绘制
步骤如下
写出开环频率特性表达式,将所含各因子的转折频率由大到小依次标在频率轴上
由:
2.典型环节的Bode图
始于点(ωT ,0),斜率20dB/dec的直线
对数幅频特性:
低频段(ω<<ωT), 20lgG(j)20lgT-20lgT=0dB
高频段(ω>>ωT), 20lgG(j) 20lg-20lgT
故:
ωT : 转角频率
(5)一阶微分环节
对数相频特性:
=0, G(j)=0°;=T,G(j)=45°;=, G(j)=90°; 对数相频特性曲线对称于点(T,45°)
01
20lgG(j)= 20lg G(j)= 90o
02
对数幅频特性:过点(1,0)斜率20dB/dec的直线
03
对数相频特性:过点(0,90o )平行于横轴的直线
04
2.典型环节的Bode图
始于点(ωT ,0), 斜率-20dB/dec的直线
(4)惯性环节
令:
故:
对数幅频特性:
低频段(ω<<ωT)源自 20lgG(j)20lgT-20lgT=0dB
02
补充必要的几点,根据G(j)、G(j)和Re[G(j)]、Im[G(j)]的变化趋势以及G(j)所处的象限,作出Nyquist曲线的大致图形。
03
2.绘制Nyquist图的一般方法
例1 系统的传递函数
解 系统的频率特性
0
幅频:
相频:G(j) = -90o-arctgT
实频:
虚频:
积分环节改变了起始点(低频段)
根据上述特点,可以直接绘制系统的对数幅频特性
Bode图的绘制
步骤如下
写出开环频率特性表达式,将所含各因子的转折频率由大到小依次标在频率轴上
频率特性几种表示方法.pptx
![频率特性几种表示方法.pptx](https://img.taocdn.com/s3/m/2c881e0026d3240c844769eae009581b6ad9bd32.png)
2
第3页/共7页
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。 波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度: 横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
... 2 1
0 0.01 0.1
01
2
1 10 100
log பைடு நூலகம்
由于 以对数分度,所以零频率线在 处。
Sunday, November 24, 2024
3
第4页/共7页
纵坐标分度:幅频特性曲线的纵坐标是以log A()或20log A() 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A() 或 20log A() 值标注在纵坐标上。
工程上常用图形来表示频率特性,常用的有:
1.极坐标图,也称乃奎斯特(Nyquist)图。是以开环频率特性的
实部 为直角坐标横坐标,以其虚部 为纵坐标,以 为参变量的
幅值与相位的图解表示法。 2.对数坐标图,也称波德(Bode)图。它是由两张图组成,以lg 为横坐标,对数分度,分别以 20lg G( j) 和 ( j) 作纵坐 标的一种图示法。
Q( )
A( ) ( )
P( )
G(s)
s 1 s2 s 1
根据上面的说明,可知: 频率特性曲线是S平面 上变量s沿正虚轴变化 时在G(s)平面上的映射。
0 由于 | G( j) |是偶函数, 所以当 从 0 和0 变化时,乃奎 斯特曲线对称于实轴。
Sunday, November 24, 2024
3第三节典型环节的频率特性
![3第三节典型环节的频率特性](https://img.taocdn.com/s3/m/4bca59070740be1e650e9ad5.png)
ω = 0时:A(0) = K,ϕ (0) = 0
P (0) = K,Q (0) = 0
1 1 K 1 ω = 时: ( ) = ,ϕ ( ) = 45° A T T T 2 K 1 K 1 P( ) = ,Q( ) = − T 2 T 2
ω =∞
G(jω)幅值随ω增 G(jω 幅值随ω 加而变小, 加而变小, 幅角从0→ 0→幅角从0→-90∘, 矢量末端轨迹是 个半圆
幅值A(ω) 对数幅值 20lgA(ω) 幅值A(ω) 对数幅值 20lgA(ω) 1.0 0 0 1.0 0 0 1.2 6 2 0.7 9 -2 1.5 6 4 0.6 3 -4 2.0 0 6 0.5 0 -6 2.5 1 8 0.3 9 -8 3.1 6 10 0.3 2 -10 5.6 2 15 0.1 8 -15 10. 0 20 0.1 0 -20 100 1000 40 0.0 1 -40 60 0.00 1 -60 1000 0 80 0.000 1 -80
幅频特性为: 幅频特性为:
A(ω ) =
1
对数幅频特性为: (ω ) = 20 log A(ω ) = −20 log (1 − T 2ω 2 ) 2 + (2ζωT ) 2 对数幅频特性为 L 低频段渐近线: 低频段渐近线: Tω << 1时,L(ω ) ≈ 0 高频段渐近线: Tω >> 1时,L(ω ) ≈ −20 log (T 2ω 2 ) 2 = −40 log Tω 高频段渐近线: 1 两渐进线的交点ω o = 称为转折频率 转折频率。斜率为-40dB/Dec。 转折频率 T Thursday, February 16, 17
Thursday, February 16, 2012
§52频率特性的几种表示方法
![§52频率特性的几种表示方法](https://img.taocdn.com/s3/m/842a7ff6b14e852459fb571f.png)
A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 0 变化时,奈魁 斯特曲线对称于实轴。
3
Tuesday, November 20, 2018
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
第二节 频率特性的几种表示方法
Tuesday, November 20, 2018
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Tuesday, November 20, 2018
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
ቤተ መጻሕፍቲ ባይዱ
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
8
第四章 频率特性分析(第9讲)
![第四章 频率特性分析(第9讲)](https://img.taocdn.com/s3/m/b60790196bd97f192279e914.png)
xo (t ) = XiK 1 + T 2ω 2 sin(ωt − arctan Tω )
xo (t ) =
XiK 1+ T ω
2 2
sin(ωt − arctan Tω )
从上式可知,系统的稳态响应的幅值与系统的参数即 比例系数K、时间常数T以及输入谐波的幅值 X i 、频率 ω有关; XiK 幅值 1 + T 2ω 2 相位差
G ( jω ) = Re[G ( jω )] + Im[G ( jω )] = u (ω ) + jv (ω )
G ( jω ) = Re[G ( jω )] + Im[G ( jω )] = u (ω ) + jv (ω )
式中, u (ω ) 是频率特性的实部,称为实频特性, v (ω ) 是频率特性的虚部,称为虚频特性。 显然有:u (ω ) = A(ω ) cos ϕ (ω ),
也是一个复数,可以写成:
G ( jω ) = G ( jω ) e j∠G ( jω ) = A(ω )e jϕ (ω )
因此,传递函数与频率特性的关系为:
G ( jω ) = G ( s ) s = jω
G ( jω ) = G ( s ) s = jω
传递函数的复变量s用jω代替后,传递函数就 变为频率特性。它是传函的特例,是定义在复 平面虚轴上的传递函数。 频率特性的量纲就是传递函数的量纲,也是输 出信号与输入信号的量纲之比。同前面介绍的 微分方程、传递函数、脉冲响应函数等一样, 也是线性控制系统的数学模型。
X iω bm s m + bm −1s m −1 + ⋅⋅⋅ + b1s + b0 X o ( s ) = X i ( s )G ( s ) = 2 ⋅ 2 s + ω an s n + an −1s n −1 + ⋅⋅⋅ + a1s + a0
xo (t ) =
XiK 1+ T ω
2 2
sin(ωt − arctan Tω )
从上式可知,系统的稳态响应的幅值与系统的参数即 比例系数K、时间常数T以及输入谐波的幅值 X i 、频率 ω有关; XiK 幅值 1 + T 2ω 2 相位差
G ( jω ) = Re[G ( jω )] + Im[G ( jω )] = u (ω ) + jv (ω )
G ( jω ) = Re[G ( jω )] + Im[G ( jω )] = u (ω ) + jv (ω )
式中, u (ω ) 是频率特性的实部,称为实频特性, v (ω ) 是频率特性的虚部,称为虚频特性。 显然有:u (ω ) = A(ω ) cos ϕ (ω ),
也是一个复数,可以写成:
G ( jω ) = G ( jω ) e j∠G ( jω ) = A(ω )e jϕ (ω )
因此,传递函数与频率特性的关系为:
G ( jω ) = G ( s ) s = jω
G ( jω ) = G ( s ) s = jω
传递函数的复变量s用jω代替后,传递函数就 变为频率特性。它是传函的特例,是定义在复 平面虚轴上的传递函数。 频率特性的量纲就是传递函数的量纲,也是输 出信号与输入信号的量纲之比。同前面介绍的 微分方程、传递函数、脉冲响应函数等一样, 也是线性控制系统的数学模型。
X iω bm s m + bm −1s m −1 + ⋅⋅⋅ + b1s + b0 X o ( s ) = X i ( s )G ( s ) = 2 ⋅ 2 s + ω an s n + an −1s n −1 + ⋅⋅⋅ + a1s + a0
第二节频率特性的几种表示方法
![第二节频率特性的几种表示方法](https://img.taocdn.com/s3/m/8d31fb6d804d2b160b4ec049.png)
第二节 频率特性的几种表示方法
Wednesday, April 10, 2019
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 变化时,奈 0 魁斯特曲线对称于实 轴。 3
Wednesday, April 10, 2019
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
Wednesday,奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
Wednesday, April 10, 2019
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 变化时,奈 0 魁斯特曲线对称于实 轴。 3
Wednesday, April 10, 2019
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
Wednesday,奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
4.2.14.2频率特性的几何表示法
![4.2.14.2频率特性的几何表示法](https://img.taocdn.com/s3/m/9c6d217442323968011ca300a6c30c225901f0b0.png)
对数频率特性曲线——伯德图
对数相频特性曲线
1 横坐标为的对数lg 分度 2 纵坐标为()
频率每变化十倍,称为十倍频程,记作dec。
对数频率特性曲线——伯德图
对数幅频特性 横坐标表示为:ω 为方便只表示
纵坐标表示为:
L(ω )=20lgA(ω)
L(ω )=20lgA(ω ) dB
40 -20dB/dec
(3)在一张图上绘制低、中、高频段特 性,对系40dB/dec
-1
0
1 lgω
0
0.1
1
10 ω
-20 -40
十倍频程 dec
-20dB/dec
φ (ω )
单位为 dB
0
0.1
1
-90
10 ω
对数相频特性 -180
伯德图的优点
(1)对数运算,将串联环节的幅值相 乘转化为幅值相加的运算
(2)这种方法建立在渐近线的基础上, 简化了幅频特性的绘制过程
频率特性的几何表示法
频率特性法是一种图解分析法,常见的频率 特性曲线有两种:
1 幅相频率特性曲线
2 对数频率特性曲线
幅相频率特性曲线——奈奎斯特曲线(奈氏图)
特点: 以频率ω为变量,将频率特性的幅频特性A(ω)
和相频特性φ(ω)同时表示在复平面上。
Im
= 0 Re
=0
幅相频率特性曲线——奈奎斯特曲线(奈氏图)
作图方法: 取=0和=两点,必要时可在0< < 之间选取
一些特殊点,算出这些点处的幅频值和相频值,然后在 幅相平面上做出这些点,并用光滑的曲线连接起来。
Im
= 0 Re
=0
对数频率特性曲线——伯德图
自动控制原理2第二节频率特性的几种表示方法
![自动控制原理2第二节频率特性的几种表示方法](https://img.taocdn.com/s3/m/7de38655336c1eb91a375da2.png)
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
8
3.16
10
5.62
15
10.0
20
增益 0
Saturday, November 05, 2016
5
使用对数坐标图的优点:
可以展宽频带;频率是以10倍频表示的,因此可以清楚的 表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线近 似的方法,可以很容易的写出它的频率特性表达式。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
...
0
2
1
0.01
0 .1
0 1
1
10
2 100
log
以对数分度,所以零频率线在 处。 由于
Saturday, November 05, 2016
4
纵坐标分度:幅频特性曲线的纵坐标是以log A( )或20log A( ) 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A( ) 或 20log A( ) 值标注在纵坐标上。 相频特性曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。 当幅制特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20log(幅值)
4.2 典型环节的频率特性图
![4.2 典型环节的频率特性图](https://img.taocdn.com/s3/m/3d4bdfc0360cba1aa811da55.png)
0, G j ; , G j 0 其相频特性为
V G j arctg arctg 90 U 0 其对数幅频特性为 1
L 20 lg G j 20 lg
1
20 lg
4.8所示。
4.2.3 积分环节频率特性图(2)
2
G j arctg
2T 2T arctg 2 2 1 T 1 T
由此可知,振荡环节的对数频率特性不仅与ω有关,而且与ξ有关。根据对数特性计算
公式可知,振荡环节的低频渐近线为零分贝线,高频渐近线为斜率为-40dB/dec的直 1 线,高频渐近线与低频渐近线相交于T 处,对数相频曲线在φ=-90°弯点处是斜 T 对称的。其伯德图如图4.13所示,不同的ξ 值对应的曲线不同。
1 2
G(jω)的轨迹与虚轴交点处的频率就是无阻尼
4.2.5 振荡环节频率特性图(4)
对数幅频特性为
L 20 lg G j 20 lg
对数相频特性为
1 T 2T
2 2
1
2
20 lg 1 T
2 2
2T
惯性环节的对数幅频特性曲线为折线,在低频段,渐近线为横坐标轴(零分贝线), 在高频段,渐近线为斜率为-20dB/dec,与横坐标轴交于 1 的直线。折点在T 1 T T 处,称ωT为转折(转角)频率。 惯性环节的对数相频特性曲线根据对数相频特性来改变ω,逐点求出φ(ω),然后作图 与对数相频特性图上。对数相频特性曲线在φ=-45°弯点处是斜对称的。
4.2.5 振荡环节频率特性图(5)
4.2.6 一阶微分环节频率特性图(1)
4-2频率特性图形表示
![4-2频率特性图形表示](https://img.taocdn.com/s3/m/c5a948333968011ca300919c.png)
1− 2ξ 2
1 ) 2
ξ
= −90 + arcsin
0
ξ
1−ξ 2
振荡环节的幅值特性曲线如图 所示。在 0 <ω <ωr 的范 围内,随着ω的增加, M(ω) 缓慢增大;当 ω =ωr 时, (ω)达到 M 最大值 Mr ;当 ω > ωr时,输出幅值衰减很快。 当阻尼比 ξ >1 时,此 时振荡环节可等效成两个 不同时间常数的惯性环节 的串联, 即
2
Tω = v(ω) 2 2 1+T ω
则有
1 2 u(ω) − + [v(ω)] 2 1 1 −Tω 1 = − + = 2 2 2 2 2 1+T ω 1+T ω 2
2 2 2
这是一个标准圆方程,其圆心坐标是 2 ,0 ,半径为 。且 2 当ω由 0 →∞时,∠G( jω) 由 0° → −90° ,说明惯性环节的频率特 性在 [G( jω)] 平面上是实轴下方半个圆周,如图所示。惯性环 节是一个低通滤波环节 相位滞后环节 低通滤波环节和相位滞后环节 低通滤波环节 相位滞后环节。在低频范围内,对 输入信号的幅值衰减较小,滞后相移也小,在高频范围内, 幅值衰减较大,滞后相角也大,最大滞后相角为90゜ 。
K 即 G(s) = 2 2 ,其对应频率特性 G( jω) 的起点 为 T s + 2ξTs +1
G( j0) = K, ∠G( j0) = 00
(ω = 0)
(五) 一阶微分环节 典型一阶微分环节的传函数为
G(s) = τs +1
其中τ为微分时间常数、1为比例项因子,由于实际的物理系 理想微分环节或纯微分环节(即不含比例项)是不存在的, 统中理想微分环节或纯微分环节 理想微分环节或纯微分环节 因此用比例微分环节作为一阶微分环节的典型形式。
1 ) 2
ξ
= −90 + arcsin
0
ξ
1−ξ 2
振荡环节的幅值特性曲线如图 所示。在 0 <ω <ωr 的范 围内,随着ω的增加, M(ω) 缓慢增大;当 ω =ωr 时, (ω)达到 M 最大值 Mr ;当 ω > ωr时,输出幅值衰减很快。 当阻尼比 ξ >1 时,此 时振荡环节可等效成两个 不同时间常数的惯性环节 的串联, 即
2
Tω = v(ω) 2 2 1+T ω
则有
1 2 u(ω) − + [v(ω)] 2 1 1 −Tω 1 = − + = 2 2 2 2 2 1+T ω 1+T ω 2
2 2 2
这是一个标准圆方程,其圆心坐标是 2 ,0 ,半径为 。且 2 当ω由 0 →∞时,∠G( jω) 由 0° → −90° ,说明惯性环节的频率特 性在 [G( jω)] 平面上是实轴下方半个圆周,如图所示。惯性环 节是一个低通滤波环节 相位滞后环节 低通滤波环节和相位滞后环节 低通滤波环节 相位滞后环节。在低频范围内,对 输入信号的幅值衰减较小,滞后相移也小,在高频范围内, 幅值衰减较大,滞后相角也大,最大滞后相角为90゜ 。
K 即 G(s) = 2 2 ,其对应频率特性 G( jω) 的起点 为 T s + 2ξTs +1
G( j0) = K, ∠G( j0) = 00
(ω = 0)
(五) 一阶微分环节 典型一阶微分环节的传函数为
G(s) = τs +1
其中τ为微分时间常数、1为比例项因子,由于实际的物理系 理想微分环节或纯微分环节(即不含比例项)是不存在的, 统中理想微分环节或纯微分环节 理想微分环节或纯微分环节 因此用比例微分环节作为一阶微分环节的典型形式。
频率特性2
![频率特性2](https://img.taocdn.com/s3/m/d052026a7e21af45b307a812.png)
可以清楚地看出在整个频率
范围内,()呈滞后持续增加的 趋势,极限为-90。 对数相频特性曲线将对应于 ω=1/T及 ()=-45°这一点斜对 称。
当惯性环节的时间常数T改变时,其转 折频率1/T 将在Bode图的横轴上向左或向 右移动。与此同时,对数幅频特性及对数 相频特性曲线也将随之向左或向右移动, 但它们的形状保持不变。
()=0º ,表示输出与输入同相位,
既不超前也不滞后。
2、惯性环节 幅相频率特性图/奈氏图: 1 传递函数 G ( s ) Ts 1
1
T 2 2 j 2 2 频率特性 G( j ) jT 1 T 1 T 1 1
幅频特性
A( )
相频特性
1 1 (T )
(1)横坐标按频率取对数分度,低频部分 展宽,而高频部分缩小 。与对实际控制系统 (一般为低频系统)的频率分辨要求吻合。 (2)幅频特性取分贝数[20LgA(ω)]后,
使各因子间的乘除运算变为加减运算,在Bode
图上则变为各因子幅频特性曲线的叠加,大大
简化了作图过程,使系统设计和分析变得容易。
G(j)=G1(j)G2(j)…Gn(j)= A()ej() 式中 A()=A1()A2()…An();
横坐标对于ω是不均匀的,但对lgω却是均匀的线性分度。由 于0频无法表示,横坐标的最低频率是由所需的频率范围来确定的。 而是lgω2-lgω1 ,如2与20、10与100之间的距离均为一个单位长度, 即一个十倍频程。
纵坐标(幅频特性)是 对幅值分贝(dB)数进行分度, 用L()=20 lgA(ω)表示。 对数相频特性图的横坐 标分度方法同对数幅频特性, 而纵坐标则对相角进行线性 分度,单位为度(o) ,仍用 ( )表示。
频率特性的几种表示方法
![频率特性的几种表示方法](https://img.taocdn.com/s3/m/ecec6b93844769eae009edda.png)
第二节 频率特性的几种表示方法
Monday, July 06, 2020
1
频率特性可以写成复数形式:G( j) P() jQ() ,也可 以写成指数形式:G( j) | G( j) | G( j)。其中,P() 为实 频特性,Q()为虚频特性;| G( j) |为幅频特性,G( j) 为相频
特性。
Q( )
A( ) ( )
P( )
G(s)
s2
s 1 s 1
根据上面的说明,可知: 频率特性曲线是S平面 上变量s沿正虚轴变化 时在G(s)平面上的映射。
0 由于 | G( j) |是偶函数, 所以当 从 0 和0 变化时,乃奎 斯特曲线对称于实轴。
Monday, July 06, 2020
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
当幅频特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20 log(幅值)
幅值 1
A( )
增益 0
1.26 1.56 2.00 2.51 3.16 5.62 10.0 2 4 6 8 10 15 20
4
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
... 2 1
0 0.01 0.1
01
2
1 10 100
Monday, July 06, 2020
1
频率特性可以写成复数形式:G( j) P() jQ() ,也可 以写成指数形式:G( j) | G( j) | G( j)。其中,P() 为实 频特性,Q()为虚频特性;| G( j) |为幅频特性,G( j) 为相频
特性。
Q( )
A( ) ( )
P( )
G(s)
s2
s 1 s 1
根据上面的说明,可知: 频率特性曲线是S平面 上变量s沿正虚轴变化 时在G(s)平面上的映射。
0 由于 | G( j) |是偶函数, 所以当 从 0 和0 变化时,乃奎 斯特曲线对称于实轴。
Monday, July 06, 2020
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
当幅频特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20 log(幅值)
幅值 1
A( )
增益 0
1.26 1.56 2.00 2.51 3.16 5.62 10.0 2 4 6 8 10 15 20
4
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
... 2 1
0 0.01 0.1
01
2
1 10 100
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G1 ( jw)G2 ( jw) G1 ( jw) e j1 (w ) . G2 ( jw) e j2 (w ) G1 G2 e j1 2
20lg G1G2 20lg G1 20lg G2
几个频率特性相乘,对数幅、相曲线相加
G1G2 1 2
两个频率特性互为倒数,幅、相特性反号,关于轴对称
线 性 分 度
L( w)
40 20
dB
w
0.1 1 10 100
w 2f
rad / s (弧度/秒)
线 性 分 度
( w )
900
度
w
0.1 1 10 100
rad / s (弧度/秒)
-900
对数频率特性优点 – 展宽频率范围 – 对于不含不稳定环节的系统,可由对数频率特性得到系 统的传函。 – 典型环节可用直线或折线近似表示
• 幅频特性是w 的偶函数 • 相频特性是w 的奇函数
w : 0 的曲线和w : 0的曲线关于实轴对称
• 性能分析(尤其是稳定性)时不需要绘制精确 的幅相特性曲线,只需绘制大致形状即可
对数分度:
lg 2 0.301
lg 5 0.699
lg 7 0.845
lg 8 3 lg 2 0.903
4.2. 典型环节频率特性
4.2.1 常用于描述频率特性的几种曲线
• 幅相频率特性曲线简称幅相曲线,又称极坐标图。在复平面 上,以角频率 w为自变量,把频率特性的幅频特性 ——模和 相频特性 ——相角同时在复平面上表示出来的图就是幅相曲 线。
• 开环对数频率特性图(对数坐标图或Bode图) 包括 开环对数幅频曲线 和 开环对数相频曲线 横坐标为w,以对数分度, 十倍频程,单位是rad/s 频率w每扩大10倍,横轴上变化一个单位长度。因此,对 于w坐标分度不均匀,对于lgw 则是均匀的。
1 G1 G2
G1 1 G2
20lg G1 20lg G2
1 2
lg 3 0.4771
lg 4 0.602
lg 6 lg 3 lg 2 0.778 lg 9 2 lg 3 0.954
对数幅频特性的纵坐标为对数幅频特性的函数值,采用线 性分度,单位是dB。表示为 L(w)=20lg|G(jw)| 对数相频特性的纵坐标为对数相频特性的函数值,单位是 度。表示为 ( w)