板式精馏塔设计计算

合集下载

板式精馏塔开孔区面积的计算公式

板式精馏塔开孔区面积的计算公式

板式精馏塔开孔区面积的计算公式
板式精馏塔开孔区面积的计算公式如下:
S = Q / (C × L × θ)
其中,
S为开孔区面积(单位:平方米);
Q为设计液体负荷,即单位时间内从上一板向下一板中传质的液体量(单位:千克/秒);C为塔板液体的浓度(单位:千克/立方米);
L为塔板液体层高(单位:米);
θ为从塔板中心到开孔区边缘的夹角。

请注意,具体的计算公式需要结合具体的塔板设计参数和应用情况进行确定,上述公式仅为常用的一种估算方法。

在实际应用中,建议根据具体情况进行实测和验证以确保精准性和安全性。

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。

设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。

酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。

物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。

本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。

此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。

塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。

筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属不易分离物系,最小回流比较小,采用其1.5倍。

设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。

塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。

(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。

分离苯-甲苯筛板式精馏塔设计

分离苯-甲苯筛板式精馏塔设计

筛板式精馏塔设计目录第一部分概述一、设计题目 (3)二、设计任务 (3)三、设计条件 (3)四、工艺流程图 (3)第二部分工艺设计计算一、设计方案的确定 (4)二、精馏塔的物料衡算 (4)1.原料液及塔顶、塔底产品的摩尔分数 (4)2.原料液及塔顶、塔底产品的平均摩尔质量 (4)3.物料衡算原料处理量 (4)三、塔板数的确定 (4)N的求取 (4)1.理论板层数T2.实际板层数的求取 (6)四、精馏塔的工艺条件及有关物性数据的计算 (6)1.操作压力计算 (6)2.操作温度计算 (6)3.平均摩尔质量计算 (6)⑴塔顶摩尔质量计算 (6)⑵进料板平均摩尔质量计算 (6)⑶提馏段平均摩尔质量 (7)4.平均密度计算 (7)⑴气相平均密度计算 (7)⑵液相平均密度计算 (7)5.液相平均表面张力计算 (7)⑴塔顶液相平均表面张力计算 (7)⑵进料板液相平均表面张力计算 (7)6.液相平均粘度计算 (8)⑴塔顶液相平均粘度计算 (8)⑵进料板液相平均粘度计算 (8)五、精馏塔的塔体工艺尺寸计算 (8)1.塔径的计算 (8)2.精馏塔有效高度计算 (9)六、塔板主要工艺尺寸的计算 (9)1.溢流装置计算 (9)l (9)⑴堰长Wh (9)⑵溢流堰高度W⑶弓形降液管宽度d W 和截面积f A ..........................9 2.塔板布置....................................................................................................9 ⑴塔板的分块.............................................9 ⑵边缘区宽度确定.........................................9 ⑶ 开孔区面积计算........................................9 ⑷筛孔计算及其排列 (10)七、筛板的流体力学验算 (11)1.塔板压降....................................................................................................11 ⑴干板阻力c h 计算........................................11 ⑵气体通过液层的阻力L h 计算..............................11 ⑶液体表面张力的阻力 h 计算..............................11 2.液面落差...................................................................................................12 3.液沫夹带...................................................................................................12 4.漏液...........................................................................................................12 5.液泛.. (12)八、塔板负荷性能图 (13)1.漏液线.......................................................................................................13 2.液沫夹带线...............................................................................................13 3.液相负荷下限线.......................................................................................14 4.液相负荷上限线.......................................................................................14 5.液泛线.......................................................................................................14 九、设计一览表.. (16)十、参考文献 (17)第一部分 概述一、设计题目:筛板式精馏塔设计二、设计任务:在一常压操作的连续精馏塔内分离苯—甲苯混合物。

精馏塔塔设计及相关计算

精馏塔塔设计及相关计算

---------------------------------------------------------------最新资料推荐------------------------------------------------------精馏塔塔设计及相关计算2011板式精馏塔设计任务书板式精馏塔的设计选型及相关计算设计计算满足生产要求的板式精馏塔,包括参数选定、塔主题设计、配套设计及相关设计图Administrator 09 级化工 2 班xx2011/12/11/ 27目录板式精馏塔设计任务....................................... 3一.设计题目. (3)二.操作条件 (3)三.塔板类型 (3)四.相关物性参数 ................................................ 3 五.设计内容 .................................................... 3设计方案 ...................................错误!未定义书签。

一.设计方案的思考 .............................................. 6 二.工艺流程 . (6)板式精馏塔的工艺计算书 ................................... 7一.设计方案的确定及工艺流程的说明............................... 二.全塔的物料衡算 ............................................... 三.塔板数的确定 ................................................. 四.塔的精馏段操作工艺条件及相关物性数据的计算................... 五.精馏段的汽液负荷计---------------------------------------------------------------最新资料推荐------------------------------------------------------ 算 ......................................... 六.塔和塔板主要工艺结构尺寸的计算 ............................... 七.塔板负荷性能图 ...............................................筛板塔设计计算结果 .....................错误!未定义书签。

精馏塔(板式)设计

精馏塔(板式)设计

精馏塔板的设计还需要考虑到不同物 质的沸点、蒸汽压等物性参数,以及 操作条件下的温度、压力等参数,以 确保分离过程的顺利进行。
精馏塔板的设计需要考虑到液体的流 动特性、蒸汽的流动特性以及它们之 间的相对流动方向,以达到最佳的分 离效果。
设计流程
选择合适的塔板类型
根据设计目标和工艺要求,选 择适合的塔板类型,如泡罩塔 板、浮阀塔板、筛孔塔板等。
详细描述
石油精馏塔设计需要考虑多方面的因素,如原料性质、产品 要求、操作条件等。在设计过程中,需要选择合适的塔板类 型和数量,确定适宜的工艺流程和操作参数,以满足生产需 求。
案例二:酒精精馏塔设计
总结词
酒精精馏塔设计是一种常见的精馏塔设计案例,主要应用于酿酒和生物燃料领域 。
详细描述
酒精精馏塔设计需要考虑酒精的提取和纯化过程。在设计过程中,需要选择适合 的塔板和填料,确定适宜的操作压力和温度,以保证酒精的纯度和回收率。
设计的重要性
01
02
03
提高分离效率
精馏塔板设计的核心目标 是提高分离效率,使产品 达到更高的纯度或回收率。
降低能耗
精馏塔板设计的另一个重 要目标是降低能耗,通过 优化设计,降低操作过程 中的热能消耗。
提高生产能力
良好的精馏塔板设计可以 提高生产能力,从而提高 设备的产能和经济效益。
02 精馏塔(板式)的工艺设计
塔板热力学计算
传热系数
根据物料特性和工艺要求,计算并选 择合适的传热系数,以提高热力学效 率。
温度分布
通过计算温度分布,可以了解物料在 塔板上的温度变化情况,从而优化操 作条件和塔板结构。
03 精馏塔(板式)的设备设计
塔体设计
塔体直径

精馏塔(板式)设计

精馏塔(板式)设计

PA α= ∗ PB
(三)塔板数的确定 1、作出x-y相图 、作出 相图 2、最小回流比及操作回流比 、 3、理论板数及加料位置 、 ①求精馏塔的汽、液相负荷 求精馏塔的汽、

R = 1.5 Rmin
L′ = L + qF = RD + qF
V ′ = V + (q − 1) F = ( R + 1) D + (q − 1) F
化工原理课程设计
(6)冷凝器的选择 ) 塔顶产品(全凝器)和塔釜产品(冷却器) 塔顶产品(全凝器)和塔釜产品(冷却器) (7)加料方式的选择 ) 高位槽或泵 (8)工艺流程 ) 3、正戊烷和正己烷的性质、用途等 、正戊烷和正己烷的性质、
化工原理课程设计
二.工艺计算
主要内容是( 主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数和实 际板数 (4)塔的气液负荷计算 (5)热量衡算 塔设备的生产能力一般以千克/小时或吨/年表示, 塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板 计算时均须转换成kmol/h,在塔板设计时 在塔板设计时, 计算时均须转换成kmol/h,在塔板设计时,气液流量又须用体积 流量m /s表示 因此要注意不同的场合应使用不同的流量单位。 表示。 流量 m3/s 表示 。 因此要注意不同的场合应使用不同的流量单位 。 (一)全塔物料衡算 1、原料液及塔顶、塔底产品的摩尔分数 、原料液及塔顶、
化工原理课程设计
②求精馏段、提馏段的操作线方程 求精馏段、
R xD y= x+ R +1 R +1
③作图求出理论板数 ④逐板计算求理论板数
WxW L + qF y′ = x′ − L + qF − W L + qF − W

精馏塔工艺工艺设计计算

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。

根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。

板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。

3.1 设计依据[6]3.1.1板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度T TTH E N Z )1(-= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。

(2) 塔径的计算uV D Sπ4=(3-2) 式中 D –––––塔径,m ;V S –––––气体体积流量,m 3/s u –––––空塔气速,m/su =(0.6~0.8)u max (3-3) VVL Cu ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,kg/m 3V ρ–––––气相密度,kg/m 3C –––––负荷因子,m/s2.02020⎪⎭⎫⎝⎛=L C C σ (3-5)式中 C –––––操作物系的负荷因子,m/sL σ–––––操作物系的液体表面张力,mN/m 3.1.2板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计W O W L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。

32100084.2⎪⎪⎭⎫⎝⎛=Wh OWl L E h (3-7)式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。

hTf L H A 3600=θ≥3~5 (3-8)006.00-=W h h (3-9) '360000u l L h W h=(3-10)式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。

精馏塔塔径与塔高计算

精馏塔塔径与塔高计算

y1 yq Rmin Rmin 1 xP xq

xP yq Rmin Rmin 1 xP xq
整理得: 其中 对饱和液进料(xq=xF):
Rmin xP y F y F xF
Rmin
xP y q yq xq
yq
xq 1 ( 1) xq
5)最小回流比的计算 — 操作参数
根据: y R x 1 x n 1 n P R 1 R 1 其中:R= L / P 当系统处于全回流状态时 R=∞。 精馏段操作线为y=x(斜率最大、截距为零) 理论塔板数NT=NTmin。 当系统处于R=Rmin状态(斜率最小、截距 最大)时,精馏段操作线、加料线(q 线)、 相平衡方程线交汇于同一点(x=xq、y=yq ) 理论塔板数NT→∞。即方程满足:
符号意义:
y f x yn 1
y` f x` ym 1
R x xn D R 1 R 1
Wx L` xm W L`W L`W
y f qx y
q 1 x xF q 1 q 1
x y f x y 1 ( 1) x
Z
NT HT ET
其中:Z —板式塔有效高度(传质段),m NT —理论塔板数(不包括塔釜) HT —塔板间距(经验值:见P344表8—2) ET —全塔效率(<1,实测)
应掌握:1. 全塔操作线绘制 2. 图解法求NT 3. Rmin(图解法、解析法) 4. Z的计算
附二:理论板 数的求解思路
而 实际操作中的回流比: R=(1.1~2) Rmin. R↑:斜率↑、板数↓(分离效率↑) 、设 备造价↓、产品↓。 R↓:则与上述相反
yF

直接蒸汽加热板式精馏塔设计

直接蒸汽加热板式精馏塔设计

双组分溶液直接蒸汽加热板式精馏塔设计设计任务:规定F 、xF 、xD 、xW ,设计出能完成分离任务的板式精馏塔 1. 回流比● 最小回流比设夹紧点在精馏段,其坐标为(xe,ye)则min D ee ex y R y x -=-(1)设夹紧点在提馏段,其坐标为(xe,ye)min min 0(1)(1)e e Wy R D qF LV R D q F x x -+==+--- (2) 所需基础数据:气液相平衡数据 丙酮-水xi = [0 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相丙酮平衡浓度yi = [0 0.253 0.425 0.624 0.755 0.793 0.815 0.830 0.839 0.849 0.859 0.874 0.898 0.935 0.963 1.0]; % 汽相丙酮平衡浓度ti=[ 100 92.7 86.5 75.8 66.5 63.4 62.1 61.0 60.4 60.0 59.7 59.0 58.2 57.5 57.0 56.13 ];%平衡温度 甲醇-水xi = [0 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相甲醇平衡浓度yi = [0 0.134 0.234 0.304 0.365 0.418 0.517 0.579 0.665 0.729 0.779 0.825 0.870 0.915 0.958 0.979 1.00]; % 汽相甲醇平衡浓度ti=[ 100 96.4 93.5 91.2 89.3 87.7 84.4 81.7 78.0 75.3 73.1 71.2 69.3 67.6 66.0 65.0 64.5 ];%平衡温度来源:王志魁.化工原理(第三版),北京:化学工业出版社,2004 ● 确定操作回流比min(1.1~2.0)R R =用Matlab 或Excel 工具求出N 与R 间的关系以确定适宜的回流比。

精馏塔的规格如何计算公式

精馏塔的规格如何计算公式

精馏塔的规格如何计算公式精馏塔是一种用于分离液体混合物的设备,通常用于石油化工、化学工业和精细化工等领域。

其主要原理是利用液体混合物中不同成分的沸点差异,通过加热和冷却来使不同成分分离。

精馏塔的规格设计是非常重要的,它直接影响着设备的性能和效率。

在设计精馏塔的规格时,需要考虑到多种因素,包括所需分离效果、流体性质、操作压力和温度等。

精馏塔的规格计算是一个复杂的过程,需要考虑到多种因素。

其中最重要的因素之一是塔板间距。

塔板间距是指在精馏塔内部设置的板块之间的垂直距离。

塔板间距的大小直接影响着塔内的液体和气体流动情况,从而影响着分离效果。

一般来说,塔板间距越小,分离效果越好,但也会增加设备的成本和能耗。

因此,在设计精馏塔的规格时,需要综合考虑分离效果和成本因素,选择合适的塔板间距。

精馏塔的规格计算还需要考虑到气液流体的性质。

在精馏塔内部,气体和液体会进行频繁的传质和传热过程,因此需要考虑到流体的密度、粘度、热导率等性质。

这些性质会直接影响着塔内的流动情况和传热效果,从而影响着分离效果和能耗。

在设计精馏塔的规格时,需要根据实际情况选择合适的流体性质参数,进行流体力学和传热传质计算,确定合理的塔板间距和塔板数量。

除了塔板间距和流体性质,精馏塔的规格计算还需要考虑到操作压力和温度等因素。

在设计精馏塔的规格时,需要根据所处理的液体混合物的成分和性质,确定合理的操作压力和温度范围。

这些参数会直接影响着塔内的气液相平衡和传热传质过程,从而影响着分离效果和能耗。

在确定精馏塔的规格时,需要根据实际情况选择合适的操作压力和温度范围,确保设备能够稳定运行并达到预期的分离效果。

在实际工程中,精馏塔的规格计算是一个复杂的过程,需要综合考虑多种因素。

通常情况下,需要进行流体力学和传热传质计算,确定合理的塔板间距和塔板数量;根据所处理的液体混合物的成分和性质,确定合理的操作压力和温度范围;并综合考虑成本和能耗等因素,选择合适的设备规格。

乙醇-正丙醇连续筛板式精馏塔的设计方案

乙醇-正丙醇连续筛板式精馏塔的设计方案

乙醇-正丙醇连续筛板式精馏塔的设计方案乙醇-正丙醇连续筛板式精馏塔的设计方案流程的设计及说明1 设计思路蒸馏方式的确定蒸馏装置包括精馏塔,原料预热器,精馏釜(再沸器),冷凝器,釜液冷却器和产品冷却等设备,蒸馏过程按操作方式不同可分为连续蒸馏和间歇蒸馏两种流程,连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续精馏为主,间歇蒸馏具有操作灵活,适应性强等优点,适合小规模,多品种或多组分物系的初步分离。

本次设计采用连续筛板精馏塔,常压精馏。

2 装置流程的确定 (1)物料的储存和输送在流程中设置原料罐,产品罐及离心泵。

原料可泵直接送入塔内,使程序连续稳定的进行。

(2)参数的检测和调控流量,压力和温度是生产中的重要参数,必须在流程中的适当位置装设仪表,以测量这些参数。

同时,在生产过程中,物料的状态。

加热剂和冷却剂的状态都不可能避免的会有一些波动,因此必须在流程中设置一定的阀门。

(3)冷凝装置的确定本设计采用塔顶全凝器,以便于准确地对控制回流比。

(4)热能的利用精馏过程是组分多次部分汽化和多次部分冷凝的过程,耗能较多,因此选择适宜的回流比使过程处于最佳条件下进行,可使能耗至最低。

3 操作条件的确定 (1) 操作压力的选取本次设计采用常压操作。

除热敏性物料外,凡通过常压精馏不难实现分离要求,并能利用江河水或循环水将镏出物冷凝下来的系统。

(2)加料状态的选择本设计选择q=1时进料,原因是使塔的操作稳定,精,提镏段利用相同塔径,便于制造。

(3) 加料方式蒸馏大多采用间接蒸汽加热,设置再沸器。

(4)回流比的选择一般经验值为min )0.21.1(R R -=。

本设计采用min 5.1R R =,初步设定后经过流体力学验算,负荷条件,故选择合理。

塔顶冷凝器的冷凝方式与冷却介质的选择塔顶冷凝温度不要求低于30℃,工业上多用水冷 (5)板式塔类型的选择本次设计采用连续筛板式精馏塔 4 设计方案的确定(1)满足工艺和操作要求(2)满足经济上的要求,安全生产,保护环境。

苯—甲苯精馏分离板式塔设计

苯—甲苯精馏分离板式塔设计

一设计题目:苯—甲苯精馏分离板式塔设计二、设计任务及操作条件1、设计任务:生产能力(进料量)7000吨/年操作周期300天/年进料组成35%(质量分率,下同)塔顶产品组成99.8%塔底产品组成0.2%2、操作条件操作压力 4 kPa (表压)进料热状态泡点进料单板压降≯0.7 kPa回流比: R=2Rmin 由设计者自选塔顶采用全凝器泡点回流塔釜采用间接饱和水蒸气加热全塔效率为0.63、设备型式筛板精馏塔4、厂址荆门地区三、设计内容:1、设计方案的选择及流程说明2、工艺计算3、主要设备工艺尺寸设计(1)塔和塔板主要工艺结构的设计计算(2)塔板的流体力学校核(3)塔板的负荷性能图(4)总塔高、总压降及接管尺寸的确定4、辅助设备选型与计算5、设计结果汇总6、对本设计的评述或对有关问题的分析与讨论。

四、设计要求1、设计程序简练清楚,结果准确并有汇总表。

2、计算公式、图表正确并注明来源,符号和单位要统一。

五、设计时间:四周注意事项:1、写出详细计算步骤,并注明选用数据的来源;2、每项设计结束后,列出计算结果明细表3、图、表分别按顺序编号4、按规定的时间进行设计,并按时完成任务四、要求(1)对精馏过程进行描述(2)对精馏过程进行物料衡算和热量衡算(3)对精馏塔进行设计计算(4)对精馏塔的附属设备进行选型(5)画一张精馏塔的装配图(6)编制设计说明书符号说明英文字母-阀孔的鼓泡面积m2Aα-降液管面积 m2Af-塔截面积 m2ATb -操作线截距c -负荷系数(无因次)c-流量系数(无因次)D -塔顶流出液量 kmol/hD -塔径 md-阀孔直径 m-全塔效率(无因次)ETE -液体收缩系数(无因次)e-物沫夹带线 kg液/kg气vF -进料流量 kmol/h-阀孔动能因子 m/sFg -重力加速度 m/s2H-板间距 mTH -塔高 mH-清液高度 md-与平板压强相当的液柱高度 mhc-与液体流径降液管的压降相当液柱高度 m hd-与气体穿过板间上液层压降相当的液柱高度 m hr-板上鼓泡高度 mhf-板上液层高度 mhL-降液管底隙高度 mhh-堰上液层高度 m02v-与板上压强相当的液层高度 mhp-与克服液体表面张力的压降所相当的液柱高度 m hσ-溢液堰高度 mh2vK -物性系数(无因次)-塔内下降液体的流量 m3/sLs-溢流堰长度 mLwM -分子量 kg/kmolN -塔板数-实际塔板数Np-理论塔板数NTP -操作压强 PaΔP-压强降 Paq -进料状态参数R -回流比-最小回流比Rminu -空塔气速 m/sw -釜残液流量 kmol/h-边缘区宽度 mwc-弓形降液管的宽度 mwd-脱气区宽度 mwsx -液相中易挥发组分的摩尔分率y -气相中易挥发组分的摩尔分率z -塔高 m希腊字母α-相对挥发度μ-粘度 Cpρ-密度 kg/m3σ-表面张力下标r -气相L -液相l -精馏段q -q线与平衡线交点min-最小max-最大A -易挥发组分B -难挥发组分化工原理课程设计----------筛板塔的设计第一章流程及生产条件的确定和说明第一节概述流程示意图冷凝器→塔顶产品冷却器→苯的储罐→苯↑↓回流原料→原料罐→原料预热器→精馏塔↑回流↓再沸器←~ 塔底产品冷却器→氯苯的储罐→氯苯精馏塔是现在化工厂中必不可少的设备,因此出现了很多种的精馏塔。

二元连续精馏塔的计算与分析分析

二元连续精馏塔的计算与分析分析

7
7
6
8
8
7
c
0
x
c
c
1.0
0
x
1.0
0
x
1.0
适宜的加料位置
第五节 二元连续精馏塔的计算与分析
例题
在常压连续精馏塔中分离苯-甲苯混合物。原料中含苯 0.40(质量分率,下同) 泡点进料,要求塔顶产品中含苯 0.97,塔底产品中含苯0.02。原料流量为1500kg/h。回 流比为3.5,操作范围内相对挥发度α=2.46。试求:
少摩尔的蒸汽冷凝,相应就有多少摩尔的液体汽化。因此该精馏 过程属等摩尔反向扩散传质过程。
第五节 二元连续精馏塔的计算与分析
3.精馏段的操作线方程(Operating line)
在恒摩尔流假定下,精馏段的基本计算式为:
V LD
Vyn1 Lxn DxD
所以
yn1
L V
xn
D V
xD
L LD
xn
D LD
1. 精馏段的物料衡算 总物料衡算式
Vn1 Ln D
易挥发组分衡算式
Vn1 yn1 Ln xn DxD

yn1
Ln Vn1
xn
D Vn1
xD
第五节 二元连续精馏塔的计算与分析
2.恒摩尔流假定(Constant molal overflow hypothesis)
恒摩尔流假定提出的原因:
(1)各层板上液相的流量L1,L2……Ln以及汽相的流量V1,V2,…… ,Vn均不相同,求算理论塔板数除上面的物料衡算式外,需再作热 量衡算和相平衡关系才能求算,计算会变得比较复杂。 (2)恒摩尔流假定可以简化计算过程; (3)一些组分沸点接近的二元混合物接近恒摩尔流假定的情况。

苯-氯苯板式精馏塔工艺设计

苯-氯苯板式精馏塔工艺设计

化工原理设计任务书一、题目:苯-氯苯板式精馏塔设计二、设计任务及操作条件设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯20000+1000n 吨(n代表学号后两位),塔顶馏出液中含氯苯不得高于:2%(单号)、3%(双号)(以上均为质量分率)。

1、塔顶压力:4kpa(表压)2、原料液中含氯苯(质量分率):40%(单号)、45%(双号)3、进料热状况:泡点4、回流比:自选5、塔底加热蒸汽压力:0.5MPa6、单板压降:≤0.7kpa7、全塔效率:ET=58%8、厂址:家乡地区三、塔板类型:自定(一般选筛板或浮阀塔板(F1型))四、基础数据ip(mmHg)纯组分在任何温度下的密度可由下式计算苯t A187.1912-=ρ氯苯t B111.11127-=ρ式中的t为温度,℃。

σ双组分混合液体的表面张力m可按下式计算:AB B A B A m x x σσσσσ+=(B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热常压沸点下的汽化潜热为35.3×103kJ/kmol 。

纯组分的汽化潜热与温度的关系可用下式表示:38.01212⎪⎪⎭⎫ ⎝⎛--=t t t t r r c c (氯苯的临界温度:C ︒=2.359c t )5.其他物性数据可查化工原理附录及其他文献。

目录第1章前言 (1)第2章产品与设计方案简介 (2)2.1 产品性质、质量指标 (2)2.2 设计方案简介 (3)2.3 工艺流程及说明 (3)第3章工艺计算及主体设备设计 (4)3.1 全塔的物料衡算 (4)3.1.1 料液及塔顶底产品含苯的摩尔分率 (4)3.1.2 平均摩尔质量 (4)3.1.3 料液及塔顶底产品的摩尔流率 (4)3.1.4 确定操作的回流比R (5)3.1.5 精馏塔的气液相负荷 (5)3.1.6 操作线方程 (6)3.2 塔板数的确定 (6)3.2.1 理论塔板层数N的确定 (6)T3.2.2 实际塔板数 (7)3.3 精馏塔的工艺条件及有关物性数据的计算 (7)3.3.1 操作压力的计算 (7)3.3.2 操作温度的计算 (7)3.3.3 平均摩尔质量计算 (7)3.3.4 平均密度计算 (8)3.3.5 液相平均表面张力 (9)3.3.6 液相平均粘度计算 (9)第4章精馏塔的塔体工艺尺寸计算 (10)4.1 塔径的计算 (10)4.2 精馏塔有效高度的计算 (11)第5章塔板工艺结构尺寸的设计与计算 (12)5.1 溢流装置 (12)5.2 塔板布置 (12)5.3 开孔数n和开孔率φ (13)第6章塔板上的流体力学验算 (13)6.1 气体通过筛板压降p h和p pΔ的验算 (13)6.2 雾沫夹带量v e的验算 (14)6.3 漏液的验算 (14)第7章塔板负荷性能图 (15)7.1 漏液线(气相负荷下限线) (15)7.2 雾沫夹带线 (16)7.3 液相负荷下限线 (16)7.4 液相负荷上限线 (16)7.5 液泛线 (17)第8章板式塔结构与附属设备 (19)8.1 塔高 (19)8.1.1 塔顶空间 (19)8.1.2 塔底空间 (19)8.1.3 人孔数目 (19)8.2 接管尺寸计算 (19)8.2.1 塔顶蒸汽出口管径 (19)8.2.2 回流液管径 (20)8.2.3 加料管径 (20)8.2.4 料液排出管径 (20)8.2.5 饱和蒸汽管径 (20)8.3 附属设备设计 (21)8.3.1 塔顶冷凝器 (21)8.3.2 塔底再沸器 (21)8.3.3 进料预热器 (21)8.3.4 泵型号设计 (22)第9章筛板塔设计计算结果 (23)第10章主要符号说明 (24)第11章结果与结论 (24)11.1 结果: (24)11.2 结论: (25)第12章收获与致谢 (25)第1章前言课程设计是化工原理最后一个全面总结性教学环节,是进一步巩固、深化和具体基本技能的重要课程,是培养学生综合运用所学知识与理论去独立完成某一化工生产设计任务的一次全面训练。

精馏塔物料计算

精馏塔物料计算

苯—甲苯混合液筛板精馏塔设计1 设计任务和条件(1)年处理含苯60%(质量分数,下同) 的苯-甲苯混合液50000吨(2)料液温度35℃(3)塔顶产品浓度98%(4)塔底釜液含甲苯98%(5)每年实际生产天数 330(一年中有一月检修)(6)精馏塔顶压强 4Kpa(表压)(7)冷水温度 30℃(8)饱和蒸汽压力 0.1Mpa(9)地址:江苏盐城2. 板式塔的设计2.1 工业生产对塔板的要求:①通过能力要大,即单位塔截面能处理的气液流量大。

②塔板效率要高。

③塔板压力降要低。

④操作弹性要大。

⑤结构简单,易于制造。

在这些要求中,对于要求产品纯度高的分离操作,首先应考虑高效率;对于处理量大的一般性分离(如原油蒸馏等),主要是考虑通过能力大。

2.2设计方案的确定2.2.1装置流程的确定精馏装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等设备。

蒸馏过程按操作方式不同,可分为连续精馏和间歇精馏两种流程。

在本次的设计中,是为分离苯—甲苯混合物。

对于二元混合物的分离,应该采用连续精馏流程。

2.2.2操作压力的选择蒸馏过程按操作压力不同,可分为常压蒸馏,减压蒸馏和加压蒸馏。

一般除热敏性物系外,凡通过常压分离要求,并能用江河水或循环水将馏出物冷凝下来的物系,都应采用常压精馏。

根据本次任务的生产要求,应采用常压精馏操作。

2.2.3进料热状况的选择蒸馏操作有五种进料热状况,它的不同将影响塔内各层塔板的汽、液相负荷。

工业上多采用接近泡点的液体进料和饱和液体进料,通常用釜残液预热原料。

所以这次采用的是泡点进料。

2.2.4加热方式的选择由于采用泡点进料,将原料液加热至泡点后送入精馏塔内。

塔顶上升蒸汽采用全凝气冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。

2.2.5回流比的选择回流比是精馏操作的重要工艺条件,其选择的原则是使设备费用和操作费用之和最低。

苯—甲苯混合液是属易分离物系,最小回流比较小,故操作回流比取最小回流比的2.0倍。

板式精馏塔的工艺计算

板式精馏塔的工艺计算

板式精馏塔的工艺计算板式精馏塔是一种常用的化工设备,广泛应用于石油、化工、医药等行业。

其主要功能是通过将混合物中的组分按照其沸点进行分馏,使得目标组分的纯度得到提高。

在进行板式精馏塔的工艺计算时,需要考虑到以下几个方面:输入参数、计算目标、热力学计算和桶盖数的确定。

首先,需要明确输入参数。

输入参数包括原料混合物的组分和含量、所需纯度、塔顶温度和压力、塔底产品温度和压力等。

这些参数会直接影响到工艺计算的结果,因此需要准确确定。

计算目标包括分离效果、塔塔顶压力降、塔底回流比等。

分离效果是指目标组分在塔底的摩尔分数,一般通过输入纯度和目标产量来确定。

塔塔顶压力降是指输送各级板之间的压力差,需要根据所使用的塔板类型和流体性质进行计算。

塔底回流比则是指塔底回流液体的量与塔底产品量的比值,也会直接影响到分离效果。

其次,进行热力学计算。

热力学计算是指根据输入的参数和计算目标,通过热力学模型来计算实际的分馏过程。

常用的热力学模型有理想图、实际图和平均图等。

根据输入的参数和计算目标,可以利用这些模型计算出所需的塔塔回流比、板间汽液流量分布等。

最后,确定桶盖数。

桶盖数是指精馏塔具有多少个板。

桶盖数的确定需考虑到分离目标、塔塔顶压力降和塔底回流比等因素。

一般情况下,桶盖数越多,分离效果越好。

但是桶盖数增加会使得塔塔顶压力降增大,需要更多的能量来提供给塔塔顶最后板降低塔底回流比降低。

要确定适当的桶盖数,可以采用经验方法或者利用板塔模拟软件进行计算。

经验方法一般是通过经验公式或者经验图来确定桶盖数,而板塔模拟软件通常是基于物理方程建立模型,通过解算来计算最佳的桶盖数。

综上所述,板式精馏塔的工艺计算需要考虑输入参数、计算目标、热力学计算和桶盖数的确定。

通过合理设置这些参数和确定适当的桶盖数,可以实现有效的分馏过程,并获得所需的目标组分纯度。

但是,需要指出的是,由于化工生产中的多种因素的影响,实际操作时仍需要根据实际情况进行调整和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.3-0.35
0.35-0.45 0.45-0.6
0.5-0.8
≥00..86
2、塔径估算 确定原则: 防止过量液沫夹带液泛 步骤: 先确定最大空塔气速 (); 然后根据经验确定设计气速 u; 最后计算塔径 D。
① 最大空塔气速(液泛气速,课本P.128—129)
umax C
L V V
C
C20
L
第二节 板式精馏塔的工艺计算
一、设计方案的确定 1、装置流程的确定:
经济方面:充分考虑整个系统的热能利用,降低操作费用。 操作的稳定性:加热蒸汽的压力、进料量、回流液等 2、操作压力的选择:设计压力一般指塔顶压力。 蒸馏操作通常可在常压、加压和减压下进行。 确定操作压力时,必须根据所处理物料的性质, 兼顾技术上的可行性和经济上的合理性进行考虑。 可考虑取常压操作,塔顶压力为4(表压), 每层塔板压降 p≤0.7。
hb
底隙: 堰头液高: h0W 堰高:
Wc r
Ws lW
x
Wd
3、溢流装置设计 ① 溢流型式的选择 依据:塔径 、流量; 型式:单流型、U 形流型、双流型、阶梯流型等。
U型流型
单流型
双流型
液流型式选取参考表
塔径 m 1.0 1.4 2.0 3.0 4.0 5.0 6.0
液 体 流 量 m3/h U 型流型 单流型 双流型 阶梯流型
x (2)查塔顶、塔底、进料温度下的液体的表m 面张力; i i
(3)计算塔顶、塔底、进料处液相平均表面张力; (4)计算精馏段、提馏段平均表面张力。 5、液体平均粘度 (1)液相平均粘度 (2)查塔顶、塔底、进料温度下的液体的粘度; (3)计算塔顶、塔底、进料处液相平均粘度; (4)计算精馏段、提馏段平均粘度。
板式精馏塔设计计算
1
第一节 概述
一、化工原理课程设计的目的和要求 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据的能力; 2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和
环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 迅速准确的进行工程计算的能力; 4. 用简洁的文字,清晰的图表来表达自己设计思想的能力。
m xii
温度t ℃ L(苯) 3 L(甲苯) 3 L(苯) L(甲苯) L(苯) • L(甲苯) •
物性参数表
80
90
100
110
120
815
803.9 792.5 780.3
768.9
810 21.27
800.2 20.06
790.3 780.3 18.85 17.66
770.0 16.49
课本P.129
0.2 0.3 0.4
0.7 1.0
② 选取设计气速 u 选取泛点率: u / 一般液体, 0.7 ~0.8 易起泡液体, 0.5 ~ 0.6
AT
Ad D
lw
设计气速 u = 泛点率 ×
③ 计算塔径 D
所需气体流通截面积
AATAd
AT
A 1 Ad
AT
A Vs u
A 1 Ad
AT
3、平均密度
(1)气相平均密度 (2)液相平均密度
Vm
pmMVm RTm
1 a (3)计算塔顶、塔底、进料处气、液相平均密度; i
(4)计算精馏段、提馏段平均密度。 Lm
i
平均密度: (精)=( )/2 (精)=( )/2 (提)=( )/2 (提)=( )/2
ห้องสมุดไป่ตู้
4、液体平均表面张力 (1)液相平均表面张力
出口安定区:避免夹带气泡的液体进入降液管
④ 有效传质区(开孔区):
也可根据数据手册推荐值按塔径选取
:液体流量m3
4、塔板及其布置
塔径小于0.9m时可用整块板;
Wc
塔径较大时,常采用分块式塔板。
① 受液区和降液区 一般两区面积相等。
r Ws
lW x
②边缘区
小塔:
大塔:
Wc 3― 050mm
Wd
Wc 5― 070mm
③入口安安定定区区::因板上液W 面落s差,W 减s少 漏液5― 010m0m
平均压强:(精)=( )/2
(提)=( )/2
2、操作温度 塔顶 :可由图查得塔顶 、塔底 、进料处 。
平均温度:(精)=( )/2 (提)=( )/2
t/℃
如图:0.5, 0.05时, 泡点进料92℃ (露点进料101℃) 塔底 108℃
提馏段平均温度:
( )/2 =(92+108)/2=100 ℃
泛。 底隙 :应小于 ,通常在 30 ~ 40 。
液体流经底隙的流速 (), 一般 = 0.07—0.25。
③ 溢流堰(又称出口堰)

作用:维持塔板上一定液层,使液体均匀横向流过。

型式:平直堰、溢流辅堰、三角形齿堰及栅栏堰。

主要尺寸:堰高和堰长
平流堰
溢流辅堰 三角形齿堰
栅栏堰
堰高 :直接影响塔板上液层厚度 过小,相际传质面积过小; 过大,塔板阻力大,效率低。 常、加压塔: =50 ~ 80 ; 减压塔: = 25 。 = - h0W 板上液层高度(常压): = 50~100
堰上方液头高度 可用经验式计算:
how2.84103ElLW h 2/3
E 可由图11-11查取(P.131) ,若不是过大,可近似取1。
过小时,板上液体流动不均,效率降低,可调整 。
h0W6mm
堰长 :对于弓形降液管
堰长由计算得到的塔径确定
单流型: 双流型:
lW D0.60.8
lW D0.50.7
(2)全塔效率 可查P145页图11-21确定
或: =0.1~1.0时, (3)实际塔板数
分别求精馏段和提馏段所需实际板数 (二)塔的工艺条件及物性数据
1、操作压强
ET0.4(9
)0.245
av
NPN/ET
塔顶pD : pD 表 10 .3 1k Pa 塔底 p W p : D 表 1 .3 0 N 1 P p k Pa 进料 p F p D : 表 1.3 0 N ( P 1 p 精 k) P a
110 100 90 80
0
p=101.3kPa
t-y t-x
x (y) 1.0
2、平均摩尔质量 (1)由塔顶、塔底、进料处的浓度计算平均摩尔质量; (2)计算精馏段平均摩尔质量 (精)、 (精); (3)计算提馏段平均摩尔质量 (提)、 (提)。
如塔顶:y1 = =0.966,按气液平衡关系 可查得x1 =0.916 则: 0.966×78.11+(1-0.966) ×92.13=78.59 0.916×78.11+(1-0.916) ×92.13=79.29
21.69 20.59 19.94 18.41
17.31
0.308 0.279 0.255 0.233
0.215
0.311 0.286 0.284 0.254
0.228
(三) 气液负荷的计算 精馏段:V=(R+1)D
L=
提馏段: V =V +(q-1)F L =L +F
m3 m3
Vs
VMVm
3600Vm
<7
<45
<9
<70
<11
<90 90-160
<11
<110 110-200 200-300
<11
<110 110-230 230-350
<11
<110 110-250 250-400
<11
<110 110-250 250-450
② 降液管形式和底隙 降液管:弓形、圆形。 降液管截面积:一般 = 0.06 ~ 0.12 ,由 确定(图11-16) 过大,气液两相接触传质区小,生产能力和板效率将较低; 过小,易产生气泡夹带,引起降液管液
Ls
LMLm
3600Lm
第三节 板式塔主要尺寸的计算
板式塔主要尺寸的设计计算: ◇包括塔高 ◇塔径的设计计算 ◇板上液流形式的选择 ◇溢流装置的设计 ◇塔板布置等 设计时,先选取某段塔板(如精馏段、提馏段)条件下的参数作为设计依据,以此确定塔的尺寸, 应尽量保持塔径相同,以便于加工制造。 由于塔中两相流动情况和传质过程的复杂性,许多参数和塔板尺寸需根据经验来选取,因此设计 过程中不可避免要进行试差,计算结果也需要工程标准化。
◇确定理论塔板数(作图法)、实际板数; ◇确定塔高和塔径。
3、塔板设计: ◇设计塔板各主要工艺尺寸 溢流装置、塔板布置、筛孔或浮阀的设计及排列(图); ◇进行流体力学校核计算; ◇画出塔的负荷性能图。
4、管路及附属设备的设计与选型,如冷凝器、泵等。 5、抄写说明书。 6、绘制精馏装置工艺流程图和精馏塔装配图。
一、精馏塔的结构设计 1、塔的有效高度和板间距
已知:实际塔板数 ; 选取塔板间距 ;
有效塔高:
ZHT Np
塔体高度=有效高+顶部空间+底部空间+塔裙座高度
选取塔板间距 :
塔板间距和塔径的经验关系
塔径 D,m 0.3-0.5 0.5-0.8 0.8-1.6 1.6-2.0 2.0-2.4 >2.4
塔板间距 HT,m 0.2-0.3
3、进料状况的选择 进料状态与塔板数、塔径、回流量及塔的热负荷都有密切的联系。 在实际的生产中进料状态有多种,但一般都将料液预热到泡点或接近泡点才送入塔中,这主要
是由于此时塔的操作比较容易控制,不致受季节气温的影响。 此外,在泡点进料时,精馏段与提馏段的塔径相同,为设计和制造上提供了方便。
相关文档
最新文档