信号分析与处理 杨西侠版 第2章习题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-1 画出下列各时间函数的波形图,注意它们的区别
1)x 1(t) = sin Ω t ·u(t )
2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t )
3)x 3(t) = sin Ω t ·u ( t – t 0 )
-1
4)x2(t) = sin[ ( t – t0) ]·u( t – t0)
2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图
(1)x ( t-2 )
(2)x ( t+2 )
(3)x (2t)
(4)x ( t/2 )
(5)x (-t)
(6)x (-t-2)
(7)x ( -t/2-2 )
(8)dx/dt
2-3 应用脉冲函数的抽样特性,求下列表达式的函数值
(1)⎰+∞
∞--)(0t t x δ(t) dt = x(-t 0) (2)⎰+∞
∞--)(0t t x δ(t) dt = x(t 0) (3)⎰+∞∞
--)(0t t δ u(t -
20t ) dt = u(2
t )
(4)⎰+∞
∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)()
⎰+∞∞
--+t e
t
δ(t+2) dt = e 2-2
(6)()⎰+∞
∞-+t t sin δ(t-6π
) dt =
6
π
+
2
1
(7) ()()[]⎰+∞
∞-Ω---dt t t t e t
j 0δδ
=()⎰+∞
∞
-Ω-dt t e
t
j δ–⎰+∞∞
-Ω--dt t t e t j )(0δ
= 1-0
t j e
Ω- = 1 – cos Ωt 0 + jsin Ωt 0
2-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =⎰+∞
∞---ττττ
d t u
e u a )()( =
⎰-t
a d e 0
ττ = )1(1at
e a
--
x 1(t)* x 2(t) =ττδτδτπ
d t t u t )]1()1([)]()4
[cos(---+-+Ω⎰+∞
∞-
= cos[Ω(t+1)+
4
π
]u(t+1) – cos[Ω(t-1)+
4
π
]u(t-1)
(3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) x 1(t)* x 2(t) =
⎰
+∞
∞
-+-----τττττd t u t u u u )]1()()][2()([
当 t <0时,x 1(t)* x 2(t) = 0 当 0 t d τ⎰ = t 当 1 1d τ⎰ = 1 当 2 2 t d τ-⎰=3-t 当 3 (4) x 1(t) = u(t-1) , x 2(t) = sin t · u(t) x 1(t)* x 2(t) =⎰ +∞ ∞---ττττd t u u )1( )( )sin( =⎰⎰∞ ==01 -t 0 1 -t 0| cos - d sin 1)d --u(t sin ττττττ = 1- cos(t-1) 2-5 已知周期函数x(t)前1/4周期的波形如图2-77所示,根据下列各种情况的要求画出x(t)在一个周期( 0 (1) x(t)是偶函数,只含有偶次谐波分量 f(t) = f(-t), f(t) = f(t ±T/2) (2) x(t)是偶函数,只含有奇次谐波分量 f(t) = f(-t), f(t) = -f(t ±T/2) (3) x(t)是偶函数,含有偶次和奇次谐波分量f(t) = f(-t) (4) x(t)是奇函数,只含有奇次谐波分量 f(t) = -f(-t), f(t) = -f(t±T/2) (5) x(t)是奇函数,只含有偶次谐波分量 f(t) = -f(-t), f(t) = f(t±T/2) (6) x(t)是奇函数,含有偶次和奇次谐波分量 f(t) = -f(-t) 2-6 利用信号x(t)的对称性,定性判断图2-78所示各周期信号的傅里叶级数中所含有的频率分量 (a) 这是一个非奇、非偶、非奇偶谐波函数,且正负半波不对称,所以含有直流、正弦等所有谐波分量,因为去除直流后为奇函数。(b) 这是一个奇函数。也是一个奇谐波函数,所以只含有基波、奇次正弦谐波分量。 (c) 除去直流分量后是奇函数,又f(t) = f(t±T/2),是偶谐波函数,所以含有直流、偶次正弦谐波。