实验1---白噪声和M序列的产生
白噪声的产生与测试实验
![白噪声的产生与测试实验](https://img.taocdn.com/s3/m/8b296fd058f5f61fb73666de.png)
3)正态随机随机数,从中取 1024、10240、20480 个点的功率普密度,做比较,
观察这些随机数的功率谱密度随长度的变化。实际的白噪声功率普密度不是常 数。 ⑷ 根据白噪声的特性,确定哪些随机信号属于白噪声范畴。根据分析确定 白噪声与概率分布有关系吗? ⑸ 通过编程分别确定当5个均匀分布过程、5个指数分布分别叠加时,结果 是否是高斯分布。叠加次数对结果的影响?
Sn ( f ) N0 2
其中 N 0 /2就是白噪声的均方值。 白噪声的自相关函数位:
R ( ) N0 N ( ) 白噪声的自相关函数是位于τ=0处、强度为 0 的冲击函数。 2 2
这表明白噪声在任何两个不同的瞬间的取值是不相关的。同时也意味着白噪声能
随时间无限快的变化,因为它的带宽是无限宽的。下面我们给出几种分布的白噪 声。 随机过程的几种分布 均匀分布随机信号、正态分布(高斯分布)随机信号、指数分布随机信号等。
lim
T
(5)
取20480个点时的功率谱密度和自相关函数,如下图 (1) 功率谱密度:
(2) 随机信号叠加:
4.随机信号检验:
五、实验总结
这次试验让我们对白噪声有了很大的理解,最主要是在实验过程中用到了好 久不用的matlab软件,由于好长时间不用好多的函数的功能都忘记了,而且实验 过程中用到的好多函数以前都没接触过,所以还得花好长时间去查阅相关资料。 这次试验的目的其实让我们学会是利用matlab软件对信号分析,同时加深我们 对信号和噪声参数处理的理解,锻炼我们的实践动手能力。 参考文献:
均值表达了信号变化的中心趋势,或称之为直流分量。 在 MATLAB 中,可以用 mean()函数来计算。 (1)
M序列的matlab产生方法
![M序列的matlab产生方法](https://img.taocdn.com/s3/m/28389b39bceb19e8b9f6baab.png)
M序列是工程中常用的输入信号,它的性质类似于白噪声,而白噪声是理论上最好的输入信号,可见M序列的价值。
下面介绍M序列的matlab产生方法。
idinput函数产生系统辨识常用的典型信号。
格式u = idinput(N,type,band,levels)[u,freqs] = idinput(N,'sine',band,levels,sinedata)N产生的序列的长度,如果N=[N nu],则nu为输入的通道数,如果N=[P nu M],则nu 指定通道数,P为周期,M*P为信号长度。
默认情况下,nu=1,M=1,即一个通道,一个周期。
Type指定产生信号的类型,可选类型如下‘rgs’高斯随机信号‘rbs’(默认)二值随机信号‘prbs’二值伪随机信号(M序列)‘sine’正弦信号和Band指定信号的频率成分。
对于’rgs’、’rbs’、’sine’,band = [wlow, whigh]指定通带的围,如果是白噪声信号,则band=[0, 1],这也是默认值。
指定非默认值时,相当于有色噪声。
对于’prbs’,band=[0, B],B表示信号在一个间隔1/B(时钟周期)为恒值,默认为[0, 1]。
Levels指定输入的水平。
Levels=[minu, maxu],在type=’rbs’、’prbs’、’sine’时,表示信号u的值总是在minu和maxu之间。
对于type=’rgs’,minu指定信号的均值减标准差,maxu指定信号的均值加标准差,对于0均值、标准差为1的高斯白噪声信号,则levels=[-1, 1],这也是默认值。
说明对于PRBS信号,如果M>1,则序列的长度和PRBS周期会做调整,使PRBS的周期为对应一定阶数的最大值(即2^n-1,n为阶数);如果M=1,PRBS的周期是大于N的相应阶数的值。
在多输入的情形时,信号被最大平移,即P/nu为此信号能被估计的模型阶次的上界。
试验八:M序列产生及特性分析实验
![试验八:M序列产生及特性分析实验](https://img.taocdn.com/s3/m/c7080d34580102020740be1e650e52ea5518ceb0.png)
试验八:m序列产生及特性分析实验一实验目的1.了解m序列的性质和特点;2.熟悉m序列的产生方法;3.了解m序列的DSP或CPLD实现方法。
二实验内容1.熟悉m序列的产生方法;2.测试m序列的波形;3*.用DSP或CPLD编程产生m序列。
三实验原理m序列是最长线性反馈移存器序列的简称,是伪随机序列的一种。
它是由带线性反馈的移存器产生的周期最长的一种序列。
m序列在一定的周期内具有自相关特性。
它的自相关特性和白噪声的自相关特性相似。
虽然它是预先可知的,但性质上和随机序列具有相同的性质。
比如:序列中“0”码与“1”码等抵及具有单峰自相关函数特性等。
1.m序列的产生m序列是由带线性反馈的移存器产生的。
结构如图:图1-1-1 反馈移位寄存器的结构其中an-i为移位寄存器中每位寄存器的状态,C i为第i位寄存器的反馈系数。
C i=1表示有反馈,C i=0表示无反馈。
我们先给出一个m序列的例子。
在图1-1-1中示出一个4级反馈移存器。
若其初始状态为(a3, a2, a1, a)=(1,0,0,0),则在移位一次时,由a3和a模2相加产生新的输入a4=1⊕0=1新的状态变为(a4, a3, a2, a1)=( 1, 1, 0, 0)这样移位15次后又回到初始状态(1,0,0,0),不难看出,若初始状态为全“0”,即“0,0,0,0”,则移位后得到的仍为全“0”状态。
这就意味着在这种反馈移存器中应避免出现全“0”状态。
不然移存器的状态将不会改变。
因为4级移存器共有24=16种可能的不同状态。
除全“0”状态外,只剩15种状态可用。
即由任何4级反馈移存器产生的序列的周期最长为15。
我们常常希望用尽可能小的级数产生尽可能长的序列。
由上例可见,一般说来,一个n 级反馈移存器可能产生的最长周期等于(2n –1)。
我们将这种最长的序列称为最长线性反馈1 1 1 1 0 1 0 1 1 0 0 1 0 0 00 1 1 1 1 0 1 0 1 1 0 0 1 0 00 0 1 1 1 1 0 1 0 1 1 0 0 1 00 0 0 1 1 1 1 0 1 0 1 1 0 0 1移存器序列,简称m 序列。
m序列产生实验
![m序列产生实验](https://img.taocdn.com/s3/m/2da295ebaeaad1f346933f72.png)
m序列产生实验一、实验目的1、m序列产生的基本方法;2、m序列0状态消除的基本手段;二、实验仪器1、JH5001型通信原理实验箱一台;2、MaxplusII开发环境一台;3、JTAG下载电缆一根;4、CPLD下载板一块;5、微机一台;6、示波器一台;三、实验原理m序列产生电路在通信电路设计中十分重要,它广泛使用在扩频通信、信号产生、仪器仪表等等电路中。
m序列有时也称伪噪声(PN)或伪随机序列,在一段周期内其自相关性类似于随机二进制序列。
尽管伪噪声序列是确定的,但其具有很多类似随机二进制序列的性质,例如0和1的数目大致相同,将序列平移后和原序列的相关性很小。
PN序列通常由序列逻辑电路产生,一般是由一系列的两状态存储器和反馈逻辑电路构成。
二进制序列在时钟脉冲的作用下在移位寄存器中移动,不同状态的输出逻辑组合起来并反馈回第一级寄存器作为输入。
当反馈由独立的“异或”门组成(通常是这种情况),此时移位寄存器称为线性PN序列发生器。
如果线性移位寄存器在某些时刻到达零状态,它会永远保持零状态不变,因此输出相应地变为全零序列。
因为n阶反馈移位寄存器只有2n-1个非零状态,所以由n阶线性寄存器生成的PN序列不会超过2n-1个。
周期为2n-1的线性反馈寄存器产生的序列称为最大长度(ML)序列——m序列。
m 序列发生器的一般组成m 序列发生器一般组成如上图所示,它用n 级移位寄存器作为主支路,用若干级模2加法器作为各级移位寄存器的抽头形成线性反馈支路。
各抽头的系数hi 称为反馈系数,它必须按照某一个n 次本原多项式:∑==ni i i x h x h 0)(中的二进制系数来取值。
在伪序列发生模块中,可以根据本原多项式的系数,…..h 8、h 7、h 6、h 5、h 4、h 3、h 2、h 1、h 0产生m 序列,这些系数可表示8进制数(1代表相连抽头进入反馈回路,0代表该抽头不进入反馈回路),如:13、23、103、203四、 课题设计要求在输入时钟256KHz 的时钟作用下,可在外部跳线器的控制下改变产生不同的m 序列,在程序中定义的几个变量为:输入: Main_CLK :输入 256KHz 主时钟 M_Sel[1..0]:选择输出不同的m 序列当 Mode[]=0:本原多项式为13(8进制表示); 当 Mode[]=1:本原多项式为23(8进制表示); 当 Mode[]=2:本原多项式为103(8进制表示); 当 Mode[]=3:本原多项式为203(8进制表示);输出: M_Out :m 序列输出 说明:1、 M_Sel[1..0]与复接模块的m_sel0、m_sel1相连; M_Out 在测试点TPB01输出;五、 实验步骤1、将JH5001二次开发光盘内的基本程序m.tdf 及其它相关程序(在光盘的“2th\student_m ”子目录下)拷入机器内。
系统建模与辨识 产生白噪声
![系统建模与辨识 产生白噪声](https://img.taocdn.com/s3/m/8017bb04f78a6529647d53f9.png)
实验一、Matlab/Simulink上机练习一、实验内容1、系统辨识信号的产生:U=idinput(N,type,Band,levels,auxvar);2、用simulink产生Noise,Sine,PRBS,用示波器观测波形;3、产生白噪声信号,计算其平均值,方差(和功率谱);4、选一模型对象,求其阶跃响应,然后再用白噪声作输入,计算某系统输出。
二、实验结果1、idinput函数产生系统辨识常用的典型信号。
格式u = idinput(N,'sine',band,levels,sinedata)指定产生信号的类型,可选类型如下%产生高斯随机信号u1=idinput(500,'rgs')stairs(u1)title('高斯随机信号')ylim([-5 5])%产生二值随机信号u2=idinput(500,'rbs')stairs(u2)title('二值随机信号')ylim([-1.5 1.5])%产生二值伪随机信号u3=idinput(500,'prbs') stairs(u3)title('二值伪随机信号') ylim([-1.5 1.5])m=mean(u3)2、3、% 产生白噪声N=100 a=idinput(100,'prbs') stairs(a)title('白噪声N=100') ylim([-1.5 1.5])m1=mean(a)v1=var(a)结果m1 =-0.1200v1 =0.99564、。
实验1---白噪声和M序列的产生
![实验1---白噪声和M序列的产生](https://img.taocdn.com/s3/m/c8371615ed630b1c58eeb511.png)
实验1 白噪声和M序列的产生实验报告1.实验题目:白噪声和M序列的产生.实验对象或参数、生成均匀分布随机序列1)利用混合同余法生成[0, 1]区间上符合均匀分布的随机序列,并计算该序列的均值和方差,与理论值进行对比分析。
要求序列长度为1200,推荐参数为a=655395.程序框图7.实验结果及分析1、生成均匀分布随机序列 (1)生成的0-1均布随机序列如下所示:200400600800100012000.10.20.30.40.50.60.70.80.91计算序列的均值和方差程序代码:mean_R = mean(R)var_R = var(R)均值和方差实际值:mean_R =0.4969var_R =0.0837随机变量X服从均匀分布U(a,b),则均值为(a+b)/2,方差为(b-a)先平方再除以12。
[0,1]区间均值和方差理论值:mean_R =(0+1)/2=0.5;var_R =1/12 = 0.083333。
结论:容易看到,实际值与理论值较接近。
(2)该随机序列落在10个子区间的频率曲线图如下:结论:从结果图可以容易看到,该序列的均匀性较好。
2、生成高斯白噪声生成的白噪声如下图:-2.5-2-1.5-1-0.500.511.52生成的白噪声的频率统计图如下:0510152025结论:从结果图知,生成的白噪声基本服从N(0,1)分布。
3、生成M 序列生成的M 序列如下(n = 63):010203040506070-1.5-1-0.50.511.5验证M 序列性质:均衡特性:m 序列每一周期中 1 的个数比 0 的个数多 1 个(-a 和a 的个数差1) 测试程序:number_a = sum(M_XuLie == a);number_a_c = sum(M_XuLie == -a);number_anumber_a_c 结果:number_a =31number_a_c =32结论:从测试结果看性质成立游程特性:m 序列的一个周期(p =2n -1)中,游程总数为2n -1。
M序列的产生及特性分析实验
![M序列的产生及特性分析实验](https://img.taocdn.com/s3/m/625f1a1eb80d6c85ec3a87c24028915f804d842f.png)
M 序列的产生及特性分析实验一:实验目的1、了解m 序列的特性及产生。
二:实验模块1、 主控单元模块2、 14号 CDMA 扩频模块3、示波器三:实验原理1、14号模块的框图14号模块框图2、14号模块框图说明(m 序列)127位128位该模块提供了四路速率为512K 的m 序列,测试点分别为PN1、PN2、PN3、PN4。
其中,PN2和PN4分别由PN 序列选择开关S2、S3控制;不同的开关码值,可以设置m 序列码元的不同偏移量。
开关S6是PN 序列长度设置开关,可选127位或128位,其中127位是PN 序列原始码长,128位是在原始码元的连6个0之后增加一个0得到。
Gold 序列测试点为G1和G2,其中G1由PN1和PN2合成,G2由PN3和PN4合成。
拨码开关S1和S4是分别设置W1和W2产生不同的Walsh 序列。
实验中还可以观察不同m 序列(或Gold 序列)和Walsh 序列的合成波形。
注意,每次设置拨码开关后,必须按复位键S7。
3、实验原理框图m 序列相关性实验框图为方便序列特性观察,本实验中将Walsh 序列码型设置开关S1和S4固定设置为某一种。
4、实验框图说明 m 序列的自相关函数为()R A D τ=-式中,A 为对应位码元相同的数目;D 为对应位码元不同的数目。
自相关系数为()A D A DP A Dρτ--==+ 对于m 序列,其码长为P=2n -1, 在这里P 也等于码序列中的码元数,即“0”和“1”个数的总和。
其中“0”的个数因为去掉移位寄存器的全“0”状态,所以A 值为121n A -=-“1”的个数(即不同位)D 为12n D -=m 序列的自相关系数为1 0()1 0,1,2,p τρτττ=⎧⎪=⎨-≠=⎪⎩…,p-1cT τm 序列的自相关函数四:实验步骤(注:实验过程中,凡是涉及到测试连线改变或者模块及仪器仪表的更换时,都需先停止运行仿真,待连线调整完后,再开启仿真进行后续调节测试。
随机实验理想白噪声和带限白噪声的产生与分析-5页word资料
![随机实验理想白噪声和带限白噪声的产生与分析-5页word资料](https://img.taocdn.com/s3/m/95e685840242a8956aece44c.png)
实验八理想白噪声和带限白噪声的产生与分析1.实验目的了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用matlab或c/c++软件仿真和分析理想白噪声和带限白噪声的方法。
⒉实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
然而白噪声在数学处理上比较方便,所以它在通信系统的分析中有十分重要的作用。
一般地说,只要噪声的功率谱密度的宽度远大于它所作用的系统的带宽,并且在系统的带内,它的功率谱密度基本上是常数,就可以作为白噪声处理了。
白噪声的功率谱密度为:其中为单边功率谱密度。
2 ) ( 0 N f S n 0 N白噪声的自相关函数位:白噪声的自相关函数是位于τ =0 处,强度为的冲击函数。
这表明白噪声在任何两个不同的瞬间的取值是不相关的。
同时也意味着白噪声能随时间无限快的变化,因为它含一切频率分量而无限宽的带宽。
) ( 20 N R )( 20 N若一个具有零均值的平稳随机过程,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。
带限白噪声分为低通型和带通型。
⒊实验任务与要求⑴用matlab 或c/c++语言编写和仿真程序。
系统框图如图19、图20 所示:特性测试绘制图形低通滤波特性测试绘制图形白噪声图1 低通滤波器系统框图特性测试绘制图形带通滤波特性测试绘制图形白噪声图2 带通滤波器系统框图⑵输入信号为:高斯白噪声信号和均匀白噪声信号,图为高斯白噪声。
⑶设计一个低通滤波器和一个带通滤波器。
要求低通滤波器的通带为0KHz-2KHz、通带衰减小于1db、阻带衰减大于35db。
带通滤波器的通带为10KHz-20KHz、通带衰减小于1db、阻带衰减大于35db。
⑷首先计算白噪声的均值、均方值、方差、概率密度、频谱及功率谱密度、自相关函数。
白噪声的生成
![白噪声的生成](https://img.taocdn.com/s3/m/3535d41f5901020206409c31.png)
白噪声的研究与生成目录白噪声的研究与生成 (1)目录 (1)1. 白噪声的定义 (2)2. 统计特性 (2)3. 白噪声的生成 (3)3.1 高斯白噪声的生成 (3)3.1.1. WGN:产生高斯白噪声 (3)3.1.2. AWGN:在某一信号中加入高斯白噪声 (3)3.1.3.注释 (4)3.2 均匀分布的白噪声的产生 (5)4.白噪声的应用 (6)1.白噪声的定义白噪声是指功率密度在整个频域内均匀分布的噪声。
所有频率具有相同能量的随机噪声称为白噪声。
从我们耳朵的频率响应听起来它是非常明亮的“咝”(每高一个八度,频率就升高一倍。
因此高频率区的能量也显著增强)。
即,此信号在各个频段上的功率是一样的。
由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。
相对的,其他不具有这一性质的噪声信号被称为有色噪声。
理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。
实际上,我们常常将有限带宽的平整信号视为白噪声,以方便进行数学分析。
2.统计特性术语白噪声也常用于表示在相关空间的自相关为0的空域噪声信号,于是信号在空间频率域内就是“白色”的,对于角频率域内的信号也是这样,例如夜空中向各个角度发散的信号。
右面的图片显示了计算机产生的一个有限长度的离散时间白噪声过程。
需要指出,相关性和概率分布是两个不相关的概念。
“白色”仅意味着信号是不相关的,白噪声的定义除了要求均值为零外并没有对信号应当服从哪种概率分布作出任何假设。
因此,如果某白噪声过程服从高斯分布,则它是“高斯白噪声”。
类似的,还有泊松白噪声、柯西白噪声等。
人们经常将高斯白噪声与白噪声相混同,这是不正确的认识。
根据中心极限定理,高斯白噪声是许多现实世界过程的一个很好的近似,并且能够生成数学上可以跟踪的模型,这些模型用得如此频繁以至于加性高斯白噪声成了一个标准的缩写词:AWGN。
m序列产生原理
![m序列产生原理](https://img.taocdn.com/s3/m/20c01b9a250c844769eae009581b6bd97f19bcbe.png)
m序列产生原理m序列是一种特殊的伪随机数序列,具有良好的随机性质,被广泛应用于通信、加密、雷达、测距等领域。
m序列的产生原理主要基于反馈移位寄存器和模2加法器,下面我们来详细介绍一下m序列的产生原理。
首先,m序列的产生基于一个反馈移位寄存器(LFSR),它由若干个触发器和异或门组成。
反馈移位寄存器的初始状态称为种子,种子的选择对m序列的随机性质有很大影响。
在产生m序列的过程中,寄存器的状态不断变化,每次变化都会输出一个比特,这些输出的比特组成了m序列。
其次,m序列的产生还依赖于模2加法器。
反馈移位寄存器输出的比特经过模2加法器进行模2加运算,得到m序列的输出比特。
模2加法器实际上就是异或门,它将反馈移位寄存器输出的比特与特定位置上的比特进行异或运算,得到m序列的下一个比特。
最后,m序列的周期性与反馈移位寄存器的长度有关。
对于一个n级的反馈移位寄存器,其产生的m序列的周期为2^n-1,即m序列会在2^n-1个时钟周期内重复。
这也意味着m序列的长度是有限的,随着时钟周期的增加,m序列会重复出现之前的序列。
总结一下,m序列的产生原理主要包括反馈移位寄存器和模2加法器。
反馈移位寄存器通过不断变换状态产生随机比特,而模2加法器则将这些比特进行模2加运算,最终输出m序列。
m序列的周期性与反馈移位寄存器的长度有关,周期为2^n-1。
通过合理选择反馈移位寄存器的种子和长度,可以得到具有良好随机性质的m序列。
以上就是m序列的产生原理,希望能对您有所帮助。
如果您对m序列还有其他疑问,欢迎与我们进一步交流讨论。
(完整word版)m序列产生及其特性实验
![(完整word版)m序列产生及其特性实验](https://img.taocdn.com/s3/m/f4205071767f5acfa1c7cd73.png)
实验九 m 序列产生及其特性实验一、 实验目的和要求通过本实验掌握m 序列的特性、产生方法及应用。
二、实验内容和原理1)、实验内容1、观察m 序列,识别其特征。
2、观察m 序列的自相关特性。
2)、基本原理m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。
1、产生原理图9-1示出的是由n 级移位寄存器构成的码序列发生器。
寄存器的状态决定于时钟控制下输入的信息(“0”或“1”),例如第I 级移位寄存器状态决定于前一时钟脉冲后的第i -1级移位寄存器的状态。
图中C 0,C 1,…,C n 均为反馈线,其中C 0=C n =1,表示反馈连接。
因为m 序列是由循环序列发生器产生的,因此C 0和C n 肯定为1,即参与反馈。
而反馈系数C 1,C 2,…,C n -1若为1,参与反馈;若为0,则表示断开反馈线,即开路,无反馈连线。
一个线性反馈移动寄存器能否产生m 序列,决定于它的反馈系数(0,1,2,,)i c i n =,下表中列出了部分m 序列的反馈系数i c ,按照下表中的系数来构造移位寄存器,就能产生相应的m 序列。
表9-1 部分m 序列的反馈系数表根据表9-1中的八进制的反馈系数,可以确定m 序列发生器的结构。
以7级m 序列反馈系数8(211)i C =为例,首先将八进制的系数转化为二进制的系数即2(010001001)i C =,由此我们可以得到各级反馈系数分别为:01C =、10C =、30C =、41C =、50C =、60C =、71C =,由此就很容易地构造出相应的m 序列发生器。
根据反馈系数,其他级数的m 序列的构造原理与上述方法相同。
需要说明的是,表9-1中列出的是部分m 序列的反馈系数,将表中的反馈系数进行比特反转,即进行镜像,即可得到相应的m 序列。
例如,取482(23)(10011)C ==,进行比特反转之后为28(10011)(31)=,所以4级的m 序列共有2个。
系统辨识大作业.
![系统辨识大作业.](https://img.taocdn.com/s3/m/5b2d322027d3240c8447ef9b.png)
一、 问题描述考虑仿真对象:()0.9(1)0.15(2)0.02(3)0.7(1)0.15(2)()z k z k z k z k u k u k e k +-+-+-=---+ e() 1.0e(1)0.41e(2)(),~(0,1)k k k v k v N λ+-+-=式中,u(k)和z(k)是输入输出数据,v(k)是零均值、方差为1的不相关的随机噪声;u(k)采用与e(k)不相关的随机序列。
1. 设计实验,产生输入输出数据;2. 使用基本最小二乘法估计参数;3. 考虑其他适用于有色噪声的辨识方法估计参数;4. 模型验证。
二、 问题分析对于单输入单输出系统(Single Input Single Output, SISO ),如图 1所示,将待辨识的系统看作“灰箱”,它只考虑系统的输入输出特性,而不强调系统的内部机理。
图 1中,输入u(k)和输出z(k)是可以测量的,1()G z -是系统模型,用来描述系统的输入输出特性,y(k)是系统的实际输出。
1()N z -是噪声模型,v(k)是均值为零的不相关随机噪声,e(k)是有色噪声。
图 1 SISO 系统的“灰箱”结构对于SISO 随机系统,被辨识模型()G z 为:12121212()()()1n n nn b z b z b z y z G z u z a z a z a z ------+++==++++ 其相应的差分方程为11()()()n ni i i i y k a y k i b u k i ===--+-∑∑若考虑被辨识系统或观测信息中含有噪声,被辨识模型可改写为11()()()()n ni i i i z k a y k i b u k i v k ===--+-+∑∑式中,z(k)为系统输出量的第k 次观测值;y(k)为系统输出量的第k 次真值,y(k-1)为系统输出量的第k-1次真值,以此类推;u(k)为系统的第k 个输入值,u(k-1)为系统的第k-1个输入值;v(k)为均值为0的不相关随机噪声。
白噪声的产生和应用
![白噪声的产生和应用](https://img.taocdn.com/s3/m/27de763d8762caaedc33d417.png)
,A不能 的伪随机数
• 不同的A值对应的随机序列的周期:
• T=
• 64 NaN 3 5 11 13 19 21 … A=4*i-2-(-1)^i
• 32 NaN 7 9 23 25 39 41 … A=8*i-4-(-1)^i*3
• 16 NaN 15 17 47 49 79 81 … A=16*i-8-(-1)^i*7
白噪声的产生和应用
组员:黄健 张颖 蔡朋飞 主讲人:黄 健
白噪声的产生方法
1.均匀随机数的产生 • 乘同余法 • 混合同余法 2.正态随机数的产生 • 统计近似抽样法 • 变换抽样法 3.M序列
均匀随机数的产生
1.乘同余法 第一步:递推式 其中 太小。初值 取正奇数。 第二步: 为伪随机数,周期为
接收 E + X1 用户
Y m序列 产生器
原始信码 X1 m序列 Y
加密输出 E 解密输出 X1
10 110 100 11 11 000 010 11 01 110 110 00 10 110 100 11
3.误码率的测量
m序列 发生器
数传机 发送端
信道
数传机 接收端
+
误码 计数器
m序列 发生器
A=256*i+1
A=179时产生的随机序列,周期:T =64
2.混合同余法 第一步:递推式 其中: c为正整数,初值 为非负整数 第二步: 是周期为 的伪随机数
M=2^8时,不同的c值对应的随机序列的周期:
• T=
• 256 NaN 10 14 18 22 …c=4*i-2
Ci
M序列
n级线性移位寄存器的如图:
+
+
+
c0=1
c1
产生白噪声的实验报告
![产生白噪声的实验报告](https://img.taocdn.com/s3/m/831cab37a55177232f60ddccda38376baf1fe0c7.png)
一、实验背景白噪声是一种具有平坦频谱特性的噪声,其功率谱密度在所有频率范围内均相等。
白噪声在信号处理、通信、噪声控制等领域具有广泛的应用。
本实验旨在通过搭建实验装置,产生白噪声,并对其进行测量和分析。
二、实验目的1. 了解白噪声的产生原理;2. 掌握白噪声的产生方法;3. 学习白噪声的测量方法;4. 分析白噪声的特性。
三、实验原理白噪声的产生原理是通过随机信号源产生具有平坦频谱特性的噪声。
在实验中,我们可以通过以下方法产生白噪声:1. 采用随机噪声发生器,将随机信号经过滤波器处理后,得到具有平坦频谱特性的白噪声;2. 利用数字信号处理技术,通过随机信号生成算法产生白噪声。
四、实验仪器与设备1. 随机噪声发生器;2. 滤波器;3. 信号分析仪;4. 示波器;5. 数据采集卡;6. 计算机。
五、实验步骤1. 连接实验装置,将随机噪声发生器的输出信号输入滤波器;2. 调整滤波器参数,使滤波器输出信号具有平坦频谱特性;3. 将滤波器输出信号输入信号分析仪,进行频谱分析;4. 使用示波器观察白噪声的波形;5. 使用数据采集卡采集白噪声信号,进行进一步分析。
六、实验结果与分析1. 频谱分析通过信号分析仪对白噪声进行频谱分析,得到白噪声的功率谱密度。
从分析结果可以看出,白噪声的功率谱密度在所有频率范围内均相等,符合白噪声的特性。
2. 波形观察使用示波器观察白噪声的波形,可以看到白噪声的波形具有随机性,无明显规律。
3. 数据分析使用数据采集卡采集白噪声信号,进行进一步分析。
通过分析白噪声的时域特性、频域特性等,可以进一步了解白噪声的特性。
七、实验结论1. 成功搭建了白噪声产生实验装置,并产生了具有平坦频谱特性的白噪声;2. 掌握了白噪声的产生方法、测量方法和特性分析;3. 为后续白噪声在信号处理、通信、噪声控制等领域的应用奠定了基础。
八、实验总结本实验通过对白噪声的产生、测量和分析,使我们了解了白噪声的特性及其应用。
通信原理实验:m序列的仿真设计
![通信原理实验:m序列的仿真设计](https://img.taocdn.com/s3/m/b0c5f5365727a5e9856a6196.png)
通信原理实验:m 序列的仿真设计一.实验目的了解m 序列的概念、产生原理、方法、性质和运用,了解m 序列的框图、仿真波形,学会对m 序列的仿真设计. 二.实验原理✓ m 序列的概念——由线性反馈移位寄存器产生的周期最长的序列。
它是由带线性反馈的移存器产生的周期最长的一种序列,是多级移位寄存器或其他延迟元件通过线性反馈产生的最长的码序列。
✓ m 序列的产生一般来说,在一个n 级的二进制移位寄存器发生器中,所能产生的最大长度的码序周期为12-n。
以m=4为例,若其初始状态为),0,0,0,1(),,,(0123=a a a a ,则在移位一次时,由3a 和0a 模2相加产生新的输入,1014=⊕=a 新的状态变为),0,0,1,1(),,,(0123=a a a a 这样移位15次后又回到初始状态,但若初始状态为(0,0,0,0),则移位后得到地全是0状态,这说意味着在这种反馈中要避免出现全0的状态.在4级移存器共有1624=种不同状态,除全0状态以外还有15种可用.即由任何4级反馈移存器产生的序列的周期最长为15,满足12-n(当n 为4时).图1:m 序列的产生举例:4级m 序列产生器及其状态图2中,ai (i = 0 – n ) - 移存器状态。
ai = 0或1。
ci -反馈状态。
ci = 0表示反馈线断开, ci = 1表示反馈线连通。
如图2中示出的一个一般的纯属反馈移存器的组成,反馈线的连接状态用1c ,=i i c 表示表示此线接通(参加反馈),0=i c 表示断开,反馈线的接线状态不同,就可能以改变此移存器序列的周期.✓ m 序列的性质➢ 均衡性: 在m 序列一个周期N=2n -1内“1”和“0”的码元数大致相等,“0”出现2n-1-1次,“1”出现2n-1次 (即“1”比“0”只多一个) 。
➢ 游程分布:游程是指序列中取值相同的一段元素。
并把这段元素的个数称为游程长度。
例如,在上面的一个周期中,共有8个游程,其中长度为4的游程有1个,即“1111”;长度为3的游程有1个,即“000”;长度为2的游程有两个,即“11”和“00”;长度为1的游程有4个,即两个“1”和两个“0”。
实验1 白噪声和M序列的产生
![实验1 白噪声和M序列的产生](https://img.taocdn.com/s3/m/364952f7f705cc17552709a5.png)
%-------------------------------------------(2.1) disp('实验二 生成高斯白噪声') disp(' ') for i=1:100 sTo=0; for j=1:12 sTo=sTo+T(12*i-j+1); end Y(i)=sTo-6; end aY=mean(Y); vY=var(Y); disp([' disp(' disp([' disp(' 该白噪声均值为 ' num2str(aY)]) ') 该白噪声方差为 ' num2str(vY) ]) ')
图 3 随机序列频率曲线图
对上述随机序列进行独立性检验,采取相关系数检验法,计算得到相关系数 r=6.3919 ×10-5,非常接近于 0,充分验证了该随机数列的随机性。
图 4 白噪声序列曲线图 9
利用上一步产生的均匀分布随机序列,令 n=12,生成服从 N(0,1)的白噪声,序列长度 为 100,绘制曲线如图 4 所示。计算得到该白噪声均值为-0.1143,接近于理论值 0;该白噪 声方差为 1.0623,接近于理论值 1. M 序列的循环周期取为 N P 2 1 63 ,时钟节拍 t 1Sec ,幅度 a 1 ,逻辑“0”
choice = input(' 是否查看白噪声序列曲线图形?(按数字 1 查看,其他均忽略)');
6
if choice == 1 disp(' 白噪声序列曲线图形如 figure 3 所示。') disp(' ') figure(3) plot(1:100,Y) title('白噪声序列曲线') end %-------------------------------------------(3.1) disp('实验三 生成 M 序列') disp(' ') for i=1:6 PP(1,i)=1; end for j=2:200 for i=2:6 PP(j,i)=PP(j-1,i-1); end PP(j,1)=mod(PP(j-1,5)+PP(j-1,6),2); end choice = input(' 是否查看 M 序列图形?(按数字 1 查看,其他均忽略)'); if choice ==1 disp(' M 序列图形如 figure 4 所示。') disp(' ') figure(4) stairs(1:200,PP(:,6)); axis([1 200 -0.5 1.5]); set(gca,'yTickLabel',{'' '-a' '' 'a' ''}) title('M 序列') xlabel('时序脉冲') end end
系统辨识白噪声及M序列产生
![系统辨识白噪声及M序列产生](https://img.taocdn.com/s3/m/d86961f4f61fb7360b4c65aa.png)
A=6; x0=1; M=255; f=2; N=100; %初始化;x0=1; M=255;for k=1: N %乘同余法递推100次;x2=A*x0; %分别用x2和x0表示xi+1和xi-1;x1=mod (x2,M); %取x2存储器的数除以M的余数放x1(xi)中;v1=x1/256; %将x1存储器中的数除以256得到小于1的随机数放v1中;if(v1>0.5)v(:,k)=v1;else v(:,k)=(v1-0.5 )*f; %将v1中的数()减去0.5再乘以存储器f中的系数,存放在矩阵存储器v的第k列中,v(:,k)表示行不变、列随递推循环次数变化;endx0=x1; % xi-1= xi;v0=v1;end %递推100次结束;v2=v %该语句后无‘;’,实现矩阵存储器v中随机数放在v2中,且可直接显示在MATLAB的window中;k1=k;%grapher %以下是绘图程序;k=1:k1;plot(k,v,k,v,'r');xlabel('k'), ylabel('v');tktle(' (-1,+1)均匀分布的白噪声')A=6;N=100;x0=1;M=255;w=0.5; v2=0;%初始化s=sqrt(1/12);for k=1:Nx2=A*x0;x1=mod(x2,M);v1=x1/256;v2=v2+v1;v(:,k)=v1;x0=x1;v0=v1;v3=(v2-k/2)/(sqrt(k/12));e(:,k)=w+s*v3;ende2=ek1=k;k=1:k1;plot(k,e,k,e,'rx');xlabel('k'),ylabel('e');title('(0,1)正态分布的随机信号')2e2 =Columns 1 through 60.0234 -0.0911 0.2158 0.0449 0.0895 0.3134 Columns 7 through 120.4350 0.5193 0.4766 0.4012 0.4211 0.3714 Columns 13 through 180.4881 0.4708 0.5000 0.5420 0.4252 0.3426 Columns 19 through 240.4256 0.3340 0.3363 0.4384 0.4992 0.5454 Columns 25 through 300.5195 0.4717 0.4820 0.4476 0.5232 0.5107 Columns 31 through 360.5302 0.5594 0.4755 0.4143 0.4736 0.4043 Columns 37 through 420.4043 0.4804 0.5263 0.5618 0.5415 0.5036 Columns 43 through 480.5113 0.4835 0.5437 0.5334 0.5490 0.5727 Columns 49 through 540.5039 0.4530 0.5016 0.4437 0.4431 0.5064 Columns 55 through 600.5448 0.5746 0.5574 0.5251 0.5315 0.5076 Columns 61 through 660.5590 0.5501 0.5635 0.5840 0.5242 0.4798 Columns 67 through 720.5220 0.4711 0.4704 0.5257 0.5593 0.5856 Columns 73 through 780.5704 0.5418 0.5474 0.5260 0.5717 0.5637 Columns 79 through 840.5756 0.5939 0.5404 0.5004 0.5382 0.4923 Columns 85 through 900.4915 0.5413 0.5716 0.5954 0.5816 0.5556Columns 91 through 960.5606 0.5411 0.5826 0.5753 0.5862 0.6029Columns 97 through 1000.5539 0.5174 0.5518 0.5098>>3 X1=1;X2=0;X3=1;X4=0;X5=1;X6=0; %移位寄存器输入Xi初T态(0101),Yi为移位寄存器各级输出m=60; %置M序列总长度for i=1:m %1#Y6=X6;Y5=X5;Y4=X4; Y3=X3; Y2=X2; Y1=X1;X6=Y5;X5=Y4,X4=Y3; X3=Y2; X2=Y1;X1=xor(Y5,Y6); %异或运算if Y6==0U(i)=-1;elseU(i)=Y6;endendM=U%绘图i1=ik=1:1:i1;plot(k,U,k,U,'rx')xlabel('k')ylabel('M序列')title('移位寄存器产生的M序列')M =Columns 1 through 10-1 1 -1 1 -1 1 1 1 1 1 Columns 11 through 201 -1 -1 -1 -1 -1 1 -1 -1 -1 Columns 21 through 30-1 1 1 -1 -1 -1 1 -1 1 -1 Columns 31 through 40-1 1 1 1 1 -1 1 -1 -1 -1Columns 41 through 501 1 1 -1 -1 1 -1 -1 1 -1 Columns 51 through 601 1 -1 1 1 1 -1 1 1 -1 i1 =60。
实验一噪声产生汇总
![实验一噪声产生汇总](https://img.taocdn.com/s3/m/e6303bca9b89680203d825d3.png)
实验报告一、 实验目的:了解噪声仿真在系统仿真中的应用,通过对随机数的产生与检验、高斯白噪声与色噪声的产生、SIRP 方法等方法的学习,用MATLAB 或C 语言产生均匀分布的随机数,并在此基础上采用舍选法、函数逼近法、概率逼近法、函数变换法产生两组独立的正态分布的随机数,并对仿真结果进行分析。
二、实验原理:2.1 噪声仿真在系统仿真中的应用1. 均匀分布随机数的产生是各类分布随机数的产生的基础。
产生方法:线性同余法,模2线性递推序列法。
1)线性同余法(D.H.Lehrmer,1951)产生式:)(1c az z i i +=- (mod M),M a <<0初值0z 为种子,由),,,(0M c a z 可以完全确定序列{ ,1,0,=i z i },故称),,,(0M c a z 为一个(0,M )内服从均匀分布的随机数产生器。
且:M)(a a c z a z n nn mod 1)1(0--+=要求:a 周期长(由M 决定,随机数个数要<<M);b 一阶自相关系数近似为0。
(均匀分布的白噪声)2. 伪随机数的随机性检验和相关性检验随机性检验:统计直方图检验;划分区间,计算落入每个区间的频数,求落入各区间的概率。
相关性检验;1) 相关系数或相关函数估计 2) 功率谱估计3. 各种概率分布的随机数的产生在均匀分布的随机数的基础上产生各种概率分布的随机数。
主要的方法有:求逆法,舍选法,函数逼近法,概率逼近法,函数变换法等。
1) 求逆法(Inverse method )定理:设随机变量的X 的分布函数为)(x F X ,)1,0(~U U ,定义)(1U F Y X -=,则Y 与X 具有相同的分布函数。
证明:)()())(())(()(1y x P y F y F U P y U F P y x P X X X <==<=<=<- 产生步骤:a. 产生均匀分布的随机数u ;b. 求)(1u F x X -=,则x 服从分布函数为)(x F X 的分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 白噪声和M序列的产生
实验报告
1.实验题目:白噪声和M序列的产生
器顺序连接而成的4级移位寄存器,它带有一个反馈通道。
当移位脉冲来到时,每级触发器的状态移到下一级触发器中,而反馈通道按模2加法规则反馈到第一级的输入端。
4.实验对象或参数
1、生成均匀分布随机序列
(1)利用混合同余法生成[0, 1]区间上符合均匀分布的随机序列,并计算该序列的均值和方差,与理论值进行对比分析。
要求序列长度为1200,推荐参数为a=65539,M=2147483647,0<x0<M 。
(2)将[0, 1]区间分为不重叠的等长的10个子区间,绘制该随机序列落在每个子区间的频率曲线图,辅助验证该序列的均匀性。
(3)对上述随机序列进行独立性检验。
(该部分为选作内容)
2、生成高斯白噪声
利用上一步产生的均匀分布随机序列,令n=12,生成服从N(0,1)的白噪声,序列长度为100,并绘制曲线。
3、生成M 序列
M 序列的循环周期取为63126
=-=P N ,时钟节拍Sec 1=∆t ,幅度1=a ,逻辑“0”为a ,逻辑“1”为-a ,特征多项式65
()F s s s =⊕。
生成M 序列的结构图如下所示。
要求编写Matlab 程序生成该M 序列,绘制该信号曲线,并分析验证M 序列的性质。
5.程序框图
C 1
C 2
C 3
C 4
C 5
C 6
CP
M (6)
M (5)
+
M (4)
M (3)
M (2)
M (1)
M (0)
实验1-1
实验1-2 实验1-3
6.程序代码
%实验1-1
Xulie_Length = 1200;
A = 65539;
M = 2147483647;
b = 0;
R(Xulie_Length) = 0;
X(1) = 199119;
R(1) = X(1) / M;
for n = 1 : (Xulie_Length - 1)
7.实验结果及分析
1、生成均匀分布随机序列 (1)生成的0-1均布随机序列如下所示:
200
400
600
800
1000
1200
0.10.20.30.40.50.60.70.80.91
计算序列的均值和方差
程序代码:
mean_R = mean(R)
var_R = var(R)
均值和方差实际值:
mean_R =
0.4969
var_R =
0.0837
随机变量X服从均匀分布U(a,b),则均值为(a+b)/2,方差为(b-a)先平方再除以12。
[0,1]区间均值和方差理论值:
mean_R =(0+1)/2=0.5;
var_R =1/12 = 0.083333。
结论:容易看到,实际值与理论值较接近。
(2)该随机序列落在10个子区间的频率曲线图如下:
结论:从结果图可以容易看到,该序列的均匀性较好。
2、生成高斯白噪声
生成的白噪声如下图:
-2.5
-2-1.5-1-0.500.511.52
生成的白噪声的频率统计图如下:
05
10
15
20
25
结论:从结果图知,生成的白噪声基本服从N(0,1)分布。
3、生成M 序列
生成的M 序列如下(n = 63):
010203040506070
-1.5-1
-0.5
0.5
1
1.5
验证M 序列性质:
均衡特性:m 序列每一周期中 1 的个数比 0 的个数多 1 个(-a 和a 的个数差1) 测试程序:
number_a = sum(M_XuLie == a);
number_a_c = sum(M_XuLie == -a);
number_a
number_a_c 结果:
number_a =
31
number_a_c =
32
结论:从测试结果看性质成立
游程特性:m 序列的一个周期(p =2n -1)中,游程总数为2n -1。
其中长度为k 的游程个数占游程总数的 1/2k =2-k ,而且,在长度为k 游程中,连 1游程与连 0 游程各占一半,其中 1≤k≤(n -2)。
长为(n -1)的游程是连 0 游程, 长为 n 的游程是连 1 游程。
测试程序:
M_XuLie_Ext = [M_XuLie, -M_XuLie(end)];
run = int8(0);
test_number_a(6) = int8(0);
test_number_a_c(6) = int8(0);
for n = 1 : length(M_XuLie)
run = run + 1;
if(M_XuLie_Ext(n) ~= M_XuLie_Ext(n + 1))
if(M_XuLie_Ext(n) == a)
test_number_a(run) = test_number_a(run) + 1;
else
test_number_a_c(run) = test_number_a_c(run) + 1;
end
run = 0;
end
end
display(test_number_a);
display(test_number_a_c);
结果:
test_number_a =
8 4 2 1 1 0
test_number_a_c =
10 3 2 1 0 1
结论:从测试结果看性质成立
移位相加特性:m序列和它的位移序列模二相加后所得序列仍是该m序列的某个位移序列。
测试程序:
M_XuLie = M_XuLie';
M_XuLie = -0.5 * (M_XuLie - 1);
M_result = 1; % 验证成功则为1
for n = 1 : (length(M_XuLie) - 1)
M_XuLie_Shift = circshift(M_XuLie, n);
M_XuLie_Add = mod((M_XuLie + M_XuLie_Shift), 2);
is_shift_found = 0; % false
for k = 0 : (length(M_XuLie) - 1)
%if(isequal(circshift(M_XuLie, k), M_XuLie_Add))
if(circshift(M_XuLie, k) == M_XuLie_Add)
is_shift_found = 1;
end
end
if(is_shift_found == 0)
M_result = 0;
end
end
display(M_result);
结果:
M_result =
1
结论:从测试结果看性质成立
8.结论
本次试验主要实践了混合同余法,正态分布随机数产生方法,M序列生成原理,生成均匀分布随机序列,生成高斯白噪声,生成M序列。
使用混合同余法生成了服从N(0,1)分布的随机序列,同时根据独立同分布中心极限定理,得到了高斯白噪声。
在实验1-3中使用6个移位寄存器和反馈通道生成了周期为63的M序列,同时验证了M序列的相关性质,从结果看,完全成立。
本次实验主要是对M序列和其相关性质有了更深入的了解,同时也进一步熟悉了MATLAB,收获颇多。