高中数学知识点总结(精华版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修+选修知识点归纳

新课标人教A版

一、集合

1、 把研究的对象统称为元素,把一些元素组成的总

体叫做集合。集合三要素:确定性、互异性、无

序性。

2、 只要构成两个集合的元素是一样的,就称这两个

集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:

Z ,有理数集合:Q ,实数集合:R .

4、集合的表示方法:列举法、描述法.

§1.1.2、集合间的基本关系

1、 一般地,对于两个集合A 、B ,如果集合A 中任

意一个元素都是集合B 中的元素,则称集合A 是

集合B 的子集。记作B A ⊆.

2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,

则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:

空集合是任何集合的子集.

4、 如果集合A 中含有n 个元素,则集合A 有n

2个子

集,21n

-个真子集.

§1.1.3、集合间的基本运算

1、 一般地,由所有属于集合A 或集合B 的元素组成

的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素

组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念

1、 设A 、B 是非空的数集,如果按照某种确定的对应

关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.

2、 一个函数的构成要素为:定义域、对应关系、值

域.如果两个函数的定义域相同,并且对应关系完

全一致,则称这两个函数相等.

§1.2.2、函数的表示法

1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:

(1)定义法:设2121],,[x x b a x x <∈、那么

],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.

步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:

()()21x f x f -=…

(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数.

§1.3.2、奇偶性

1、 一般地,如果对于函数()x f 的定义域内任意一个

x ,都有()()x f x f =-,那么就称函数()x f 为

偶函数.偶函数图象关于y 轴对称.

2、 一般地,如果对于函数()x f 的定义域内任意一个

x ,都有()()x f x f -=-,那么就称函数()x f 为

奇函数.奇函数图象关于原点对称. 知识链接:函数与导数

1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在

))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方

程是))((000x x x f y y -'=-.

2、几种常见函数的导数

①'

C 0=;②1

'

)(-=n n nx

x ;

③x x cos )(sin '

=;④x x sin )(cos '

-=; ⑤a a a x

x ln )('

=;⑥x

x e e ='

)(;

⑦a

x x a ln 1)(log '=;⑧x x 1)(ln '

=

3、导数的运算法则 (1)'

v . (2)'

'

'

()uv u v uv =+.

(3)''

'2

()(0)u u v uv v v v -=

≠. 4、复合函数求导法则

复合函数(())y f g x =的导数和函数

(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:

极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;

极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:

①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;

②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值

(1)求()y f x =在(,)a b 内的极值(极大或者极小值)

(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。 §2.1.1、指数与指数幂的运算

1、 一般地,如果a x n

=,那么x 叫做a 的n 次方根。

其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n

=; 当n 为偶数时,a a n

n =. 3、 我们规定:

⑴m n

m

n a a

=

()

1,,,0*

>∈>m N

n m a ;

⑵()01

>=-n a

a

n n

; 4、 运算性质: ⑴()Q s r a a

a a s

r s

r

∈>=+,,0;

⑵()

()Q s r a a a rs s

r

∈>=,,0;

⑶()()Q r b a b a ab r

r r

∈>>=,0,0.

§2.1.2、指数函数及其性质 1、记住图象:()1,0≠>=a a a y x

2、性质:

§2.2.1、对数与对数运算

1、指数与对数互化式:log x

a a N x N =⇔=;

2、对数恒等式:log a N

a

N =.

3、基本性质:01log =a ,1log =a a .

4、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;

相关文档
最新文档