计算机组成原理复习要点(复习必过)

合集下载

计算机组成原理期末复习汇总

计算机组成原理期末复习汇总

计算机组成原理期末复习汇总《计算机组成原理》期末复习资料汇总⼀、名词解释微程序:是指能实现⼀条机器指令功能的微指令序列。

微指令:在机器的⼀个CPU周期内,⼀组实现⼀定操作功能的微命令的组合。

微操作:执⾏部件在微命令的控制下所进⾏的操作。

加减交替法:除法运算处理中对恢复余数法来说,当余数为正时,商“1”,余数左移⼀位,减除数;当余数为负时,商“0”,余数左移⼀位,加除数。

有效地址:EA是⼀16位⽆符号数,表⽰操作数所在单元到段⾸的距离即逻辑地址的偏移地址.形式地址:指令中地址码字段给出的地址,对形式地址的进⼀步计算可以得到操作数的实际地址。

相容性微操作:在同⼀CPU周期中,可以并⾏执⾏的微操作。

相斥性微操作:在同⼀CPU周期中,不可以并⾏执⾏的微操作。

PLA:Programmable Logic Arrays,可编程逻辑阵列。

PAL:Programmable Array Logic,可编程阵列逻辑。

GAL:Generic Array Logic,通⽤阵列逻辑。

CPU:Central Processing Unit,中央处理器。

⼀块超⼤规模的集成电路,是⼀台计算机的运算核⼼和控制核⼼。

RISC:Reduced Instruction Set Computer,精简指令系统计算机。

CISC:Complex Instruction Set Computer,复杂指令系统计算机。

ALU:Arithmetic Logic Unit,算术逻辑单元。

CPU执⾏单元,⽤来完成算术逻辑运算。

⼆、选择题1.没有外存储器的计算机监控程序可以存放在( B )。

A.RAM B.ROM C.RAM和ROM D.CPU2.完整的计算机系统应包括( D )。

A.运算器.存储器.控制器 B.外部设备和主机C.主机和使⽤程序D.配套的硬件设备和软件系统3.在机器数( BC )中,零的表⽰形式是唯⼀的。

A.原码B.补码 C.移码 D.反码4.在定点⼆进制运算器中,减法运算⼀般通过( D )来实现。

(完整word版)计算机组成原理复习要点(复习必过)

(完整word版)计算机组成原理复习要点(复习必过)

计算机组成原理复习要点一、 题型分布选择题 20分;填空题 30分;判断题 10分;计算题 20/25分;简答题 20/15分二、 每章重点内容 第一章 概述1、什么是计算机组成2、诺依曼体系结构计算机的特点(1)硬件由五大部份组成(运算器、控制器、存储器、输入设备、输出设备). (2)软件以2#表示。

(3)采用存储程序所有的程序预先存放在存储器中,此为计算机高速自动的基础; 存储器采用一维线性结构; 指令采用串行执行方式。

控制流(指令流)驱动方式;(4)非诺依曼体系结构计算机数据流计算机多核(芯)处理机的计算机3、计算机系统的层次结构(1)从软、硬件组成角度划分层次结构(2)从语言功能角度划分的层次结构虚拟机:通过软件配置扩充机器功能后,所形成的计算机,实际硬件并不具备相应语言的功能.第二章数据表示1、各种码制间的转换及定点小数和定点整数的表示范围(1)原码:计算规则:最高位表示符号位;其余有效值部分以2#的绝对值表示。

如:(+0.1011)原=0.1011; (—0。

1001)原=1。

1001(+1011)原 = 01011; (—1001)原 =11001注意:在书面表示中须写出小数点,实际上在计算机中并不表示和存储小数点。

原码的数学定义若定点小数原码序列为X0。

X1X2...Xn共n+1位数,则:X原=X 当 1 >X≥0X原=1-X=1+|x| 当 0≥X>-1若定点整数原码序列为X0X1X2.。

Xn共n+1位数,则:X原=X 当 2n >X≥0X原=2n—X=2n+|x| 当 0≥X>—2n说明:在各种码制(包括原码)的表示中需注意表示位数的约定,即不同的位数表示结果不同,如:以5位表示,则(—0。

1011)原=1。

1011以8位表示,则(-0。

1011)原=1。

10110000的原码有二种表示方式:小数:(+0.0000)原=0.0000,(-0。

0000)原=1.0000整数:(+00000)原 =00000,(-00000)原=10000符号位不是数值的一部分,不能直接参与运算,需单独处理.约定数据位数的目的是约定数据的表示范围,即:小数:-1 〈 X 〈 1整数:-2n 〈 X 〈 2n(2)反码:计算规则:正数的反码与原码同;负数的反码是原码除最高位(符号位)外,各位求反.如:正数:(+0。

计算机组成原理知识点总结

计算机组成原理知识点总结

计算机组成原理知识点总结第一章一、数字计算机的五大部件(硬件)及各自主要功能(P6)计算机硬件组成:存储器、运算器、控制器、输入设备、输出设备。

1、存储器(主存)主要功能:保存原始数据和解题步骤。

包括:内存储器(CPU 直接访问),外存储器。

2、运算器主要功能:进行算术、逻辑运算。

3、控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。

包括:计算程序和指令(指令由操作码和地址码组成)。

4、输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。

5、输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。

注:1、冯诺依曼结构:存储程序并按地址顺序执行。

2、中央处理器(CPU):运算器和处理器的结合。

3、指令流:取指周期中从内存读出的信息流,流向控制器。

数据流:在执行器周期中从内存读出的信息流,由内存流向运算器。

二、数字计算机的软件及各自主要功能(P11)1、系统软件:包括服务性程序、语言程序、操作程序、数据库管理系统。

2、应用程序:用户利用计算机来解决某些问题而设计。

三、计算机的性能指标。

1、吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量。

2、响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。

3、利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示。

4、处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。

5、总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数。

6、存储器容量:存储器中所有存储单元(通常是字节)的总数目,通常用KB、MB、GB、TB来表示。

7、存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s(字节/秒)表示。

8、主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么(从什么时候开始、多长时间完成),主时钟不断产生固定频率的时钟信号。

计算机组成原理期末复习资料要点

计算机组成原理期末复习资料要点

计算机组成原理期末复习资料(陆瑶编著)第一章计算机的系统概述(P1-8)1.1计算机的组成任务(P1)1.计算机系统由硬件和软件两个子系统组成;2.计算机系统结构主要有a、研究计算机系统硬件、软件功能的分配;b、确定硬件和软件的界面;c、完成提高计算系系统性能的方法;3.计算机的组成是按照计算机系统结构分配给硬件子系统的功能以与确定的概念结构,研究硬件子系统各组成部分的内部构造和相互联系,以实现机器指令集的各种功能和特性。

4.计算机实现是计算机组成的物理实现,即按计算机组成制定的方案,制作出实际的计算机系统,它包括处理器、主存、总线、接口等各部件的物理结构的实现,器件的集成度和速度的选择和确定,器件、模块、插件、底板的划分和连接,专用器件的设计,电源配置、冷却、装配等各类技术和工艺问题的解决等。

1.2计算机的硬件系统结构P2(1.2.1)5.电子数字计算机普遍采用冯·诺依曼计算机系统结构。

6. 主机:由、存储器与接口合在一起构成的处理系统称为主机。

7. :中央处理器,是计算机的核心部件,由运算器和控制器构成。

8.冯·诺依曼计算机系统结构由运算器、控制器、储存器、输入设备、输出设备5大部件组成,相互间以总线连接。

9.运算器的作用:计算机中执行各种算术和逻辑运算操作的部件。

运算器的基本操作包括加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以与移位、比较和传送等操作,亦称算术逻辑部件()。

(算数逻辑部件():用于完成各种算术运算和逻辑运算(主要用于条件判断、设备控制等)。

)10.控制器的作用:是计算机的指挥中心,负责决定执行程序的顺序,给出执行指令时机器各部件需要的操作控制命令.由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的"决策机构",即完成协调和指挥整个计算机系统的操作。

11储存器的作用:是计算机系统中的记忆设备,用来存放程序和数据。

计算机组成原理期末复习资料(完美高分通过版)(完整资料).doc

计算机组成原理期末复习资料(完美高分通过版)(完整资料).doc

此文档下载后即可编辑计算机组成原理一、缩写词解释CPU:中央处理器ALU:算术逻辑单元I/O:输入输出接口RAM:随机存储器SRAM:静态随机访问存储器DRAM:动态随机访问存储器ROM:只读存储器PROM:用户可编程的只读存储器EPROM:紫外线可擦除可编程只读存储器FLASH:闪速存储器EEPROM:用电可擦除可编程只读存储器ISA:工业标准总线EISA:扩展工业标准总线PCI:外围部件互连总线USB:通用串行总线RS—232C:串行通信总线Cache:高速缓存FIFO:先进先出算法LRU:近期最少使用算法CRC:循环冗余校验码A/D:模拟/数字转换器D/A:数字/模拟转换器DMA:直接存储器存取方式DMAC:直接内存访问控制器LED:发光二极管FA:全加器OP:操作码CISC:复杂指令系位计算机RISC:精简指令系位计算机VLSI:超大规模集成电路LSI:大规模集成电路MAR:存储器地址寄存器MDR:存储器数据寄存器CU:控制单元CM:控制存储器二、选择题(自己看书吧····)三、名词解释1.计算机系统:由硬件和软件两大部分组成,有多种层次结构。

2.主机:CPU、存储器和输入输出接口合起来构成计算机的主机。

3.主存:用于存放正在访问的信息4.辅存:用于存放暂时不用的信息。

5.高速缓存:用于存放正在访问信息的付本。

6.中央处理器:是计算机的核心部件,由运算器和控制器构成。

7.硬件:是指计算机实体部分,它由看得见摸得着的各种电子元器件,各类光、电、机设备的实物组成。

软件:指看不见摸不着,由人们事先编制的具有各类特殊功能的程序组成。

8.系统软件:又称系统程序,主要用来管理整个计算机系统,监视服务,使系统资源得到合理调度,高效运行。

应用软件:又称应用程序,它是用户根据任务需要所编制的各种程序。

9.源程序:通常由用户用各种编程语言编写的程序。

目的程序:由计算机将其翻译机器能识别的机器语言程序。

计算机组成原理复习提纲复习资料版

计算机组成原理复习提纲复习资料版

《计算机组成原理》复习提纲第一章:绪论1、存储程序概念(基本含义)。

P3⑴计算机(指硬件)应由运算器、存储器、控制器、输入设备和输出设备五大基本部件组成;⑵计算机内部采用二进制来表示指令和数据;⑶将编好的程序和原始数据事先存入存储器中,然后再启动计算机工作2、冯·诺依曼计算机结构的核心思想是什么?存储程序控制3、主机的概念(组成部件是哪些?)中央处理器(运算器和控制器)和主存储器4、计算机的五大基本部件有哪些?输入设备,输出设备,存储器,运算器,控制器5、冯·诺依曼结构和哈佛结构的存储器的设计思想各是什么?P9程序存储、程序控制冯·诺依曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。

指令存储地址和数据存储地址指向同一个存储器的不同物理位置。

哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。

CPU首先到指令存储器中读取指令内容,译码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)Cache和主存储器分别是采用的哪种设计思想?Cache采用哈佛结构,主存储器采用冯.诺依曼结构6、计算机系统是有软件系统和硬件系统组成的。

7、现代个人PC机在总线结构上基本上都采用的是单总线结构,根据所传送的信息类型不同又可分为哪三类总线?地址总线,数据总线,控制总线第二章:数据的机器层表示1、定点小数表示范围(原码、补码)原码定点小数表示范围为:-(1-2-n)~(1-2-n)补码定点小数表示范围为:-1~(1-2-n)2、定点整数表示范围(原码、补码)原码定点整数的表示范围为:-(2n-1)~(2n-1)补码定点整数的表示范围为:-2n ~(2n-1)3、浮点数表示范围PPT374、规格化的浮点数5、阶码的移码表示6、IEEE 754浮点数标准本章复习范围为ftp上第二章的作业题的1、2、3、4题。

第三章:指令系统1、指令的基本格式(OP字段和地址字段组成)。

(完整版)计算机组成原理重点整理

(完整版)计算机组成原理重点整理

一.冯·诺依曼计算机的特点1945年,数学家冯诺依曼研究EDVAC机时提出了“存储程序”的概念1.计算机由运算器、存储器、控制器、输入设备和输出设备五大部件组成2.指令和数据以同等地位存放于存储器内,并可按地址寻访。

3.指令和数据均用二进制数表示。

4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。

5.指令在存储器内按顺序存放。

通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序。

6.机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成。

二.计算机硬件框图1.冯诺依曼计算机是以运算器为中心的2.现代计算机转化为以存储器为中心各部件功能:1.运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内。

2.存储器用来存放数据和程序。

3.控制器用来控制、指挥程序和数据的输入、运行以及处理运算结果4.输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式(鼠标键盘)。

5.输出设备可将机器运算结果转换为人们熟悉的信息形式(打印机显示屏)。

计算机五大子系统在控制器的统一指挥下,有条不紊地自动工作。

由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,两大不见往往集成在同一芯片上,合起来统称为中央处理器(CPU)。

把输入设备与输出设备简称为I/O设备。

现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器。

CPU与主存储器合起来又可称为主机,I/O设备又可称为外部设备。

主存储器是存储器子系统中的一类,用来存放程序和数据,可以直接与CPU交换信息。

另一类称为辅助存储器,简称辅存,又称外村。

算术逻辑单元简称算逻部件,用来完成算术逻辑运算。

控制单元用来解实存储器中的指令,并发出各种操作命令来执行指令。

ALU和CU是CPU的核心部件。

I/O设备也受CU控制,用来完成相应的输入输出操作。

计算机组成原理-知识点汇总

计算机组成原理-知识点汇总

《计算机组成原理》80个重要知识点汇总1、硬件包括中央处理器、存储器、外部设备和各类总线等。

1)中央处理器(处理器/CPU):核心部件,用于执令的执行。

2)存储器:内存和外存3)外部设备(简称外设,也称I/O设备):输入、输出设备。

4)总线:用于在部件之间传输信息。

2、软件1)系统软件: 操作系统(O/S)2)应用软件: 电子邮件、文字表格软件等。

3、计算机层次结构指令集体系结构ISA(简称体系结构或系统结构):连接软件和硬件的一个“桥梁”,是一台计机可以执行的所有指令集合。

微体系结构(简称微架构):具体实现的组织。

是由逻辑电路实现的,而逻辑电路又是按照特定的器件技术实现的。

编程语言低级语言:和运行计算机底层结构密切相关。

例:机器语言汇编语言:是一种机器语言的符号表示语言,通过用简短的英文符号和二进制代码建立对应关系。

高级语言:和底层计算机结构关联不大,大部分编程语言都是高级语言。

翻译程序:源程序→目标程序。

汇编程序:也称汇编器,将汇编语言源程序翻译成机器语言目标程序。

解释程序(解释器):将源程序中的语句逐条解释,转换成机器指令执行。

编译程序(编译器):将高级语言源程序翻译成汇编或机器语言目标程序。

4、冯诺依曼结构基本思想(1)采用“存储程序”工作方式。

存储程序: 指将编好的程序和原始数据送入主存并能自动执行的过程。

(2)计算机由运算器、控制器、存储器、输入设备和输出设备五个基本部件组成。

运算器:进行算术和逻辑运算。

控制器:自动执行指令。

存储器:存放数据和指令输入、输出设备:便于操作人员使用计算机。

(3)计算机内部以二进制形式表示指令和数据。

5、冯诺依曼结构模型机通用寄存器组:由若干个通用寄存器组成,用于存放操作数或操作数的地址。

标志寄存器:用来存放ALU运算得到的一些标志信息。

程序计数器(PC):用来存放将要执行的下一条指令的地址。

指令寄存器(IR):用于存放从主存储器读出的指令。

主存地址:每个存储单元的唯一编号。

计算机组成原理知识点总结

计算机组成原理知识点总结

《计算机组成原理》(白中英)复习第一章计算机系统概论电子数字计算机的分类(P1)通用计算机(超级计算机、大型机、服务器、工作站、微型机和单片机)和专用计算机。

计算机的性能指标(P5)数字计算机的五大部件及各自主要功能(P6)五大部件:存储器、运算器、控制器、输入设备、输出设备。

存储器主要功能:保存原始数据和解题步骤。

运算器主要功能:进行算术、逻辑运算。

控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。

输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。

输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。

计算机软件(P11)系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类(P65)按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关(随机访问):随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关(串行访问):顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROM Flash Memory高速缓冲存储器(Cache)辅助存储器——磁盘、磁带、光盘存储器的分级(P66)存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器(cache)、主存储器、外存储器。

主存储器的技术指标(P67)存储容量:存储单元个数M×每单元位数N存取时间:从启动读(写)操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间,时间单位为ns。

存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标。

《计算机组成原理》期末考试复习要点

《计算机组成原理》期末考试复习要点

《计算机组成原理》期末考试复习要点《计算机组成原理》期末考试复习要点一、试题类型:填空题、选择题、简答题二、重点章节第二、三、四、五章三、复习要点与模拟题㈠数据表示、运算1.进制转换;原码、反码和补码的表示⑴.将十进制数+107/128和-52 化成二进制数,再写出各自的原码、补码、反码表示(符号位和数值位共8位)⑵.将十进制数一0.276和47化成二进制数,再写出各自的原码、补码、反码表示(符号位和数值位共8位)。

⑶.(21)10=( )2=( )8=( )16⑷.x=一0.100l [x]原=( ) [x]补=( ) [-x]=( )⑸.y=0.010l [Y]原=( ) [Y]=( ) [—Y]补=( ) [Y—X]补=( )考核知识点:1)进制的转换2)定点整数、小数的三种码表示3)技巧:●将107转换成二进制后小数点移位(128=27)先写成8位,再转换成原码、反码、补码,如:-52先写成–0110100,再转换成原码10110100、反码11001011、补码11001100 2.有权码与无权码的判断与推导⑴.(27)10=()BCD⑵复习指导书P11第2小题考核知识点1)BCD码是最基本的有权码,也称8421码或二-十进制码。

BCD码实际上是十进制编码,只不过每一个编码用4位二进制数来表示,如35=(00110101)BCD 注意与35的二进制表示是100011两者有区别。

2)其它有权码(一般4位)见书P72表2.9,判断推导过程见复习指导书P133.补码加减运算及溢出判断用补码运算方法计算x十Y=?并判断结果是否溢出(采用双符号位)。

(1) x=0.10ll Y=0.1100(2)x=一0.1011 Y=0.1001解:(1) [x]补=00.1011, [Y]补=00.110000.1011十 00.110001.0111因结果双符号相异,有溢出(2) x=一0.1011 Y=0.1001·.· [x]补=11.010l [Y]补=00.100ll1.010l十 00.100l11.1110因结果双符号相同,不溢出考核知识点1)补码(双符号位)的表示2)溢出的概念与判断4.浮点数加减运算设A=-0.101101*2-3 , B=0.101001*2-2,首先将A、B表示为规范化的浮点数,要求阶码用4位(包括阶三符号位)用移码表示,尾数用8位(含浮点数的符号位)原码表示;再写出A+B的计算步骤和每一步的运算结果。

计算机组成原理复习要点

计算机组成原理复习要点

第三章 运算方法和运算器件
• 定点加、减运算及其溢出判断方法,其中减法运算是通过补码加法运 算实现的,其中根据[x]补求[-x]补。什么时候将会发生溢出?P6162,三种溢出判断方法。在计算机中,所表示的数会发生溢出,其根本 原因是计算机的字长有限。
• 定点原码乘法采用数值位用绝对值相乘,符号位单独处理;补码乘法 采用Booth算法;定点原码加减交替除法 :仅当最后一步余数为负时, 做恢复余数的操作
第二组:
4000H~7FFFH
第三组:
8000H~BFFFH
第四章:
C000H~FFFFH
第五章 指令系统
• 指令的格式是指指令用二进制表示的形式,通常由指令码和操作数的 地址码两部分组成,操作数有一地址、二地址和多地址之分;指令码 有定长与不定长之分;指令系统是表征一台计算机性能的重要因素, 它的格式和功能不仅直接影响到机器的硬件结构而且也影响到系统软 件。
复习要点
第一章 计算机系统概论
计算机系统
硬件系统
软件系统
外围设备 主机
系统软件
应用软件
外输输 C 内 存入出 P 存 储设设 U 器备备
寄运 控 高
存算 制 速
器器 器 缓



( )
操 作 系 统
语数
言据
处 理 程
… …
库 管 理
序系

数自 据动 处控 理制 程程 序序
企科
业学
管… 计 理… 算
• 流水线的概念,流水CPU是一种非常经济而实用的时 间并行技术,影响流水线性能的因素:访存冲突(即 资源相关)和相关(数据相关、控制相关)问题
第八章 系统总线
• 系统总线的结构有单总线和多总线之分,功能有数据 线、地址线和控制线之分,其中地址线(控制线)的 功能:提供主存、I / O接口设备的地址(控制信号、 响应信号)。计算机系统中,根据应用条件和硬件资 源不同,数据传输方式可采用串行微指令的编码。注意PC+1在不同机器中的含义, 如8位字长、16位指令和16位字长、16位指令

计算机组成原理期末复习内容总结

计算机组成原理期末复习内容总结

第一章计算机系统概论1、基本概念硬件:是指可以看得见、摸得着的物理设备部件实体,一般讲硬件还应包括将各种硬件设备有机组织起来的体系结构;软件:程序代码+ 数据 + 文档;由两部分组成,一是使计算机硬件能完成运算和控制功能的有关计算机指令和数据定义的组合,即机器可执行的程序及有关数据;二是机器不可执行的,与软件开发、过程管理、运行、维护、使用和培训等有关的文档资料; 固件:将软件写入只读存储器ROM中,称为固化;只读存储器及其写入的软件称为固件;固件是介于硬件和软件之间的一种形态,从物理形态上看是硬件,而从运行机制上看是软件;计算机系统的层次结构:现代计算机系统是由硬件、软件有机结合的十分复杂的整体;在了解、分析、设计计算机系统时,人们往往采用分层分级的方法,即将一个复杂的系统划分为若干个层次,即计算机系统的层次结构;最常见的是从计算机编程语言的角度划分的计算机系统层次结构;虚拟计算机:是指通过配置软件扩充物理机硬件/固件实现功能以后所形成的一台计算机,而物理机并不具备这种功能;虚拟机概念是计算机分析设计中的一个重要策略,它将提供给用户的功能抽象出来,使用户摆脱具体物理机细节的束缚;2、计算机的性能指标;1 吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量;2 响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量;3 利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示;4 处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机;5 总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数;6 存储器容量:存储器中所有存储单元通常是字节的总数目,通常用KB、MB、GB、TB来表示;7 存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s字节/秒表示;8 主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么从什么时候开始、多长时间完成,主时钟不断产生固定频率的时钟信号;主频主时钟的频率度量单位是MHZ、GHZ;时钟周期主频的倒数度量单位是微秒、纳秒;9 CPU执行时间:表示CPU执行一段程序所占用的CPU时间,可用下式计算CPU时间=CPU时钟周期数 X CPU时钟周期长;10 CPI:执行一条指令所需要的平均时钟周期数,可用下式计算 CPI=执行某段程序所需的CPU时钟周期数/该程序包含的指令条数;11 MIPS:平均每秒执行多少百万条定点指令数,用下式计算MIPS=指令条数 /程序执行时间× 10612 FLOPS:平均每秒执行浮点操作的次数,用来衡量机器浮点操作的性能,用下式计算FLOPS=程序中的浮点操作次数/程序执行时间秒3、计算机硬件系统的概念性结构,各个部分的作用;1计算机硬件系统由运算器、控制器、内存储器、输入设备、输出设备五大部分构成,一般还要包括它们之间的连接结构总线结构;2将运算器、控制器、若干的寄存器集成在一个硅片上,称为中央处理器CPU;3由于输入设备、输出设备与CPU、内存的处理速度差异,所以输入、输出设备通过适配器与总线、CPU、内存连接;4概念性结构如下图所示;译码翻译、产生控制信号控制取操作数源操作数、目的操作数控制执行运算控制保存结果形成下条指令地址顺序、转移6运算器的作用:由算术逻辑运算部件ALU、寄存器、数据通路组成;实现数据的加工和处理算术运算、逻辑运算、移位运算、关系比较运算、位运算;7存储器的作用:存储程序和数据,记忆部件;8适配器的作用:在主机与I/O设备之间起数据缓冲、地址识别、信号转换等;9总线的作用:多个部件分时共享的信息传送通路,用来连接多个部件并为之提供信息传输交换服务;注:后续章节还会逐步扩充4、指令流、数据流计算机如何区分指令和数据指令流:在取指周期中从内存中读出的信息流称为指令流,它通过总线、CPU内部数据通路流向控制器;数据流:在执行周期中从内存中读出的信息流称为数据流,它通过总线、CPU内部数据通路流向运算器;从时间上来说,取指令事件发生在取指周期取指令阶段,取数据事件发生在执行周期执行指令阶段;从空间处理部件上来说,指令一定送给控制器,数据一定送给运算器;5、冯·诺依曼计算机的技术特点由运算器、控制器、存储器、输入设备、输出设备五大部分构成计算机硬件系统概念结构;采用二进制代码表示数据和指令;采用存储程序控制方式指令驱动;第二章运算方法和运算器1、原码、补码、反码、移码的求法及表示范围; 1首先应明确机器字长;2原码、补码、反码、移码的求法;3表示范围;2、补码加减法运算,加法运算溢出检测;1补码加法运算规则2补码减法运算规则3变形补码表示法00 表示正数11 表示负数4变形补码运算:规则同补码加减法运算规则,双符号位数值化、参加运算;5加法运算溢出检测1单符号位法2双符号位法参见例题、习题3、并行加法器的进位方法及逻辑表达式1直接从全加器的进位公式推导;C2=G1+P1C1C3=G2+P2C2C4=G3+P3C33并行进位:所有进位可以同时产生,实际上只依赖于数位本身、来自最低位的进位C0;C1=G0+P0C0C2=G1+P1G0+P1P0C0C3=G2+P1G1+P2P1G0+P2P1P0C0C4=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0C0其中:G0=A0B0 P0=A0+B0G1=A1B1 P1=A1+B1G2=A2B2 P2=A2+B2G3=A3B3 P3=A3+B3Gi:进位产生函数,表示两个数位都为1Pi:进位传递函数,表示某位上的两个数位有一个为1,如果来自低位的进位为1,则肯定会产生进位;4、浮点加减法运算方法;●比较阶码大小、对阶●尾数加减法运算●规格化处理●尾数舍入处理●溢出判断参见例题、习题5、流水线原理、时钟周期确定、时间公式、加速比、时空图1把一个任务分割为一系列的子任务,使各子任务在流水线中时间重叠、并行执行;过程段Si之间重叠执行;2时钟周期的确定所有Si中执行时间最大者,参见例;3时间公式理想K+n-1T4加速比●Ck = TL / Tk = n·k/k+n-1●当任务数很大时,采用一个任务的完成时间相比,参见例; 5流水线时空图第三章存储系统1、基本概念存储容量:指一个存储器中可以容纳的存储单元总数;典型的存储单元存放一个字节,因此通常用字节数来表示,KB、MB、GB、TB; 存取时间:读操作时间指一次读操作命令发出到该操作完成、数据读出到数据总线上所经历的时间;通常写操作时间等于读操作时间,故称为存取时间;存取周期:也称读写周期,指连续启动两次读/写操作所需间隔的最小时间;通常存储周期略大于存取时间,因为数据读出到总线上,还需要经过数据总线、CPU内部数据通路传递给控制器/运算器;存储器带宽:单位时间里存储器可以存取的信息量,通常用位/秒、字节/秒表示;2、存储器的分级结构;对存储器的要求是容量大、速度快、成本低,但是在一个存储器中要求同时兼顾这三个方面的要求是困难的;为了解决这方面的矛盾,目前在计算机系统中通常采用多级存储器体系结构,即高速缓冲存储器、主存储器和外存储器;CPU能直接访问高速缓冲存储器cache和内存;外存信息必须调入内存后才能为CPU进行处理;1高速缓冲存储器:高速小容量半导体存储器,强调快速存取指令和数据;2主存储器:介于cache与外存储器之间,用来存放计算机运行期间的大量程序和数据;要求选取适当的存储容量和存取周期,使它能容纳系统的核心软件和较多的用户程序;3外存储器:大容量辅助存储器,强调大的存储容量,以满足计算机的大容量存储要求,用来存放系统程序、应用程序、数据文件、数据库等;3、主存储器的逻辑设计;第一步:根据设计容量、提供的芯片容量构建地址空间分布图类似搭积木,可能需要字、位扩展;第二步:用二进制写出连续的地址空间范围;第三步:写出各片组的片选逻辑表达式;第四步:按三总线分析CPU和选用存储器芯片的数据线、地址线、控制线,以便设计CPU与存储器的连接;第五步:设计CPU与存储器连接的逻辑结构图;参见例题、习题4、顺序存储器和交叉存储器的定量分析;顺序存储器:mT交叉存储器:可以使用流水线存取,T+m-1τ参见例题、习题5、高速缓冲存储器cache的基本原理,cache命中率相关计算Cache的基本原理:cache是一种高速缓冲存储器,为了解决CPU和主存之间速度不匹配而采用的一项重要技术;主存和cache均按照约定长度划分为若干块;主存中一个数据块调入到cache中,则将数据块地址块编号存放到相联存储器CAM中,将数据块内容存放在cache中;当CPU访问主存时,同时输出物理地址给主存、相联存储器CAM,控制逻辑判断所访问的块是否在cache中:若在,则命中,CPU直接访问cache;若不在,则未命中,CPU直接访问主存,并将该单元所在数据块交换到cache中;基于程序和数据的局部性访问原理,通过cache和主存之间的动态数据块交换,尽量争取CPU访存操作在cache命中,从而总体提高访存速度;cache命中率相关计算:命中率主存/cache系统平均访问时间访问效率参加例题、习题;第四章指令系统1、基本概念指令系统:一台计算机中所有机器指令的集合,称为这台计算机的指令系统;指令系统是表征一台计算机性能的重要因素,其格式与功能直接影响机器的硬件结构、软件、适用范围等;寻址方式:告诉计算机如何获取指令和运算所需要的操作数;即如何提供将要执行的指令所在存储单元的物理地址;如何提供运算所需要的操作数所在存储单元的物理地址、或者操作数所在内部寄存器的编号;CISC:指令条数多、结构形式复杂多样、寻址方式种类繁多、功能复杂多样、翻译执行效率低、很多指令难得用到;CISC使计算机的研制周期长,难以保证正确性,不易调试、维护,大量使用频率很低的复杂指令浪费了系统硬件资源;RISC:选取使用频率最高的一些简单指令,指令条数少,复杂功能通过宏指令实现;指令长度、格式、结构形式、寻址方式种类少,翻译执行效率高;只有取数/存数指令访问存储器,其余指令的操作均在CPU内部寄存器之间进行; RISC可缩短计算机的研制周期、易于保证正确性、调试、维护,系统硬件资源使用效率高;2、指令格式及寻址方式辨析参见例题、习题第五章中央处理器1、基本概念指令周期:取出一条指令并执行这条指令所需要的时间;微指令周期:从控制存储器中读出一条微指令的时间加上执行该条微指令的时间;微命令:控制部件通过控制线向执行部件发送的各种控制信号/操作命令;微操作:执行部件接收微命令以后所完成的操作,微操作是执行部件中最基本的、不可再分解的操作;微指令:一组实现一定操作功能的微命令的组合形式,称为微指令;由操作控制和顺序控制两大部分组成;指令流水线:指指令执行步骤的并行;将指令流的处理过程划分为取指令、指令译码、执行、写结果等几个并行处理的过程段;2、CPU的功能;1指令控制控制程序的执行顺序;由于程序是一个指令序列,这些指令的相互顺序不能任意颠倒,必须严格按照程序规定的顺序进行;2操作控制控制器产生取指令、执行指令的所需要的全部操作控制信号,并依序送往相应的部件,从而控制这些部件按指令的要求完成规定的动作;3时间控制对各种操作实施时间上的定时;在计算机中,各种指令的操作信号和整个执行过程均受到时间的严格定时和事件先后顺序控制应在规定的时间点开始,在规定的时间内结束 ,以保证计算机有条不紊地自动工作;4数据加工完成指令规定的运算操作;3、根据给定的模型机和数据通路结构,画出指令周期流程1根据模型机和数据通路结构,分析指令周期流程;2指令周期流程实际上是一个指令流、数据流在数据通路上的流动过程;参见例题、习题;4、微程序控制器的原理及组成框图;1基本原理设计阶段:首先,根据CPU的数据通路结构、指令操作定义等,画出每条指令的指令周期流程图具体到每个时钟周期、微操作、微命令;然后,根据微指令格式、指令周期流程图编写每条指令的微程序;最后,把整个指令系统的微程序其中取指令的微程序段是公用的固化到控制存储器中;运行阶段:首先,逐条执行取指令公用微程序段,控制取指令操作;然后,根据指令的操作码字段,经过变换,找到该指令所对应的特定微程序段,从控制存储器中逐条取出微指令,根据微操作控制字段,直接或经过译码产生微命令控制信号,控制相关部件完成指定的微操作;一条微指令执行以后,根据微地址字段取下一条微指令2构成框图控制存储器ROM:存放全部指令系统的微程序;微地址寄存器uPC:具有自动增量功能,给出顺序执行的下条微指令地址;微命令寄存器uIR:存放由控制存储器读出的一条微指令;地址转移逻辑:①根据指令寄存器IR的操作码,定位到该指令对应的微程序段,uPC 初值;②如果判断条件P/状态条件=FALSE,则 uPC=uPC +1,顺序执行;③如果判断条件P/状态条件=TRUE,则uPC=根据策略形成新的微指令地址,程序转移;5、流水线中资源相关、数据相关、控制相关问题;资源相关:是指多条指令进入流水线后,在同一机器时钟周期内争用同一个功能部件所发生的冲突;数据相关:在一个程序中,如果必须等前一条指令执行完毕以后,才能执行后一条指令,那么这两条指令就是数据相关的;控制相关:控制相关冲突是由转移类指令引起的;当执行转移类指令时,可能为顺序取下条指令;也可能转移到新的目标地址取指令;如果流水线顺序取指令,而程序却需要转移时,进入流水线的指令并不是将要执行的指令,或者转移的目标指令可能还没有进入流水线,从而使流水线发生断流;第六章总线系统1、基本概念;总线:总线是一组能为多个部件分时共享的信息传送线,用来连接多个部件并为之提供信息交换通路;总线仲裁:当总线上的多个主设备主方同时竞争使用总线时,必须通过总线仲裁部件,以某种方式和策略选择其中一个主设备主方,接管总线的控制权,传送信息;总线同步定时:在同步定时协议中,事件出现在总线上的时刻由公共的统一的总线同步时钟信号来确定,所以总线中包含时钟信号线;每个事件都必须在规定的时间点开始,并在规定的时间范围内结束;每个事件的持续时间、一次总线操作的时间是确定的; 总线异步定时:在异步定时协议中,后一事件出现在总线上的时刻取决于前一事件什么时候结束,即建立在应答式或互锁机制基础上;在这种系统中,不需要统一的公共同步时钟信号; 一个事件持续的时间、一次总线操作的时间是不确定的;2、总线接口的功能1控制接口依据CPU的指令信息控制外围设备的动作,如启动、关闭设备等;2缓冲在为部设备和计算机系统其它部件之间用作为一个缓冲器,以补偿各种设备在速度上的差异 ;3状态接口监视外部设备的工作状态并保存状态信息,状态信息包括“准备就绪”、“忙”、“错误”等,供CPU询问外部设备时进行分析之用;4转换可以完成任何要求的数据转换,以确保数据能在为部设备和CPU之间正确地传送,如数据格式转换、并-串转换等;5整理可以完成一些特别的功能,如在批量数据传输时自动修改字计数器、当前内存地址寄存器;6程序中断每当外围设备向CPU请求某种动作时,接口即发送中断请求信号给CPU,申请中断;3、多总线结构辨析HOST总线:宿主总线,连接多CPU、cache、主存、北桥;64位数据线、32位数据线、同步定时总线;PCI总线:与处理器无关的高速外围总线,连接高速的PCI设备,32/64位数据线、32位地址线、同步定时、集中仲裁、猝发传送;LAGACY总线:遗留总线,可以是ISA、EISA、MCA等传统总线,连接中、低速设备,保护用户以前的投资;桥的分类:HOST桥北桥、PCI/LAGACY桥南桥、PCI/PCI桥;桥的作用:1连接两条总线,使彼此相互通信;2总线转换部件,可以把一条总线上的地址空间映射到另一条总线的地址空间上,从而使系统中任意一个总线上的主设备都能看到同样的一份地址表;3信号缓冲、电平转换、控制逻辑转换等;第八章输入输出系统1、基本概念;DMA周期挪用:也称周期窃取,当CPU响应DMA请求、初始化DMA 控制器之后,I/O设备去做准备,DMA控制器并不立即获得总线控制权,CPU继续获得总线控制权;I/O设备每准备好发送/接收一个数据后,由DMA控制器向CPU申请获得一个总线周期的控制权,传输一个字数据,然后释放总线控制权交给CPU,I/O设备继续准备;在整个DMA数据传送过程中,CPU和DMA控制器交替控制总线,可以充分发挥CPU和内存的效率,是DMA广泛采用的方式;通道:通道是一个特殊功能的处理器基于微处理器CPU、单片机实现的,它有自己的指令和程序通道指令、通道程序专门负责数据输入/输出的传输控制,而CPU将“传输控制”的功能下放给通道后只负责“数据处理”功能;CPU和通道分时使用系统总线和存储器,实现了CPU内部运算与I/O设备的并行工作;外围处理机方式PPU:PPU基本上是独立于主机工作的,它有自己的指令系统,完成算术/逻辑运算,读/写主存储器,与外设交换信息等;PPU的结构更接近一台计算机、或者就是一台通用计算机,一般称为前置机;在一些大型高效率的计算机系统中,可以设置多台PPU,分别承担I/O控制、通信、维护诊断等任务;2、多级中断处理过程;1中断请求获取CPU在一条指令执行完毕后,即转入公操作,查询是否有中断请求;2决定是否响应中断请求优先级排队:中断优先级排队电路决定是否响应该级中断请求;寻找中断源:中断响应,沿着指定优先级的菊花链,寻找中断源,并获取中断向量;3中断周期断点地址进入堆栈;状态寄存器进入堆栈;关中断,即修改中断屏蔽寄存器IM本级及以下的中断请求不予响应,开放本级以上的中断请求;形成中断服务子程序入口地址,改变PC;4中断处理:保护现场;中断处理设备服务;恢复现场;开中断,即修改中断屏蔽寄存器IM;中断返回,即状态寄存器、断点地址从堆栈中出栈,断点地址送PC;3、Pentium采用向量中断法,中断源、中断向量表、中断服务子程序入口地址的形成过程;指令给出:如软件中断指令INT n 中的n即为中断向量号;接口提供:可屏蔽中断是CPU接收外部中断控制器由数据总线送来的中断向量号;非屏蔽中断的向量号是固定的;CPU自动指定:识别错误、故障现象、中断产生条件自动在CPU内部形成;3将256个中断源的中断服务子程序入口地址集中保存在00000H-003FFH的1K区域中,称为中断向量表IVT;1获取中断向量号N;2根据N,查中断向量表IVT;34N+1,4N→IP、4N+3,4N+2→CS;4中断服务子程序入口地址为:24CS+IP;4、DMA基本操作过程;1外围设备发出DMA请求;2CPU在指令执行公操作期间,查询是否有DMA请求,决定是否响应设备的DMA请求;若响应请求,把CPU工作改成DMA操作方式,CPU初始化DMA控制器内存起始地址、字个数, DMA控制器从CPU接管总线控制权;3DMA控制器负责执行一个个数据传送操作;修改内存地址指针、计数;数据块传送结束时以中断方式向CPU报告;4CPU响应DMA传送结束的中断请求,善后处理,收回总线控制权,一次DMA传送操作结束;5、通道的功能;1CPU执行I/O指令,通道接收来自CPU输出的地址信息、控制信息,按指令要求与指定的外围设备进行通信;2从内存选取属于指定设备的通道程序,逐条执行通道指令,向设备控制器发送各种命令;3组织外围设备与CPU、内存之间进行数据传送,并根据需要提供数据缓存的空间,以及提供数据存入内存的地址和传送的数据量;4从外围设备得到设备的状态信息,形成并保存通道本身的状态信息,根据要求将这些状态信息传送给CPU;5将外围设备的中断请求和通道本身的中断请求,按次序及时报告CPU;第十一章并行体系结构1、基本概念并行性:并行性是指计算机系统具有可以同时进行运算或者操作的特性,它包括同时性与并发性两种含义;同时性是指两个或两个以上的事件在同一时刻发生;并发性是指两个或两个以上的事件在同一时间间隔发生如分时交替执行、重叠执行等;VLIW处理机:由编译程序在编译时找出指令间潜在的并行性,进行适当调度安排,把多个能并行执行的操作组合在一起,成为一条具有多个操作段的超长指令;由这条超长指令去控制VLIW处理机中多个互相独立工作的功能部件,每个操作段控制一个功能部件,相当于同时执行多条指令;超线程处理机:多个线程同时运行,并通过适当的管理调度策略,建立来自多线程的、已优化的尽量避免无关问题的多指令流;在一个时钟周期内,流水处理机可以同时处理来自多指令流的指令、可有效解决相关问题,称为同时多线程结构,即超线程技术; 向量处理机:采用流水线技术实现向量处理,向量的分量源源不断地进入流水线,各个分量的处理时间重叠,整体上提高向量的处理速度;每个时钟周期向流水线发射一组分量,流水线满载以后,每个时钟周期输出一组分量的运算结果;机群系统:机群系统是由一组完整的计算机指离开机群系统仍能独立运行自己任务,一般称为节点通过高性能的网络或局域网互连而成的系统;它作为一个统一的计算资源一起工作,并能产生一台计算机的印象;2、SMP的特点1有两个及以上功能相似、或相同的处理机;2这些处理机共享同一主存和I/O设施,以总线或者其它内部连接机制互连在一起;这样,存储器存取时间对每个处理机都是大致相同的;3所有处理机对I/O设备的访问,或通过同一通道,或通过提供到同一设备路径的不同通道;4所有处理机能完成同样的功能;5系统被一个集中式操作系统OS控制;OS提供各处理机及其程序之间的作业级、任务级和数据元素级的交互;OS跨越所有处理机来调度进程和线程、以及处理机间的同步,使得多个处理机的存在对用户是透明的,感觉就是一个处理机;。

计算机组成原理复习要点

计算机组成原理复习要点

1、基本概念关于计算机软硬件系统描述、诺依曼关于现代计算机体系的理论、定点机器数的表示形式和范围、浮点数的表示范围和精度、两个浮点数相加减、浮点运算中规格化操作、定点运算溢出判断、存储容量、存储周期、DRAM芯片刷新周期、Cache的结构和程序局部性原理、CISC 和RISC、指令、寻址方式、控制器的特殊寄存器、组合逻辑与微程序控制、各种指令的译码、数据通道的设计2、计算浮点数规格化表示、补码判断溢出、Cache与主存的映射关系、控制器的译码3、主存和cpu的连接4、5、4下列关于计算机软硬件系统描述,指令系统是计算机硬件的语言系统,也叫机器语言,指机器所具有的全部指令的集合,它是软件和硬件的主要界面,反映了计算机所拥有的基本功能。

操作系统是一组主管并控制计算机操作、运用和运行硬件、软件资源和提供公共服务来组织用户交互的相互关联的系统软件程序。

5冯诺依曼关于现代计算机体系的理论贡献中奠定了现代计算机的基本架构,并开创了程序设计的时代6 8 位⼆进制数,八位二进制就是8个按顺序排列的二进制数。

例如:11111000,00000001,00000101等。

进制(binary)在数学和数字电路中指以2为基数的记数系统,以2为基数代表系统是二进位制的。

7 为什么要用补码采用补码可以简化计算机硬件电路设计的复杂度8浮点数的表示范围和精度浮点数是由符号,阶码和尾数三部分组成,浮点数分为单精度浮点数和双精度浮点数,单精度浮点数的便是范围是-3.4E38~3.4E38,双精度浮点数的范围是-1.79E+308 ~ +1.79E+3089 两个浮点数相加减浮点数的加减法运算过程详解(面向小白的)_狂奔的蜗牛Evan的博客-CSDN博客_0舍1入法例子10 在浮点运算中,“右规”操作右规操作:将尾数右移1位,同时阶码增1,便成为规格化的形式了。

11 当定点运算发生溢出时应发出错误信息12 存储周期是指对存储器进行连续两次存取操作所需要的最小时间间隔13 存储容量为1M×8 位,该芯片的地址线和数据线数目分别是地址20 数据814 三级存储器每一级存储器的作用1、高速缓冲存储器存在于主存与CPU之间的一级存储器,由静态存储芯片(SRAM)组成,容量比较小但速度比主存高得多,接近于CPU的速度。

计算机组成原理复习要点及答案

计算机组成原理复习要点及答案

计算机组成原理课程复习要点1、总线、时钟周期、机器周期、机器字长、存储字长、存储容量、立即寻址、直接寻址、MDR、MAR等基本概念。

总线:连接多个部件的信息传输线,是各个部件共享的传输介质。

在某一时刻,只允许有一个部件向总线发送信息,而多个部件可以同时从总线上接收相同的消息。

分为片内总线,系统总线和通信总线。

时钟周期:也称为振荡周期,定义为时钟频率的倒数。

时钟周期是计算机中最基本的、最小的时间单位。

在一个时钟周期内,CPU仅完成一个最基本的动作。

机器周期:完成一个基本操作所需要的时间称为机器周期。

一般情况下,一个机器周期由若干个S周期(状态周期)组成存储容量:存储容量是指存储器可以容纳的二进制信息量,用存储器中存储地址寄存器MAR的编址数与存储字位数的乘积表示。

即:存储容量 = 存储单元个数*存储字长立即寻址:立即寻址的特点是操作数本身设在指令字内,即形式地址A不是操作数的地址,而是操作数本身,又称之为立即数。

数据是采用补码的形式存放的把“#”号放在立即数前面,以表示该寻址方式为立即寻址。

直接寻址:在指令格式的地址字段中直接指出操作数在内存的地址ID。

在指令执行阶段对主存只访问一次。

计算机系统:由计算机硬件系统和软件系统组成的综合体。

计算机硬件:指计算机中的电子线路和物理装置。

计算机软件:计算机运行所需的程序及相关资料。

主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。

CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。

主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;由存储体、各种逻辑部件及控制电路组成。

存储单元:可存放一个机器字并具有特定存储地址的存储单位。

存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。

计算机组成原理(重点知识总结)

计算机组成原理(重点知识总结)

第一章计算机系统概论1.冯•诺依曼计算机模型。

1)计算机由运算器、存储器、控制器和输入/输出五个部件组成;2)存储器以二进制形式存储指令和数据;3)存储程序工作方式;4)五部件以运算器为中心进行组织。

现代计算机以存储器为中心。

2.计算机系统性能指标:字长,主频,主存容量,RASIS特性,兼容性。

第三章系统总线1.总线是连接两个或多个功能部件的一组共享的信息传输线;一个部件发出的信号可以被连接到总线上的其他所有部件所接收。

总线按连接部件不同分为:片内总线、系统总线、通信总线。

系统总线按传输信息不同分为:数据总线(双向,其位数与机器字长和存储字长有关,总线宽度)、地址总线(由CPU输出,单向)、控制总线。

2.总线性能指标:(1)总线宽度:它是指数据总线的根数。

(2)总线带宽:总线的数据传输速率即单位时间内总线上传输数据的位数,单位为MBps(3)时钟同步/异步:总线上的数据与时钟同步工作的总线称同步总线,与时钟不同步工作的总线称为异步总线。

(4)总线复用:为了提高总线的利用率,优化设计,特将地址总线和数据总线共用一条物理线路,只是某一时刻该总线传输地址信号,另一时刻传输数据信号或命令信号。

(5)信号线数:即地址总线、数据总线和控制总线三种总线数的总和。

(6)总线控制方式:包括并发工作、自动配置、仲裁方式、逻辑方式、计数方式等。

3.总线裁决:决定哪个总线主控设备将在下次得到总线使用权的过程称为总线裁决。

•两类总线裁决方式:集中式和分布式集中式裁决方式:使用总线控制器;分布式裁决方式:控制逻辑分散在各个部件或设备中。

集中式裁决方式:链式查询,计数器定时查询,独立请求查询。

总线通信控制:同步通信(通信双方由统一时标控制数据传送)异步通信(采用应答方式,不互锁,半互锁,全互锁)。

第四章存储器1.存储器的主要性能指标容量,速度,价格。

存储器的分类2.按存储介质分类:1)半导体存储器(双极型和MOS型)2)磁表面存储器3)磁芯存储器4)光盘存储器按存取方式分类1)随机存储器2)只读存储器(静态SRAM,动态DRAM)3)串行访问存储器3.半导体只读存储器:掩膜只读存储器ROM可编程ROM(PROM)可擦除和编程的ROM(EPROM)电擦除电改写只读存储器(EEPROM)闪速存储器(flash memory)4.主存的指标存储容量,存储速度(时间和周期)和存储器带宽。

计算机组成原理期末复习资料要点

计算机组成原理期末复习资料要点

计算机组成原理期末复习资料(陆瑶编著)第一章计算机的系统概述(P1-8)1.1计算机的组成任务(P1)1.计算机系统由硬件和软件两个子系统组成;2.计算机系统结构主要有a、研究计算机系统硬件、软件功能的分配;b、确定硬件和软件的界面;c、完成提高计算系系统性能的方法;3.计算机的组成是按照计算机系统结构分配给硬件子系统的功能以及确定的概念结构,研究硬件子系统各组成部分的内部构造和相互联系,以实现机器指令集的各种功能和特性。

4.计算机实现是计算机组成的物理实现,即按计算机组成制定的方案,制作出实际的计算机系统,它包括处理器、主存、总线、接口等各部件的物理结构的实现,器件的集成度和速度的选择和确定,器件、模块、插件、底板的划分和连接,专用器件的设计,电源配置、冷却、装配等各类技术和工艺问题的解决等。

1.2计算机的硬件系统结构P2(1.2.1)5.电子数字计算机普遍采用冯·诺依曼计算机系统结构。

6. 主机:由CPU、存储器与I/O接口合在一起构成的处理系统称为主机。

7. CPU:中央处理器,是计算机的核心部件,由运算器和控制器构成。

8.冯·诺依曼计算机系统结构由运算器、控制器、储存器、输入设备、输出设备5大部件组成,相互间以总线连接。

9.运算器的作用:计算机中执行各种算术和逻辑运算操作的部件。

运算器的基本操作包括加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、比较和传送等操作,亦称算术逻辑部件(ALU)。

(算数逻辑部件(ALU):用于完成各种算术运算和逻辑运算(主要用于条件判断、设备控制等)。

)10.控制器的作用:是计算机的指挥中心,负责决定执行程序的顺序,给出执行指令时机器各部件需要的操作控制命令.由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的"决策机构",即完成协调和指挥整个计算机系统的操作。

11储存器的作用:是计算机系统中的记忆设备,用来存放程序和数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理复习要点一、 题型分布选择题 20分;填空题 30分;判断题 10分;计算题 20/25分;简答题 20/15分二、 每章重点内容第一章 概述1、什么是计算机组成2、诺依曼体系结构计算机的特点(1)硬件由五大部份组成(运算器、控制器、存储器、输入设备、输出设备)。

(2)软件以2#表示。

(3)采用存储程序所有的程序预先存放在存储器中,此为计算机高速自动的基础; 存储器采用一维线性结构;指令采用串行执行方式。

控制流(指令流)驱动方式;(4)非诺依曼体系结构计算机数据流计算机多核(芯)处理机的计算机3、计算机系统的层次结构(1)从软、硬件组成角度划分层次结构(2)从语言功能角度划分的层次结构虚拟机:通过软件配置扩充机器功能后,所形成的计算机,实际硬件并不具备相应语言的功能。

第二章数据表示1、各种码制间的转换及定点小数和定点整数的表示范围(1)原码:计算规则:最高位表示符号位;其余有效值部分以2#的绝对值表示。

如:(+0.1011)原=0.1011; (-0.1001)原=1.1001(+1011)原= 01011; (-1001)原=11001注意:在书面表示中须写出小数点,实际上在计算机中并不表示和存储小数点。

原码的数学定义若定点小数原码序列为X0.X1X2...Xn共n+1位数,则:X原=X 当1 >X≥0X原=1-X=1+|x| 当0≥X>-1若定点整数原码序列为X0X1X2...Xn共n+1位数,则:X原=X 当2n >X≥0X原=2n-X=2n+|x| 当0≥X>-2n说明:在各种码制(包括原码)的表示中需注意表示位数的约定,即不同的位数表示结果不同,如:以5位表示,则(-0.1011)原=1.1011以8位表示,则(-0.1011)原=1.10110000的原码有二种表示方式:小数:(+0.0000)原=0.0000,(-0.0000)原=1.0000整数:(+00000)原=00000,(-00000)原=10000符号位不是数值的一部分,不能直接参与运算,需单独处理。

约定数据位数的目的是约定数据的表示范围,即:小数:-1 < X < 1整数:-2n < X < 2n(2)反码:计算规则:正数的反码与原码同;负数的反码是原码除最高位(符号位)外,各位求反。

如:正数:(+0.1011)原=(+0.1011)反=0.1011;负数:(-0.1001)原=1.1001,则(-0.1001)反=1.0110反码的数学定义若定点小数反码序列为X0.X1X2...Xn共n+1位数,则:X反=X 当1 >X≥0X反=(2-2-n)+X 当0≥X>-1若定点整数反码序列为X0X1X2...Xn共n+1位数,则:X反=X 当2n >X≥0X反=(2n -1)+X 当0≥X>- 2n(3)补码:计算规则:正数的补码与原码同;负数的补码是反码的最低加1。

如:正数:(+0.1011)原=(+0.1011)反=(+0.1011)补=0.1011;负数:(-0.1001)原=1.1001(-0.1001)反=1.0110(-0.1001)补=1.0111数学定义(X)补=M+X (MOD M)其中:M表示模,即容器的最大容量。

若定点小数补码序列为X0.X1X2...Xn共n+1位数,则M=2;若定点整数补码序列为X0X1X2...Xn共n+1位数,则M= 2n+12、为什么计算机中数值类型的数据以补码表示补码的符号位是数值的一部分,可以参与运算。

0的补码表示具有唯一性。

补码的表示范围比原码、反码大。

3、常见寻址方式的特点(1)寻址方式:获得指令或操作数的方式。

(2)指令寻址:由程序计数提供即将要执行的指令的地址。

(3)操作数寻址:与具体的寻址方式有关。

操作数寻址方式应说明是源操作数还是目标操作数的寻址方式。

4、采用多种寻址方式的目的(缩短指令长度,扩大寻址空间,提高编程灵活性)缩短指令长度,扩大寻址空间,提高编程的灵活性。

5、如何减少指令中地址数的方法采用隐地址(隐含约定)可以简化指令地址结构,即减少指令中的显地址数。

6、外设的编址方式(在任何一种方式每个外设都有一个独立的地址)(1)I/O与主存统一编址,即I/O是看作是主存的延伸。

(2)I/O与主存单独编址:I/O编址到设备级,即一个I/O只有一个地址。

I/O编址到寄存级,即一个I/O有多个地址。

7、指令系统优化的趋势(CISC、RISC)(1)CISC(复杂指令系统计算机)从编程角度出发,希望指令系统中包含的指令尽可能多,每条指令中的操作信息尽可能多。

该类指令系统一般包含300-500指令。

为提高机器效率,采用了向量化、超标量、超长指令字等技术。

(2)指令系统的发展趋势早期:面向用户编程,采用CISC技术现代:面向系统、向高级语言靠近,采用RISC技术(3)实际上CISC和RISC均是当前的发展(优化)趋势第三章存储器1、存储器的按工作原理和存取方式的分类(1)物理原理分类:A、磁芯B、半导体存储器C、磁表面存储器D、光盘存储器E、其它存储器(2)存取方式的划分:A、随机存取存储器(RAM)B、只读存储器(ROM)C、顺序存取存储器(SAM)D直接存取存储器(DAM)2、存储器的三级层次结构及各层次的功能(1)主存:基本要求:随机访问、工作速度快、具有一定容量;功能:存放当前执行的指令和数据。

(2)外存:基本要求:容量大、成本低、一定的速度功能:长期保存数据;作为主存的外援存储器。

外存也可采用多级存储结构。

(3)cache:基本要求:速度足够快、一定容量功能:CPU与主存的缓冲,匹配主存与CPU的速度。

内容:是当前主存中最活跃数据的副本。

内容形成的依据:程序局部性原理:时间和空间局部性。

3、静态与动态存储器间的区别、动态存储器为什么还需要刷新及刷新有分类(1)根据信息表示方式分为:动态存储器(DRAM):以电容中的电荷表示信息,需动态刷新;静态存储器(SRAM):以双稳态信息。

(2)需动态刷新:因为动态存储器是依靠电容上的存储电荷暂存信息,而电容上存储的电荷会逐渐减变弱所以需要刷新。

(3)刷新的分类:A、集中刷新B、分散刷新C、异步刷新。

4、校验码:奇偶、循环校验码(CRC)计算(1)奇/偶校验:奇/偶校验:使校验码中“1”的个数和为奇/偶数,主要用于主存校验。

例:有效信息:01101011,则奇校验码:011010110偶校验码:011010111(2)循环校验码A、编码原理:现假设有:有效信息:M ;除数G(生成多项式)有:M/G=Q+R/G此时,可选择R作为校验位,则MR即为校验码。

B、校验原理:(M-R)/G=Q+0/G说明:以接收到的校验码除以约定的除数,若余数为0,则可认为接收到的数据是正确的。

例:有效信息1101,生成多项式样1011,求循环校验码解:有效信息1101(k=4),即M(x)=x3+x2+x0生成多项式1011(r+1=4,即r=3),即G(x)=x3+x1+x0M(x)·x3=x6+x5+x3,即1101000(对1101左移三位)M(x)·x3/G(x)=1101000/1011=1111+001/1011即1010的CRC是:1101001循环校验码的来源余数与出错序号间处理存在对应模式,该模式只与只与码制和生成多项式有关,与具体的码字无关。

生成多项式满足的条件:任一位发生错误都应使余数不为0;不同的位发生的错误余数应不同。

用的生成多项式:CCITT:G(x)=x16+x15+x2+1IEEE:G(x)=x16+x12+x5+15、存储器的扩展(1)位扩展:例:2K×4芯片组成2K×8特点:(1)片选信号连接在一起,二个芯片分别提供高低位的数据;(2)芯片的地址线直接与AB按位连接。

(2)字扩展例:2K×4芯片组成4K×4特点:AB高位地址通过译码形成芯片的片选信号;AB低位地址通过译码连接芯片的低位地址;(3) 综合扩展例:4K ×4芯片组成16K ×86、 数据传输率的计算 R=主频cpu 1(单位bps) 7、 提高存储性能(速度、容量)的措施A 、双端口存储器,B 、并行主存系统C 、高速缓存D 、虚拟存储E 、相联存储技术等。

8、 高速缓存的功能及替换算法(1)高速缓存的功能:提供的是cpu 与内存的一个缓存。

(2)替换算法:1先进先出算法(FIFO)2近期最少使用算法(LRU)p 命中率=次数)访问数访问总次数(访问内存次数访问cache cache 9、Cache 与内存在直接映像方式中怎样将内存地址转换为Cache 地址A 、直接映像B 、全相联映像C 、组相联映像。

10、虚拟存储器的分类A 、页式虚存储器B 、段式虚拟存储器C 、段页式虚拟存储器。

第四章CPU1、为什么会产生溢出、及溢出的解决方法、正负溢出的概念(1)产生溢出的原因:需表示的数据或运算结果超出了正常表示范围(2)溢出的解决方法:多符号位;(3)正溢出:两个正数相加而绝对值超出允许的表示范围;(4)负溢出:两个负数相加而绝对值超出允许的表示范围。

2、补码加减法的依据X 补+Y 补=(X+Y)补 和 X 补-Y 补=X 补+(-Y)补。

3、串行和并行加法的原理串行加法原理如下:C1= G1 +P1C0 ;其中C0=0C2= G2 +P2C1····Cn= Gn +PnCn-1∑i=Ai ⊕ Bi ⊕ Ci-1并行加法原理如下:C1 = G1 +P1C0C2 = G2 +P2C1= G2 +P2G1 +P2P1C0C3 = G3 +P3C2= G3 +P3G2 +P3P2G1 +P3P2P1C0C4 = G4 +P4C3= G4 +P4G3 +P4P3G2 +P4P3P2G1+P4P3P2P1C0····而∑i=Ai ⊕ Bi ⊕ Ci-1 .4、一位原码乘法的计算及运算特点(1)数学原理:两个原码数相乘,其乘积的符号为相乘两数符号的异或值,数值等于两数绝对值之积。

假设[X]原=X0.X1X2..Xn ,[Y]原=Y0.Y1Y2..Yn,则有:[X·Y]原= (X0⊕Y0).[(X1X2..Xn)·(Y1Y2..Yn)](2)算法:假设X=0.X1X2..Xn ,Y=0.Y1Y2..Yn,即均为正纯小数X·Y= X·0.Y1Y2..Yn= X·(2-1Y1+2-2Y2+...+2-n+1Yn-1+2-nYn)= X·(2-nYn+2-n+1Yn-1+...+2-2Y2+2-1Y1)= (..((0+ Yn X)2-1+Yn-1X)2-1)+...)+Y2X)2-1)+Y1X)2--1)根据上述计算过程,可得算法如下:A0=0A1=(A0+YnX)2-1A2=(A1+Yn-1X)2-1...An-1=(An-2+Y2X)2-1An =(An-1+Y1X)2-1积X·Y=An(3)运算特点符号位和绝对值分别独立运算。

相关文档
最新文档