仪器分析 第4章 红外吸收光谱法

合集下载

仪器分析3—红外吸收光谱法

仪器分析3—红外吸收光谱法

傅立叶变换红外光谱仪
样品池
红外光源
摆动的 凹面镜
迈克尔逊 干扰仪
参比池
摆动的 凹面镜
检测器 干涉图谱 计算机 解析 还原
M1 II
同步摆动
I M2
红外谱图
BS
D
仪器组成
第五节 红外光谱法应用
红外光谱法由于操作简单,分析速度 快,样品用量少,不破坏样品,特征性 强等优点,在有机定性分析中应用广泛。 利用红外光谱可对化合物进行鉴定或结 构测定。 但由于吸收较复杂,在定量分析方面 应用受到一定限制。
第四章 红外吸收光谱分析法(IR)
Infrared Absorption Spectrometry
第一节
红外光谱基本知识
1、红外线波长范围: 光学光谱区域:10nm ~1000μm; 其中:10nm ~400nm为紫外光区 400nm ~760nm为可见光区, 760nm ~ 1000μm为红外光区。 为表示方便,红外光不用nm(纳米) 而用微米( μm)表示其波长。
由原理图可见,红外分光光度计也主要 由光源、样品吸收池、单色器、检测器、 记录仪等部件构成。 1、光源:能斯特灯或硅碳棒
红外光谱仪中所用的光源通常是一种惰性固体,用 电加热使之发射高强度的连续红外辐射。 常用的是Nernst灯或硅碳棒。 Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的 中空棒和实心棒。工作温度约为1700℃,在此高温下导 电并发射红外线。但在室温下是非导体,因此,在工作 之前要预热。它的特点是发射强度高,使用寿命长,稳 定性较好。 硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃ 左右。
ε>100 非常强峰(vs) 20<ε<100 强 峰(s) 10<ε<20 中强峰(m) 1<ε<10 弱 峰(w)

仪器分析红外吸收光谱法习题与答案解析

仪器分析红外吸收光谱法习题与答案解析

红外吸收光谱法一.填空题1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。

2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。

3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。

4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则称为红外非活性的。

一般来说,前者在红外光谱图上出现吸收峰。

5.红外分光光度计的光源主要有能斯特灯和硅碳棒。

6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。

7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。

8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。

二、选择题1.二氧化碳分子的平动、转动和振动自由度的数目分别(A)A. 3,2,4B. 2,3,4C. 3,4,2D. 4,2,32.乙炔分子的平动、转动和振动自由度的数目分别为(C)A. 2,3,3B. 3,2,8C. 3,2,7D. 2,3,74.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH3CH2COH的吸收带?(D)A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。

第四章 傅里叶红外光谱

第四章 傅里叶红外光谱

4
10 ―――波数(cm-1)
―――波长 (µm)


(11)
1 2 )
4.2 润滑油的傅里叶红外光谱分析
4.2.2 红外光谱定量分析原理
分子基团对红Biblioteka 辐射的特征吸收是进行定量分析的基础
样品的吸光性通过分光计进行间接的测量
红外光照射样品后到达分光检测器的光强 强度 之比称为透过率 ,即:
子基团的特征吸收谱带也叫特征峰。吸收谱带极大值的波数位置 称为特征频率。进行基团定性时,是根据基团特征吸收峰来判断 基团的存在与否
(10)
4.2 润滑油的傅里叶红外光谱分析
波数是红外吸收光谱图横坐标常用的物理量之一,单位为cm-1。它 是描述红外线振动特性的物理量。波数与波长的换算关系是:
式中:
(22)
4.3 在用油红外光谱参数的识别
通常表征润滑油硝化的峰位在~1630 cm-1附近;典型值则为20A·cm-1,高值 >40 A·cm-1
图为新油和深度硝化在用油的红外光谱 对比(上谱线为深度硝化在用油,下谱 线为新油),硝化深度的急剧增加,意 味着因高温和燃烧条件恶化而生成了大 量的氮氧化物
(3)
4.1 傅里叶红外光谱仪法
4.1.1 傅里叶红外光谱仪的工作原理 红外光谱仪(FT-IR)主要由红外光源、 吸收池、分光系统、检测 系统等几部分组成 检测时,从光源发出的红外光,经过迈克尔逊干涉仪变成干涉光 (消除杂光),再让干涉光经过样品,到探测器,探测器检测到透 过油样的红外线强度,并将其转换成与油样成分、含量相对应的电 压值,然后利用计算机系统把干涉图进行数字变换,最后得到光谱 图 FT-IR光谱仪的核心光学部件为迈科尔逊干涉仪,干涉仪的使用, 提高了红外光谱仪的灵敏度和准确性

仪器分析-红外吸收光谱法

仪器分析-红外吸收光谱法

第 6 章红外吸收光谱法6.1 内容提要6.1.1 基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。

红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。

振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。

不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。

分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。

转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。

分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。

伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。

弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。

红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。

诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。

共轭效应——分子中形成大键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。

氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。

溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。

基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。

振动偶合一一两个相邻基团的振动之间的相互作用称为振动偶合。

基团频率区一一红外吸收光谱中能反映和表征官能团(基团)存在的区域。

仪器分析Ⅱ 4-7章作业 参考答案

仪器分析Ⅱ 4-7章作业 参考答案

《仪器分析Ⅱ》作业参考答案
第四章红外光谱法
1. 试述分子产生红外吸收的条件。

2. CS2是线性分子,试画出它的基本振动类型,并指出哪些振动是红外活性的。

3.计算C6H12O和C10H13NO分子的不饱和度。

4. 某个酮分子的羰基伸缩振动频率为1750 cm-1,计算其力常数。

当羰基与双键共轭后,其振动频率为1720 cm-1,力常数又为多少?
解:
1. 略
2. CS2振动形式如下图所示。

C
C
C S
S C S
S
其红外吸收光谱图上只出现两个吸收峰,其理论振动数应为4个。

4种振动形式之所以只有两个峰,因为:一是对称伸缩振动的偶极矩不发生变化,二是其中两种振动方式频率相同,发生简并。

3. Ω=1;Ω=5 根据:Ω=1+n4+(n3-n1)/2
4. k1=12.29 N cm-1,k2=11.87 N cm-1
根据:
2
1
2
1
2
1
2
1
2
1'
1307
2
M
M
M
M
k
M
M
M
M
k
c
N
A
+

+


==
π
σ
第七章原子吸收光谱法
1. 名词解释:谱线半宽度,积分吸收,峰值吸收,锐线光源,贫燃
2. 简述影响原子吸收谱线变宽的因素?略
3. 简述空心阴极灯的工作原理?略
1。

仪器分析答案整理

仪器分析答案整理

第二章 光学分析法导论3. 计算:(1)670.7nm 锂线的频率;(2)3300cm -1谱线的波长; (3)钠588.99nm 共振线的激发电位。

解:(1)ν = λc = cm s cm 710107.670/1099792.2-⨯⨯ = 4.470 ×1014 s -1 (2)λ = σ1 = 133001-cm = 3030 nm (3)E = h λc = 4.136×10-15eV·s×cm s cm 7101099.588/1099792.2-⨯⨯ = 2.105 eV第三章 紫外-可见吸收光谱法2.何谓生色团及助色团?试举例说明。

解:含有π键的不饱和基团叫做生色团.例如C =C ;C =O ;C =N ;—N =N — 有一些含有n 电子的基团,它们本身没有生色功能,但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。

如—OH 、—OR 、—NH 2、—NHR 、—X 等。

3.作为苯环的取代基,―NH 3+不具有助色作用,―NH 2却具有助色作用;―OH 的助色作用明显小于―O -。

试说明原因。

解:助色团至少要有一对非键n 电子,这样才能与苯环上的π电子相作用,产生助色作用。

例如,苯胺中的氨基(―NH 2)含有一对非键n 电子,具有助色作用,当形成苯胺正离子(―NH 3+)时,非键n 电子消失了,助色作用也随之消失。

苯酚负离子中的氧原子(―O -)比酚羟基中的氧原子(―OH )多了一对非键n 电子,其助色效果也就更显著。

7. 比较双光束分光光度计与单光束分光光度计各有何优点。

解:双光束分光光度计对参比信号和试样信号的测量几乎是同时进行的,补偿了光源和检测系统的不稳定性,具有较高的测量精密度和准确度。

同时自动记录,可进行快速全波段扫描。

单光束分光光度计仪器结构简单,价廉,容易操作,比较适用于定量分析。

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动

仪器分析红外光谱法

仪器分析红外光谱法

仪器分析红外光谱法红外光谱法是一种常用的仪器分析方法,可以用于分析物质的组成和结构。

本文将详细介绍红外光谱法的原理、仪器设备和应用领域,并对其中的一些关键技术进行探讨。

红外光谱法是一种基于化学键振动的分析技术。

通过测量样品在红外辐射下的吸收光谱,可以获得有关样品分子的信息。

红外辐射的波长范围为0.78-1000微米,对应的频率范围为12.82-3000THz。

在这个频率范围内,物质的分子会吸收特定波长的辐射能量,这些吸收峰对应着不同的化学键振动。

通过比较样品的吸收光谱和标准库中的光谱,可以确定样品的组分或结构。

红外光谱仪是进行红外光谱分析的关键设备。

它主要由光源、样品室、光谱分束系统和探测器组成。

常见的光源有红外灯、光纤波导和测量系统本体产生的光源,它们的特点是辐射能量可见、红外或拉曼光谱区域。

光谱分束系统可以将样品吸收的红外光谱分解为连续光的波长与光强分布的结果,常用的分束器有棱镜和光栅两种。

光谱分束系统将被分解的光聚集到一个探测器上进行测量,常见的探测器有热电偶、焦平面阵列、差分红外探测器等。

根据实际需要,还可以配备测光计、计算机等辅助设备,以提高测量的准确性和效率。

红外光谱法在实际应用中有广泛的用途。

它可以用于各种领域的研究和分析,如化学、材料科学、制药、食品科学等。

红外光谱法可以用于分析有机化合物、无机物质、生物大分子等类型的样品。

在有机化合物分析中,红外光谱法可以确定化学键的类型、鉴别不同的功能基团、判断化学结构等。

在材料科学中,红外光谱法可以用于表面分析、结构表征、聚合物反应动力学等研究。

在制药和食品科学中,红外光谱法可以用于药物质量控制、药物配方优化、食品成分分析等。

为了提高红外光谱法的测量精度和灵敏度,一些关键技术被引入到了仪器分析中。

其中,ATR技术(全反射红外光谱技术)是一种常用的技术。

它通过将样品直接置于晶体表面进行测量,避免了传统方法中液体制备和气体膜片制备的麻烦。

此外,荧光红外光谱技术也是一项重要的技术。

仪器分析思考题 (附答案)

仪器分析思考题 (附答案)

《仪器分析》思考题第一章绪论1.经典分析方法和仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

2.灵敏度和检测限有何联系?灵敏度(sensitivity,用S表示)是指改变单位待测物质的浓度或质量时引起该方法检测器响应信号(吸光度、电极电位或峰面积等)的变化程度.检出限(detection limit,用D表示),又称为检测下限,是指能以适当的置信概率检出待测物质的最低浓度或最小质量。

检出限既与检测器对待测物质的响应信号有关,又与空白值的波动程度有关。

检测限与灵敏度从不同侧面衡量了分析方法的检测能力,但它们并无直接的联系,灵敏度不考虑噪声的影响,而检出限与信噪比有关,有着明确的统计意义。

似乎灵敏度越高,检出限就越低,但往往并非如此,因为灵敏度越高,噪声就越大,而检出限决定于信噪比。

3.简述三种定量分析方法的特点和适用范围。

一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空白试用范围:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响试用范围:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差试用范围:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第二章光谱分析法导论1.常用的光谱分析法有哪些?分子光谱法:紫外-可见分光光度法红外光谱法分子荧光光谱法分子磷光光谱法原子光谱法:原子吸收光谱法原子发射光谱法原子荧光光谱法X射线荧光光谱法2.简述狭缝的选择原则狭缝越大,光强度越大,信噪比越好,读数越稳定,但如果邻近有干扰线通过时会降低灵敏度,标准曲线弯曲。

仪器分析期末习题总结及答案

仪器分析期末习题总结及答案

⒈根据IUPAC建议,不属于分析方法的主要评价指标的是A.精密度B.准确度C.灵敏度D.检出限第三章紫外-可见吸收光谱法填空题:1、对于紫外-可见分光光度计,一般在可见光区使用的是钨灯或者卤钨灯光源,可以使用玻璃材质的棱镜和比色皿;而在紫外区一般使用的是氘灯氢灯光源,必须用石英材质的棱镜和比色皿。

2、双波长分光光度计在仪器设计上通常采用1光源2个单色器和1个吸收池。

3、紫外-可见分光光度计主要是由光源、单色器、吸收池、检测器和信号处理系统五部分组成。

选择题1、在紫外-可见分光光度计中,常用的光源是A、钨灯B、硅碳棒C、空心阴极灯D、激光灯2、CH3C-CH=CCH3中的n-π*跃迁谱带在下列溶剂中测量时,λmax最大的为A、水B、甲醇C、正丁烷D、氯仿n-π* 中λmax 随极性增大而降低,因此极性最小的对应波长最长3、双光束分光光度计与单光束分光光度计相比,其优点是A、可以扩大波长的应用范围B、可以采用快速响应的检测系统C、可以抵消吸收池所带来的误差D、可以抵消因光源的变化而产生的误差CH3CH34、下列有关双波长光度分析的哪种说法是不正确的?A、若合理选择波长对,可获得待测组份和参比组份的净吸光度DA,能有效地校正待测成份以外的背景吸收B、可用于扣除混浊液背景校正C、由于记录的是两个波长信号的信号差,因此不受光源电压和外部电源变化的影响D、可用于追踪化学反应。

5、紫外-可见分光光度法定量分析的理论依据是A.吸收曲线B.吸光系数C.朗伯-比耳定律D.能斯特方程问答题1、何谓生色团、助色团,红移和蓝移?含有π键的不饱和基团为生色团本身在紫外可见光区没有吸收,但是可以使生色团红移,吸收强度增大的基团为助色团2、溶剂的极性对有机化合物的紫外可见吸收光谱有何影响?3、作为苯环的取代基,为什么—NH3+不具有助色作用,而—NH2却具有助色作用?助色团至少要有一对非键n电子才可以起作用。

—NH3+上的n电子与H+结合,非键n电子消失,从而助色作用也消失4、作为苯环的取代基,为什么—OH的助色作用明显小于—O-?氧负离子有两对n电子,助色作用强于羟基氧上的一对n电子计算题1、以领二氮菲光度法测定Fe(II),称取式样0.500g,经处理后加入显色剂,最后定容为50.0mL。

仪器分析 第4章 红外吸收光谱法

仪器分析 第4章  红外吸收光谱法

4.2 基本原理
4.2.3 多原子分子的振动类型(P56)
伸缩振动 (υ):键长发生变化 1.简正振动基本形式 变形振动 (δ):键角发生变化
伸缩振动(υ)
对称伸缩振动(υs)
不对称伸缩振动(υas)
变形振动(δ)
面内变形振动(β)
面外变形振动(γ)
亚甲基的各种振动形式
2. 基本振动的理论数(分子振动自由度)
4.4 试样的处理和制备
4.4 试样的处理和制备
4.4.1 红外光谱法对试样的要求 (1)单一组分纯物质,纯度 > 98%; (2)样品中不含游离水; (3)要选择合适的浓度和测试厚度, 使大多数吸收峰透射比处于10%~80%。
4.4 试样的处理和制备
4.4.2 制样方法 1.气体样品的制备 2.液体和溶液样品的制备 3.固体样品的制备
分子振动自由度:多原子分子的基本振动
数目,也就是基频吸收峰的数目。
基频吸收峰:分子吸收一定频率的红外光后,
其振动能级由基态跃迁到第一
激发态时所产生的吸收峰。
2. 基本振动的理论数
线型分子振动自由度 = 3N – 5(如CO2)
非线型分子振动自由度 = 3N – 6(如H2O)
图5.12 CO2分子的简正振 动形式
来指导谱图解析。
基本概念
基团频率区: 在4000~1300cm-1 范围内的吸收峰,有一 共同特点:既每一吸收峰都和一定的官能 团相对应,因此称为基团频率区。
在基团频率区,原则上每个吸收峰都可以找到归属。
基本概念
指纹区: 在1300~400cm-1范围内,虽然有些吸收也对应 着某些官能团,但大量吸收峰仅显示了化合物 的红外特征,犹如人的指纹,故称为指纹区。

第4章-红外吸收光谱法(无机)

第4章-红外吸收光谱法(无机)

红外吸收光谱法:
分子的振动、转动 基频吸收光谱区
应用最为广泛的 红外光谱区
远红外光谱区: 该光区能量弱,较少用于分析
红外光谱的表示方法:
红外光谱以T~或T~ σ 来表示,下图为苯酚的
红外光谱
二、红外光谱产生的条件
辐射应具有能满足物质产生振动跃迁所需的能量;
(1) 辐射能应具有能满
ΔE 分子
ΔE振动
化学键键强越强(即键的力常数k越大)原子折合质量越小,化学
键的振动频率越大,吸收峰将出现在高波数区。
2.非谐振子的振动 谐振子的振动模式是理想化的, 实际上振动模式是非理想化的:
当△ V =± 1、±2、±3……振动能级的跃迁也可能存在。
四、多原子分子振动
1.振动的基本类型 伸缩振动
振动类型
变形振动
(1) 存在没有偶极矩变化的振动模式 (2) 存在能量简并态的振动模式 (3) 仪器的分辨率分辨不出的振动模式 (4) 振动吸收的强度小,检测不到 (5) 某些振动模式所吸收的能量不在中红外光谱区。
五、影响红外吸收峰强度的因素
1.红外吸收峰强度的分类
ε >100
非常强吸收峰 vs
20<ε<100
强吸收峰 s
(2) 中介效应(M效应)
p →π 共轭
O
O
O
C R R'
vC=0=1715cm-1
O
C RH
C R NH2
vC=0=1730cm-1
vC=0=1680cm-1 I效应解释不了
O
O
O
C R OR'
vC=0=1735cm-1
C R R'
C R SR

仪器分析课件-4红外光谱基本原理

仪器分析课件-4红外光谱基本原理
同基团的特征吸收并不总在一个固定频率上。 影响其吸收峰位置的主要因素分为内部因素和外部因素。
1.内部因素
(1)电子效应:引起化学键电子分布变化的效应。 a.诱导效应(Induction effect):取代基电负性-静电诱导-电 子分布改变-k 增加-特征频率增加(移向高波数)。 R-COR C=O 1715cm-1 ; R-COH C=O 1730cm-1 ; R-COCl C=O 1800cm-1 ; R-COF C=O 1920cm-1 。
10
Company Logo
11
Company Logo
因此,当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和它一致,二者就会产生共振,此时
光的能量通过分子偶极矩的变化而传递给分子,这个基
团就吸收一定频率的红外光,产生振动跃迁。
对称分子:没有偶极矩,辐射不能引起共振,无 红外活性。如:N2、O2、Cl2 等。
cm -1 1 6 6 0
c. 中介效应(Mesomeric effect):孤对电子与多重键相连产生的 p- 共轭,结果类似于共轭效应。 当诱导与共轭两种效应同时存在时,振动频率的位移的 程度取决于它们的净效应。
28
Company Logo
(2)氢键效应
形成氢键使电子云密度平均化(缔合态),使体系能量 下降,基团伸缩振动频率降低,其强度增加但峰形变宽。使 伸缩振动频率向低波数方向移动.
分子振动和转动能级的跃迁;价电子和分子轨道上的电子在电子能级 上的跃迁。
2. 研究对象不同
在振动中伴随有偶极矩变化的化合物;不饱合有机化合物特别是具有 共轭体系的有机化合物。
3.可分析的试样形式不同,使用范围不同
气、液、固均可,既可定性又可定量,非破坏性分析;既可定性又可 定量,有时是试样破坏性的。

仪器分析思考题(详解答案)

仪器分析思考题(详解答案)

仪器分析思考题(详解答案)《仪器分析》思考题第⼀章绪论1.经典分析⽅法和仪器分析⽅法有何不同?答:经典分析⽅法:是利⽤化学反应及其计量关系,由某已知量求待测物量,⼀般⽤于常量分析,为化学分析法。

仪器分析⽅法:是利⽤精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的⼀类分析⽅法,⽤于微量或痕量分析,⼜称为物理或物理化学分析法。

化学分析法是仪器分析⽅法的基础,仪器分析⽅法离不开必要的化学分析步骤,⼆者相辅相成。

2.仪器的主要性能指标的定义答:1、精密度(重现性):数次平⾏测定结果的相互⼀致性的程度,⼀般⽤相对标准偏差表⽰(RSD%),精密度表征测定过程中随机误差的⼤⼩。

2、灵敏度:仪器在稳定条件下对被测量物微⼩变化的响应,也即仪器的输出量与输⼊量之⽐。

3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最⼩量或最低浓度。

4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。

5、选择性:对单组分分析仪器⽽⾔,指仪器区分待测组分与⾮待测组分的能⼒。

3.简述三种定量分析⽅法的特点和适⽤范围。

答:⼀、⼯作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。

需要标准对照和扣空⽩应⽤要求:试样的浓度或含量范围应在⼯作曲线的线性范围内,绘制⼯作曲线的条件应与试样的条件尽量保持⼀致。

⼆、标准加⼊法(添加法、增量法)特点:由于测定中⾮待测组分组成变化不⼤,可消除基体效应带来的影响应⽤要求:适⽤于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应⽤要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不⼲扰待测组分,⼜不被其他杂质⼲扰第三章紫外—可见分光光度法1.极性溶剂为什么会使π→π* 跃迁的吸收峰长移,却使n→π* 跃迁的吸收峰短移?答:溶剂极性不同会引起某些化合物吸收光谱的红移或蓝移,称溶剂效应。

分析化学(仪器分析)第四章-仪器分析(IR)

分析化学(仪器分析)第四章-仪器分析(IR)

2
第一节
概 述
当样品受到频率连续 变化的红外光照射时,分 子吸收某些频率的辐射, 并由其振动或转动运动引 起偶极矩的净变化,产生 分子振动和转动能级从基 态到激发态的跃迁,使相 应于这些吸收区域的透射 光强度减弱。记录红外光 的百分透射比与波数或波 长关系曲线,就得到红外 光谱。
3
第一节
概 述
一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长 范围约为 0.75 ~ 1000µ m,根据仪器技术和应用 不同,习惯上又将红外光区分为三个区:近红外 光区(0.75 ~ 2.5µ m ),中红外光区(2.5 ~ 25 µ m ),远红外光区(25 ~ 1000 µ m )。
17
第二节 红外吸收基本理论
由于分子非谐振性质,各倍频峰并非正好是基 频峰的整数倍,而是略小一些。以HCl为例:
基频峰(0→1) 二倍频峰( 0→2 三倍频峰( 0→3 四倍频峰( 0→4 五倍频峰( 0→5
) ) ) )
2885.9 cm-1 5668.0 cm-1 8346.9 cm-1 10923.1 cm-1 13396.5 cm-1
9
第一节
概 述
三、红外光谱图表示方法
红外吸收光谱图一般用T ~ 曲线(线性波 长表示法)或T ~ 曲线(线性波数表示法)表 示。纵坐标为百分透射比T(%),因而吸收峰向下, 向上则为谷;横坐标是波长(单位为µ m )或波 数 (单位为cm-1)。 波长与波数之间的关系为: =104 /
伸缩振动
原子沿键轴方向伸缩,键长发生周期性变化 而键角不变的振动称为伸缩振动,用符号表示。 它又可以分为对称伸缩振动(s)和不对称伸缩振 动( as )。对同一基团,不对称伸缩振动的频 率要稍高于对称伸缩振动。

红外光谱法(仪器分析课件)

红外光谱法(仪器分析课件)
项目三 红外光谱法
z
目录
Contents
1 红外光谱法基本原理 2 红外光谱仪 3 红外光谱实验技术 4 红外光谱仪虚拟仿真训练 5 红外光谱法在结构分析中的应用
红外光谱法
能力目标
• 能够熟练的操作傅立叶红外光谱仪; • 能够根据样品的状态、性质选择合适
的样品处理方法; • 能够根据谱图确定常见有机化合物的
—NH2,—NH(游离) —NH2,—NH(缔合)
—SH
C—H伸缩振动

不饱和C—H
≡C—H(叁键) ═C—H(双键) 苯环中C—H

饱和C—H

—CH3 —CH3
—CH2
—CH2
吸收频率 (cm-1)
3650—3580 3400—3200 3500—3300 3400—3100 2600—2500
近红外、中红外、远红外区域。
概述
红外谱图的表示法
样品的红外吸收曲线称为红外吸收光谱,多用百分透射比与波数或百分透
射比与波长曲线来描述。
纵坐标为吸收强度,横坐标为波长λ (μm)和波数1/λ,单位:cm-1
有机化合物的结构解析;定性(基团的特征吸收频率);定量(特征峰的强度)
红外光谱法原理 红外吸收光谱产生的条件
C=O、C=C、C=N、NO2、苯环等的伸缩振动
1500~400cm-1
C-C、C-O、C-N、C-X等的伸缩振动及含氢基团的弯曲振动
• 基团特征频率区的特点和用途
• 吸收峰数目较少,但特征性强。不同化合物中的同种基团振动吸收 总是出现在一个比较窄的波数范围内。
• 主要用于确定官能团。
• 指纹区的特点和用途
振动形式
伸缩 伸缩 伸缩 伸缩 伸缩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要基团的红外特征吸收峰分布规律
2. 2500 ~ 1900cm-1: 是叁键和累积双键的伸缩振动区 。 C≡C- 、-C≡N 、>C=C=C< 等。除 CO2的吸收之 外,此区间的任何小的吸收都应引起注意,它们 都能提供某些结构信息。
C≡C
主要基团的红外特征吸收峰分布规律
3. 1900 ~ 1200cm-1:双键伸缩振动区 ✓ 羰基( C = O ):1650~1900cm –1。
1. 4000 ~ 2500 cm-1 X-H 伸缩振动区:
羟基 O-H(醇或酚羟基)3200 ~ 3650 cm -1
3610 ~ 3640 cm -1 ,游离羟基 。 3300 ~ 2500 cm -1 ,形成缔合羟基。
游离羟基与缔合羟基的比较
主要基团的红外特征吸收峰分布规律
胺基 N-H: 胺基的红外吸收与羟基类似,游离
指纹区的吸收峰数目虽多,但往往大部分都找 不到归属。
苯甲醚
基团频率区
指纹区
基本概念
相关峰: 同一个基团或化学键的振动,往往会在基团频 率区和指纹区同时产生若干个吸收峰。这些相 互依存和可以相互佐证的吸收峰称为相关峰。
主要基团的红外特征吸收峰分布规律
(4000 ~ 400 cm-1 )
C、N、O、S
红外吸收光谱法的特点
优点: 特征性强,可靠性高、样品测定范围广、 用量少、测定速度快、操作简便、重现性好。
红外吸收光谱的特点
局限性: 有些物质不能产生红外吸收; 有些物质不能用红外鉴别; 有些吸收峰,尤其是指纹峰不能全部指认; 定量分析的准确度和灵敏度较低。
4.2 基本原理
吸收峰如何产生的?每个基团或化学键能产生几 个吸收峰?不同吸收峰为什么有强有弱?各吸收 峰都出现在什么位置?
分子振动自由度:多原子分子的基本振动 数目,也就是基频吸收峰的数目。
基频吸收峰:分子吸收一定频率的红外光后, 其振动能级由基态跃迁到第一 激发态时所产生的吸收峰。
2. 基本振动的理论数
线型分子振动自由度 = 3N – 5(如CO2)
图5.12 CO2分子的简正振
非线型分子振动形动式自由度 = 3N – 6(如H2O)
σ: 波数
Ar:两个原子折合质量
K: 键力常数
Ar= M1M2/(M1+M2)
基团频率
对于简单的化合物分子,这种对应关系可 通过计算求得。但随着分子中原子数目的增加, 使这一计算变得十分困难且不准确。
对吸收峰的识别,主要从大量谱图的对比 中发现并总结出各基团特征频率的分布规律, 来指导谱图解析。
基本概念
4.2 基本原理
➢ 产生红外吸收的条件 ➢ 分子振动类型 ➢ 基本振动理论数 ➢ 影响吸收峰强度的因素 ➢ 基团频率
4.2 基本原理
4.2.1 物质分子产生红外吸收的基本条件
(1)分子吸收的辐射能与其能级跃迁所 需能量相等;
(2)分子发生偶极距的变化(耦合作用)。
只有发生偶极矩变化的振动才能产生可观测 的红外吸收光谱,称红外活性。
4.1 概 述
红外光谱区域的划分 (0.78~1000m)
波谱区 波长/m 波数/ cm-1
近红外 0.78~2.5 12800~4000
中红外 2.5~50 4000~200
远红外 50~1000 200~10
IR 与 UV-Vis 的比较
相同点:都是分子吸收光谱。 不同点: UV-Vis 是基于价电子能级跃迁而
4.2 基本原理
4.2.3 多原子分子的振动类型(P56)
伸缩振动 (υ):键长发生变化 1.简正振动基本形式
变形振动 (δ):键角发生变化
对称伸缩振动(υs) 伸缩振动(υ) 不对称伸缩振动(υas)
变形振动(δ)
面内变形振动(β) 面外变形振动(γ)
亚甲基的各种振动形式
2. 基本振动的理论数(分子振动自由度)
胺基的吸收峰在3300 ~ 3500cm-1,
缔合胺基的吸收峰位约降低100cm –1。
NH
3365,3290
辛胺
主要基团的红外特征吸收峰分布规律
烃基C-H: > 3000cm-1,不饱和碳的碳氢伸缩振动 (双键、三键及苯环)。 < 3000cm –1, 饱和碳的碳氢伸缩振动。
Байду номын сангаас
-C-H =C-H ≡C-H
4.2 基本原理
吸收峰如何产生的?每个基团或化学键能产生几 个吸收峰?不同吸收峰为什么有强有弱?各吸收 峰都出现在什么位置?
4.2.5 分子振动频率(基团频率)
1. 官能团具有特征频率 基团频率:不同分子中同一类型的基团振动频 率非常相近,都在一较窄的频率区间出现吸收 谱带,其频率称基团频率。
σ =1303√k/Ar
第4章 红外吸收光谱法
Infrared Spectroscopy ( IR )
4. 红外吸收光谱法
4.1 概述 4.2 基本原理 4.3 红外光谱仪 4.4 试样的处理和制备 4.5 红外光谱法的应用 4.6 红外光谱技术进展
红外吸收光谱法(IR)
基于物质分子对不同波长红外光的 吸收程度,来对物质进行定性、定量或 结构分析的方法。
图5.11 水分子的简正振动形式
为什么实际测得吸收峰数目远小于理论计 算的振动自由度?
没有偶极矩变化的振动不产生红外吸收, 即非红外活性;
相同频率的振动吸收重叠,即简并; 仪器分辨率不够高; 有些吸收带落在仪器检测范围之外。
4.2.4 影响吸收峰强度的因素
振动过程中键的偶极矩变化 振动能级的跃迁几率 很强(vs)、强(s)、中(m)、弱(w)、很弱(vw)
基团频率区: 在4000~1300cm-1 范围内的吸收峰,有一 共同特点:既每一吸收峰都和一定的官能 团相对应,因此称为基团频率区。
在基团频率区,原则上每个吸收峰都可以找到归属。
基本概念
指纹区: 在1300~400cm-1范围内,虽然有些吸收也对应 着某些官能团,但大量吸收峰仅显示了化合物 的红外特征,犹如人的指纹,故称为指纹区。
产生的电子光谱;主要用于具有共轭体 系的化合物的研究。 IR 则是分子振动能级跃迁而产生的振 动光谱;主要用于振动中伴随有偶极矩 变化的有机化合物的研究。
基本概念
红外光谱图:是以波数为横坐标,纵坐 标用透光率或吸光度来表 示的一种频率图。
波数(cm-1):波长的倒数,表示每厘米 长度上波的数目。
红外光谱图
相关文档
最新文档