高一数学下学期开学考试试题1
高一数学下学期开学考试试题PDF
2021-2021届 高一下学期入学考试科目:数 学(答案解析)一、单项选择题〔每一小题5分,一共计60分〕答案解析:1.A 1111311131333222222224(())(())()()a a a a a a a a a =⋅⋅=⋅=⋅==.2.C 【解析】当0x >时,12xy ⎛⎫= ⎪⎝⎭,是单调减函数,又()01f =. 3.A 【解析】由α为第二象限角,那么22,2k k k Z ππαππ+<<+∈那么,422k k k Z παπππ+<<+∈当2,k n n =∈Z 时,22,422k k k Z παπππ+<<+∈,此时2α在第一象限. 当21,k n n Z =+∈时,5722,422k k k Z παπππ+<<+∈,此时2α在第三象限. 4.D 【解析】在ABC ∆中,由正弦定理sin sin a bA B=可得sin sin sin 13b B A a π===,又因为0B π<<,所以B =2π.5.C 【解析】根据条件,222||2a b a a b b +=+⋅+293||||13b b =-+=;∴解得,或者1-〔舍去〕.6.A【解析】由sin 5θ=,cos 5θ=,所以4sin 22sin cos 25θθθ=== ,223cos 22cos 12155θθ⎛⎫=-=⨯-= ⎪ ⎪⎝⎭,那么4sin 245tan 23cos 235θθθ=== . 7.D 【解析】正切函数在每个区间(,)()22k k k Z ππππ-++∈ 上是增函数;正切函数不会在某一区间内是减函数; 函数tan 23y x ππ⎛⎫=+⎪⎝⎭的周期22ππ= ;tan1384237tan143tan tan ︒=-<-=︒.8.B 【解析】找中间值:0.530.531,00.51,log 30a b c =><=<=<,可知c b a <<.9.D 【解析】由图象可知,1A =,函数()f x 周期为74=123πππ⎛⎫-⨯⎪⎝⎭,所以2ω=; 将7,112π⎛⎫-⎪⎝⎭代入点()sin(2)f x x ϕ=+,得7sin 16πϕ⎛⎫+=- ⎪⎝⎭所以73262k k Z ππϕπ+=+∈,,又0ϕπ<< 所以3πϕ=,所以()sin 2=sin 236f x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭, 所以要得到()sin 2g x x =只需将()f x 向右平移6π个长度单位.10.B 【解析】解:因为偶函数()f x 在区间[)0,+∞上单调递增, 所以()f x 在区间(,0)-∞上单调递减,故x 越靠近y 轴,函数值越小,因为()121(3f x f -<),所以1213x -<,解得:1233x <<.11.B 【解析】设BA a =,BC b =,∴11()22DE AC b a ==-,33()24DF DE b a ==-,1353()2444AF AD DF a b a a b =+=-+-=-+,∴25353144848AF BC a b b ⋅=-⋅+=-+=.12.C 【解析】由题意()()()sin ,sin cos cos ,sin cos x x xF x f x g x x x x ≤⎧=⊗=⎨>⎩, 由于sin y x =与cos y x =都是周期函数,且最小正周期都是2π,故只须在一个周期[0,2]π上考虑函数的值域即可,分别画出sin y x =与cos y x =的图象,如下图,观察图象可得:()F x 的值域为2[1,2-. 二、填空题〔每一小题5分,一共计20分〕13.2-【解析】∵()f x 是幂函数,∴251m m --=,∴260m m --=,解得2m =-或者3,当2m =-时,11+=-m ,1()f x x -=是奇函数,符合题意;当3m =时,14m +=,4()f x x =是偶函数,不符合题意,∴2m =-.14.4【解析】由余弦定理得:2222212cos 23223164c a b ab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,那么4c =.15.3【解析】分别作出x y 2=与2x y =的图像,在y 轴左边一个交点,y 轴右边两个交点.113cos(),cos()255sin sin 1cos cos ,sin sin ,tan tan .55cos 221cos αβαβαβαβαβαβαβ+=-=====16.【解析】将分别展开,再将两式进行加和减,可得到则三、解答题(请写出必要的解题过程,本大题一一共计6个小题,总分70分) 17.〔本小题一共10分〕〔1〕(){}26U A C B x x ⋂=≤<;〔2〕3m ≥或者6m ≤-. 【解析】〔1〕当1m =时,{}06A x x =<<,{}|12=-<<B x x{1U C B x x ∴=≤-或者}2x ≥(){}26U A C B x x ∴⋂=≤< ------5分〔2〕{}15A x m x m =-<<+,{}|12=-<<B x xA B =∅12m ∴-≥或者51m +≤-3m ∴≥或者6m ≤-.------10分18.〔本小题一共12分〕〔1〕2,4c或者()2,4c =--;〔2〕π.【解析】〔1〕设向量(),c x y =,因为()1,2a =,25c =,c a ∥,所以2252x y x y ⎧⎪+=⎨=⎪⎩24x y =⎧⎨=⎩,或者24x y =-⎧⎨=-⎩所以2,4c或者()2,4c =--; ------6分〔2〕因为2a b +与2a b -垂直,所以()()220a b a b +⋅-=,所以222420a a b a b b -⋅+⋅-=,而52b =,212a =+= 所以5253204a b ⨯+⋅-⨯=,得52a b ⋅=-,a 与b 的夹角为θ,所以52cos 15a b a bθ-⋅===-⋅⨯,因为[]0,θπ∈,所以θπ=. ------12分19.〔本小题一共12分〕〔1〕()222,00,02,0x x x f x x x x x ⎧-+<⎪⎪==⎨⎪⎪+>⎩;〔2〕证明见解析.【解析】〔1〕令0x >,那么0x -<,所以()()2222f x x x x x-=--+=---, 又由奇函数的性质可知()()f x f x -=-,∴0x >时,()22f x x x =+,故()222,00,02,0x x x f x x x x x ⎧-+<⎪⎪==⎨⎪⎪+>⎩. ------6分〔2〕()f x 在()0,1x ∈上单调递减.证明:任取1201x x ,那么()()2212121222f x f x x x x x -=-+- ()1212122x x x x x x ⎛⎫=-+- ⎪⎝⎭,∵1201x x ,故120x x -<,1202x x <+<,1222x x >, 那么121220x x x x +-<,故()()()1212121220f x f x x x x x x x ⎛⎫-=-+-> ⎪⎝⎭, 即()()12f x f x >,∴()f x 在()0,1x ∈上单调递减. ------12分20.〔本小题一共12分〕〔1〕证明见解析 〔2〕证明见解析【解析】解:〔1〕将a 角的顶点置于平面直角坐标系的原点,始边与x 轴的正半轴重合,设a 角终边一点P 〔非原点〕,其坐标为(),P x y.r OP ==∵()2a k k Z ππ≠+∈,∴0x ≠,222222222sin cos 1y x x y a a r r r ++=+==. ------6分 〔2〕由于cos sin 2a a π⎛⎫-=⎪⎝⎭,将a 换成2a π-后,就有cos sin 222a a πππ⎡⎤⎛⎫⎛⎫--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即sin cos 2a a π⎛⎫-= ⎪⎝⎭,sin cos 12tan 2sin tan cos 2a a a a a a πππ⎛⎫- ⎪⎛⎫⎝⎭-=== ⎪⎛⎫⎝⎭- ⎪⎝⎭. ------12分 21.〔本小题一共12分〕〔Ⅰ〕20.51212,016(){21210,16x x x f x x x -+-≤≤=-> ;〔Ⅱ〕12 .【解析】〔1〕由题意得()1210P x x =+∴()()()20.51212,016{21210,16x x x f x Q x P x x x -+-≤≤=-=-> . ------6分〔2〕当16x >时, 函数()f x 递减,∴()()1652f x f <=万元当016x ≤≤时,函数()()20.51260f x x =--+当12x =时,()f x 有最大值60万元所以,当工厂消费12百台时,可使利润最大为60万元 . ------12分22.〔本小题一共12分〕〔1〕对称轴23k x ππ=+,k Z ∈,单调减区间5,36k k ππππ⎛⎫++ ⎪⎝⎭k Z ∈〔2〕3345- 【解析】 〔1〕由题意2()23cos 2cos 132cos 22sin 26f x x x x x x x π⎛⎫=-+=-=-⎪⎝⎭, 令()262x k k Z πππ-=+∈,解得()32k x k Z ππ=+∈, ∴函数()f x 的对称轴为()32k x k Z ππ=+∈. 令()322,2622x k k k Z πππππ⎛⎫-∈++∈ ⎪⎝⎭,解得()5,36ππk πk πZ x k ⎛⎫∈ ⎪⎝⎭+∈+, ∴函数()f x 的单调递减区间为()5,36ππk πk Z k π⎛⎫ ⎪⎝⎭+∈+. ------6分〔2〕由6()5f α=可得3sin 265πα⎛⎫-= ⎪⎝⎭,又7312ππα<<,∴226ππαπ<-<,∴24cos 21sin 2665ππαα⎛⎫⎛⎫-=---=- ⎪ ⎪⎝⎭⎝⎭, ∴2sin 22sin 21266f πππααα⎛⎫⎛⎫+==-+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 2sin 6634122cos 2266552ππαπαπ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝=+=⨯⨯⨯=⎭. ------12分。
2022-2023学年四川省宜宾市叙州区校高一年级下册学期开学考试数学试题【含答案】
2022-2023学年四川省宜宾市叙州区校高一下学期开学考试数学试题一、单选题1.已知全集N 7U x x =∈∣,集合{}{}2,3,4,2,4,5A B ==,则()UA B ⋃=( )A .{}0,1,6B .{}1,6,7C .{}0,1,6,7D .{}0,1,3,5,6,7【答案】C【分析】写出{}0,1,2,3,4,5,6,7U =,{}2,3,4,5A B ⋃=,根据补集含义得出答案. 【详解】由题意得{}0,1,2,3,4,5,6,7U =,{}2,3,4,5A B ⋃=,{}()0,1,6,7UA B ⋃=.故选:C.2.800°是以下哪个象限的角( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【分析】由800236080︒=⨯︒+︒可进行判断. 【详解】因为800236080︒=⨯︒+︒,所以800︒与80︒的终边相同,而80︒是第一象限的角, 所以800︒是第一象限的角, 故选:A.3.命题“N m ∃∈N ”的否定是( )A .N m ∃∉NB .N m ∃∈NC .N m ∀∉ND .N m ∀∈N【答案】D【分析】根据特称量词命题的否定为全称量词命题判断即可.【详解】解:命题“N m ∃∈N ”为存在量词命题,其否定为:N m ∀∈N . 故选:D4.函数()ln 1f x x =-的零点是( ) A .1 B .eC .()e,0D .4【答案】B【分析】根据零点的定义列式运算求解. 【详解】令()ln 10f x x =-=,解得e x =, 故函数()ln 1f x x =-的零点是e . 故选:B.5.函数()32cos e ex x x xf x -=+在区间[]2π,2π-上的图象大致为( )A .B .C .D .【答案】B【分析】根据函数的奇偶性以及函数值的符号分析判断.【详解】∵()()()()332cos 2cos e e e e x x x xx x x x f x f x -----==-=-++,∴()f x 为奇函数,图象关于原点对称,C 、D 错误; 又∵若(]0,2πx ∈时,320,e e 0x x x ->+>,当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,cos 0x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,cos 0x <,∴当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,()0f x <,A 错误,B 正确;故选:B.6.药物治疗作用与血液中药物浓度(简称血药浓度)有关,血药浓度C (t )(单位mg/ml )随时间t (单位:小时)的变化规律可近似表示为()0etC t C λ-=⋅,其中0C 表示第一次静脉注射后人体内的初始血药浓度,λ表示该药物在人体内的衰减常数.已知某病人第一次注射一种药剂1小时后测得血药浓度为31.210-⨯mg/ml ,2小时后测得血药浓度为-⨯30.810mg/ml ,为了达到预期的治疗效果,当血药浓度为-⨯30.410mg/ml 时需进行第二次注射,则第二次注射与第一次注射的时间间隔约为(lg 20.3010,lg30.4771≈≈)( )小时 A .3.0 B .3.5C .3.7D .4.2【答案】C【分析】先根据题意得到方程组,求出3ln 2λ=与30 1.810C -=⨯,进而得到关系式,再代入()30.410C t -=⨯,求出第二次注射与第一次注射的间隔时间t 约为多少【详解】由题意得:30230e 1.210e 0.810C C λλ----⎧=⨯⎨=⨯⎩,两式相除,得:3ln 2λ=,把3ln 2λ=代入30e 1.210C λ--=⨯,解得:30 1.810C -=⨯,所以()3ln20.0018e t C t -=⋅,令()30.410C t -=⨯得:3ln 320.0018e 0.410t --⋅=⨯,解得:2ln 3ln 2ln 3ln 2t -=-,由换底公式得:2ln 3ln 22lg 3lg 2ln 3ln 2lg 3lg 2t --==--,所以2lg3lg 220.47710.3010 3.7lg3lg 20.47710.3010t -⨯-=≈≈--故选:C7.已知0.20.212log 0.5,0.5,log 0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .a c b << C .b<c<a D .c<a<b【答案】A【分析】由指数函数与对数函数的单调性求解即可【详解】因为0.21log 0.5log log 2a ==,而150.2110.522b ⎛⎫==> ⎪⎝⎭,且0.20.51<,所以a b <. 又12225log 0.4log log 212c ==>>, 所以a b c <<, 故选:A.8.已知函数()22log f x x ax =-在区间(]0,1上单调递增,则实数a 的取值范围是( )A .(),0∞-B .(][),02,-∞⋃+∞C .()2,+∞D .()(),01,2-∞【答案】B【分析】根据复合函数单调性的判断方法可知2x ax μ=-在(]0,1上单调递增且恒大于0;分别在a<0、0a =、01a <<和1a ≥的情况下去掉绝对值符号,结合二次函数单调性可得结果.【详解】令2x ax μ=-,()2log f μμ=在()0,∞+上单调递增,()22log f x x ax =-在(]0,1上单调递增, 2x ax μ∴=-在(]0,1上单调递增且恒大于0;①当a<0时,若()(),0,x a ∈-∞⋃+∞,20x ax ->;若(),0x a ∈,20x ax -<; ∴当(]0,1x ∈时,2x ax μ=-,μ∴在(]0,1上单调递增且0μ>,满足题意;②当0a =时,22x x μ==,μ∴在(]0,1上单调递增且0μ>,满足题意;③当0a >时,若()(),0,x a ∈-∞⋃+∞,20x ax ->;若()0,x a ∈,20x ax -<;当01a <<时,(]()22,0,,,1ax x x a x ax x a μ⎧-∈⎪=⎨-∈⎪⎩,则当,2a x a ⎛⎫∈ ⎪⎝⎭时,2ax x μ=-单调递减,不合题意;当1a ≥时,若(]0,1x ∈,则2ax x μ=-,则其对称轴为2ax =, ∴若2ax x μ=-在(]0,1上单调递增且0μ>,则12a≥,解得:2a ≥; 综上所述:实数a 的取值范围为(][),02,-∞⋃+∞. 故选:B.二、多选题9.已知集合()(){}20N ,2Z x A xx B x x x x -⎧⎫=∈=∈⎨⎬⎩⎭∣∣,则下列表述正确的有( ) A .{}0,3,4A B ⋂= B .{}1,2A =C .A B ⊆D .满足A C ⊆且C B ⊆的集合C 的个数为8【答案】BCD【分析】根据集合的定义确定集合,A B 中的元素,然后再判断各选项. 【详解】因为()(){}{}20021,2x A xx x x x x -⎧⎫=∈=<≤∈=⎨⎬⎩⎭N N ∣∣,(){}{}20,1,2,3,4B x x =∈=Z ,A C B ⊆⊆,所以C 中元素个数至少有1,2,至多为0,1,2,3,4,所以集合C 的个数等于{}0,3,4子集的个数,即328=. 故选:BCD .10.已知函数()22sin 23f x x π⎛⎫=+ ⎪⎝⎭则下列各选项正确的是( )A .()f x 的最小正周期为πB .3x π=-是()f x 的一条对称轴C .()f x 在区间,012π⎡⎤-⎢⎥⎣⎦上单调递减D .()f x 向右平移23π个单位是一个奇函数.【答案】AC【分析】根据周期公式得到A 正确;代入验证知B 错误C 正确;根据平移法则得到()22sin 23g x x π⎛⎫=- ⎪⎝⎭,不是奇函数,D 错误,得到答案.【详解】对选项A :2ππ2T ==,正确; 对选项B :当3x π=-时,2π20π,Z 32x k k π+=≠+∈,错误; 对选项C :当,012x π⎡⎤∈-⎢⎥⎣⎦时,2π2π2,323x π⎡⎤+∈⎢⎥⎣⎦,函数单调递减,正确;对选项D :()f x 向右平移23π得到()22sin 23g x x π⎛⎫=- ⎪⎝⎭,不是奇函数,D 错误.故选:AC11.已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥ B .4a b +≥ C .8ab ≥ D .2248a b +≥【答案】AD【分析】由基本不等式判断AD ,取1,2b a ==判断BC. 【详解】由题意可知1112b a +=,1122(2)2422a b a b a b b a b a ⎛⎫+=++=++⎪⎝⎭(当且仅当22a b ==时取等号),故A 正确;取1,2b a ==,则3,2a b ab +==,故BC 错误;因为22a b ab +=≥2ab (当且仅当22a b ==时取等号),则22448a b ab +(当且仅当22a b ==时取等号),故D 正确;故选:AD12.已知函数()f x 是偶函数,且当0x ≥时,()24,044,4x x x f x x x x ⎧-≤≤⎪=⎨->⎪⎩,关于x 的方程()0f x m -=的根,下列说法正确的有( ) A .当0m =时,方程有4个不等实根 B .当01m <<时,方程有6个不等实根 C .当1m =时,方程有4个不等实根D .当1m >时,方程有6个不等实根 【答案】BC【分析】结合函数奇偶性以及0x ≥时解析式,作出函数图象,将关于x 的方程()0f x m -=的根的问题转化为函数图象的交点问题,数形结合,求得答案.【详解】由题意函数()f x 是偶函数,且当0x ≥时,()24,044,4x x x f x x x x ⎧-≤≤⎪=⎨->⎪⎩,可作出函数()f x 的图象如图示:则关于x 的方程()0f x m -=的根,即转化为函数()f x 的图象与直线y m =的交点问题, 当0m =时,即0y =与()f x 的图象有三个交点,方程有3个不等实根,A 错误; 当01m <<时,y m =与()f x 的图象有6个交点,方程有6个不等实根,B 正确; 当1m =时,1y =与()f x 的图象有4个交点,方程有4个不等实根,C 正确;当1m >时,y m =与()f x 的图象有4个或2个或0个交点,方程有有4个或2个或0个实根,D 错误; 故选:BC.【点睛】本题考查了函数的奇偶性的以及分段函数的应用,考查了方程的根的个数的确定,解答时要注意函数图象的应用以及数形结合的思想方法,解答的关键是将方程的根的问题转化为函数图象的交点问题.三、填空题13.若函数25(3)m y m x -=-是幂函数,则当12x =时的函数值为______. 【答案】2【分析】先求得m 的值,然后求得12x =时的函数值.【详解】由于函数25(3)m y m x -=-是幂函数, 所以31,2m m -==,则1y x -=, 所以当12x =时,2y =. 故答案为:214.已知函数()221,1,1x x f x xx -≤-⎧=⎨>-⎩,若()4f x =,则x =________【答案】2【分析】分两种情况,当1x ≤-时和当1x >-时,解方程即可. 【详解】当1x ≤-时,()214f x x =-=,可得52x =,不成立, 当1x >-时,()24f x x ==,可得2x =或2x =-(舍去),所以2x =. 故答案为:2.15.若方程2210ax x ++=至少有一个负数根,则实数a 的取值范围为________. 【答案】1a ≤【分析】当0x <时,由2210ax x ++=,可得212a x x=--,令10t x =<,()22f t t t =--,求出函数()f t 在(),0∞-上的值域,即为实数a 的取值范围. 【详解】当0x <时,由2210ax x ++=,可得222112x a x x x+=-=--, 令10t x=<,()()(]22211,1f t t t t =--=-++∈-∞,故1a ≤. 故答案为:1a ≤.16.已知函数12()log f x x a =+,g (x )=x 2-2x ,若11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),则实数a 的取值范围是________. 【答案】[0,1]【解析】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+,当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),等价于[][]1,21,3a a -++⊆-,解不等式即可得解.【详解】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+,当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2), 则[][]1,21,3a a -++⊆-,可得:1123aa -≤-+⎧⎨+≤⎩,解得01a ≤≤, 故答案为:01a ≤≤.【点睛】本题考查了求函数值域,考查了恒成立和存在性问题以及转化思想,有一定的计算量,属于中档题.四、解答题17.已知集合(){}2lg 65A x y x x ==-+-,{1B x x =≤或}2x ≥,{}()12C x m x m m =-≤≤∈R .(1)若A C A ⋃=,求m 的取值范围;(2)若“x B ∈R ”是“x C ∈”的充分条件,求m 的取值范围. 【答案】(1)()5,12,2⎛⎫-∞- ⎪⎝⎭(2)[]1,2【分析】(1)求出集合A ,分析可知C A ⊆,分C =∅、C ≠∅两种情况讨论,可得出关于实数m 的不等式(组),综合可得出实数m 的取值范围; (2)由题意可知B C ⊆R,求出集合B R ,可得出关于实数m 的不等式组,由此可求得实数m 的取值范围.【详解】(1)解:因为(){}{}{}{}222lg 6565065015A x y x x x x x x x x x x ==-+-=-+->=-+<=<<, 因为A C A ⋃=,则C A ⊆.①当12m m ->时,即当1m <-时,C A =∅⊆,合乎题意; ②当12m m -≤时,即当1m ≥-时,C ≠∅,要使得C A ⊆,则1125m m ->⎧⎨<⎩,解得522m <<,此时522m <<.综上所述,实数m 的取值范围是()5,12,2⎛⎫-∞- ⎪⎝⎭.(2)解:由题意可知B C ⊆R ,且{}12B x x =<<R ,所以1122m m -≤⎧⎨≥⎩,解得12m ≤≤.因此,实数m 的取值范围是[]1,2. 18.已知()3tan 4απ+=. (1)若α为第三象限角,求sin α. (2)求cos 4sin 2sin 2παπαα⎛⎫+ ⎪⎛⎫⎝⎭- ⎪⎝⎭的值. 【答案】(1)3sin 5α=-(2)【解析】(1)根据诱导公式,先求得tan α,结合同角三角函数关系式即可求得sin α. (2)根据诱导公式化简式子,再由齐次式求法求解即可. 【详解】(1)()3tan tan 4απα+== ∴sin 3tan cos 4ααα==,即3sin cos 4αα=联立223sin cos 4sin cos 1αααα⎧=⎪⎨⎪+=⎩ 解得3sin 54cos 5αα⎧=⎪⎪⎨⎪=⎪⎩或3sin 54cos 5αα⎧=-⎪⎪⎨⎪=-⎪⎩∵α为第三象限角 ∴3sin 5α=-(2))cos cos sin 42sin cos 2sin 22sin cos παααπααααα⎛⎫+- ⎪⎛⎫⎝⎭-=- ⎪⎝⎭==31434-==.【点睛】本题考查了诱导公式在三角函数式化简中的应用,齐次式形式的求值,属于基础题.19.已知函数π()2sin()(0)3f x x ωω=->图象的相邻两条对称轴间的距离为π.2(1)求函数()f x 的单调递增区间和其图象的对称轴方程;(2)先将函数()y f x =的图象各点的横坐标向左平移π12个单位长度,纵坐标不变得到曲线C ,再把C 上各点的横坐标保持不变,纵坐标变为原来的12,得到()g x 的图象,若1()2g x ≥,求x 的取值范围. 【答案】(1)单调递增区间为π5ππ,π(Z)1212k k k ⎡⎤-+∈⎢⎥⎣⎦,对称轴方程为π5π(Z)212k x k =+∈; (2)πππ,π(Z).62k k k ⎡⎤++∈⎢⎥⎣⎦【分析】(1)由条件可得函数()f x 的最小正周期,结合周期公式求ω,再由正弦函数性质求函数()f x 的单调递增区间和对称轴方程;(2)根据函数图象变换结论求函数()g x 的解析式,根据直线函数性质解不等式求x 的取值范围.【详解】(1)因为()f x 图象的相邻两条对称轴间的距离为π.2,所以()f x 的最小正周期为π,所以2ππω=,2ω=,所以π()2sin(2)3f x x =-, 由πππ2π22π232k x k -≤-≤+,可得π5πππ1212k x k -≤≤+,()k ∈Z , 所以函数()f x 的单调递增区间为π5ππ,π(Z)1212k k k ⎡⎤-+∈⎢⎥⎣⎦, 由()ππ2πZ 32x k k -=+∈得π5π(Z)212k x k =+∈,所以所求对称轴方程为π5π(Z)212k x k =+∈ (2)将函数()y f x =的图象向左平移π12个单位长度得到曲线π:2sin(2)6C y x =-,把C 上各点的横坐标保持不变,纵坐标变为原来的12得到π()sin(2)6g x x =-的图象, 由1()2g x ≥得π1sin(2)62x -≥,所以ππ5π2π22π666k x k +≤-≤+,Z k ∈,所以ππππ62k x k +≤≤+,Z k ∈,所以x 的取值范围为πππ,π(Z).62k k k ⎡⎤++∈⎢⎥⎣⎦20.某片森林原来面积为a ,计划每年砍伐的森林面积是上一年年末森林面积的p %,当砍伐到原来面积的一半时,所用时间是10年,已知到2018. (1)求每年砍伐的森林面积的百分比p %; (2)到2018年年末,该森林已砍伐了多少年?【答案】(1)110112⎛⎫- ⎪⎝⎭;(2)5年. 【分析】(1)根据每年砍伐面积的百分比%p ,当砍伐到原来面积的一半时,所用时间是10年,结合指数型函数得到方程,即可求解每年砍伐的森林面积的百分比p %.(2)结合(1)的结论,构造关于m 的方程,解得.【详解】(1)由题意可得,()1011%2a p a -=,解得1101%12p ⎛⎫=- ⎪⎝⎭,∴每年砍伐的森林面积的百分比%p 为110112⎛⎫- ⎪⎝⎭. (2)设经过m年森林剩余面积为原来面积的2,则()1%m a p ⋅-=,()1211%22m p ⎛⎫∴-== ⎪⎝⎭, 由(1)可得,11011%2p ⎛⎫-= ⎪⎝⎭,即11021122m ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,1102m ∴=,解得5m =,故到2018年年末,该森林已砍伐了5年.【点睛】本题主要考查函数模型的选择与应用,指数式与对数式的互化,其中关键是建立数学模型,属于中档题.21.已知函数()2cos sin 29f x a x x a =---,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)若a<0,求()f x 的最小值()g a ;(2)若关于x 的方程()f x a =在0,2π⎡⎤⎢⎥⎣⎦上有解,求a 的取值范围. 【答案】(1)()2210,2049,2a a a g a a a ⎧----<<⎪=⎨⎪--≤-⎩; (2)910,23⎡⎤--⎢⎥⎣⎦.【分析】(1)化简得出()22cos 21024a a f x x a ⎛⎫=+--- ⎪⎝⎭,令cos t x =,则[]0,1t ∈,可得出()()2221024a a f x h t t a ⎛⎫==+--- ⎪⎝⎭,分012a <-<、12a -≥两种情况讨论,利用二次函数的基本性质可求得()g a 的表达式;(2)分析可知关于x 的方程2cos 103cos x a x -=-在0,2π⎡⎤⎢⎥⎣⎦上有解,令[]3cos 2,3p x =-∈,可得出16a p p =--,利用函数的单调性求出函数()16H p p p=--在[]2,3的值域,即可求得实数a 的取值范围.【详解】(1)解:因为函数()2222cos sin 29cos cos 210cos 21024a a f x a x x a x a x a x a ⎛⎫=---=+--=+--- ⎪⎝⎭, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以[]cos 0,1x ∈,令cos t x =,则[]0,1t ∈. 则()()2221024a a f x h t t a ⎛⎫==+--- ⎪⎝⎭. 又因为a<0,所以>02a -. 当012a <-<,即20a -<<时,则()h t 在0,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在,12a ⎡⎤-⎢⎥⎣⎦上单调递增, 故()h t 在[]0,1上的最小值为()221024a a g a h a ⎛⎫=-=--- ⎪⎝⎭; 当12a -≥,即2a ≤-时,()h t 在[]0,1上单调递减, 故()h t 在[]0,1上的最小值为()()19g a h a ==--.综上所述,()2210,2049,2a a a g a a a ⎧----<<⎪=⎨⎪--≤-⎩. (2)解:因为关于x 的方程()f x a =在[0,]2π上有解, 即关于x 的方程2cos cos 1030x a x a +--=在0,2π⎡⎤⎢⎥⎣⎦上有解, 所以2cos 103cos x a x -=-在0,2π⎡⎤⎢⎥⎣⎦上有解. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以[]cos 0,1x ∈,令[]3cos 2,3p x =-∈, 则()231016p a p p p--==--, 因为函数()16H p p p =--在[]2,3上单调递增,则()910,23H p ⎡⎤∈--⎢⎥⎣⎦, 故a 的取值范围是910,23⎡⎤--⎢⎥⎣⎦. 22.对于函数()f x ,若()f x 的图象上存在关于原点对称的点,则称()f x 为定义域上的“伪奇函数”. (1)试判断()|cos |f x x =是否为“伪奇函数”,简要说明理由;(2)若2()log (sin )1f x x m =++是定义在区间[,]33ππ-上的“伪奇函数”,求实数m 的取值范围; (3)试讨论22()4243x x f x m m +=-+-在R 上是否为“伪奇函数”?并说明理由.【答案】(1)是“伪奇函数”,理由见解析;(21m <≤;(3)答案见解析. 【分析】(1)由“伪奇函数”的定义判断即可;(2)由题意可知,22log (sin )1log (sin )10x m x m +++-++=, 即221sin 4m x -=在[,]33ππ-有解,结合三角函数的性质即可求解; (3)由题意可知,2444(22)860x x x x m m --+-++-=在R 上有解, 令22x x t -=+,则22,442x x t t -≥+=-,从而224880t mt m -+-=在[2,)+∞有解, 再分类讨论即可得出结果【详解】(1) ()0()22f f ππ-==, ()()022f f ππ∴-+=. ()|cos |f x x ∴=是“伪奇函数”. (2)()f x 为“伪奇函数”,()()0f x f x ∴+-=,即22log (sin )1log (sin )10x m x m +++-++=, 即221sin 4m x -=在[,]33ππ-有解.sin [x ∈, 2211sin [,1]44m x ∴=+∈. 又sin 0m x +>在[,]33ππ-恒成立,max (sin )m x ∴>-=1m <≤. (3)当22()4243x x f x m m +=-+-为定义域R 上的“伪奇函数”时, 则()()f x f x -=-在R 上有解,可化为2444(22)860x x x x m m --+-++-=在R 上有解, 令22x x t -=+,则22,442x x t t -≥+=-,从而224880t mt m -+-=在[2,)+∞有解,即可保证()f x 为“伪奇函数”,令22()488F t t mt m =-+-,则①当(2)0F ≤时,224880t mt m -+-=在[2,)+∞有解,即22210m m --≤,m ≤ ②当(2)0F >时,224880t mt m -+-=在[2,)+∞有解等价于 22164(88)0,22,(2)0,m m m F ⎧∆=--≥⎪>⎨⎪>⎩2m <,m ≤≤22()4243x x f x m m +=-+-为定义域R 上的“伪奇函数”,否则不是.。
黑龙江省高一下学期开学考试数学试题(解析版)
一、单选题1.已知集合,,那么集合( ){}52A x x =-<<{}33B x x =-<<A B = A .B . {}32x x -<<{}52x x -<<C .D . {}33x x -<<{}53x x -<<【答案】A【分析】由集合交集的定义直接运算即可得解.【详解】因为集合,,{}52A x x =-<<{}33B x x =-<<所以.{}|32B x x A -<=< 故选:A.2.设命题:,,则为( )p x ∀∈N x ∈Z p ⌝A .,B ., x ∀∈N x ∉Z x ∃∈N x ∉ZC .,D ., x ∀∉N x ∈Z x ∃∈N x ∈Z 【答案】B【分析】含有一个量词的命题的否定,既要否定结论,也要改变量词.【详解】命题:,,则为:,,故A ,C ,D 错误.p x ∀∈N x ∈Z p ⌝x ∃∈N x ∉Z 故选:B.3.设,,且,则的最小值为( )0x >0y >9xy =x y +A .18B .9C .6D .3 【答案】C【分析】根据基本不等式,即可求解.【详解】∵0,0x y >>∴,(当且仅当,取“=”)6x y +≥=3x y ==故选:C.4.若为第一象限角,则是( ) α2αA .第一象限角B .第二象限角C .第一或第二象限角D .第一或第三象限角 【答案】D【解析】写出第一象限角,得到的范围,再讨论k 的取值即可.α2α【详解】因为为第一象限角, α所以, 22,2k k k Z ππαπ<<+∈所以,,24k k k Z απππ<<+∈当时,,属于第一象限角,排除B ; 0k =024απ<<当时,,属于第三象限角,排除AC ; 1k =524αππ<<所以是第一或第三象限角2α故选:D5.已知函数,在下列区间中,包含零点的区间是 ()26log f x x x =-()f x A .B .C .D .()0,1()1,2()2,4()4,+∞【答案】C【详解】因为,,所以由根的存在性定理可知:选C. (2)310f =->3(4)202f =-<【解析】本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.6.sin 20cos 40cos 20sin140︒︒︒︒+=A . BC .D .12-12【答案】B【详解】 sin 20cos 40cos 20sin140sin 20cos 40cos 20sin 40sin(2040)sin 60︒︒+︒︒=︒︒+︒︒=︒+︒=︒故选B7.已知函数是定义在上的减函数,则当时,实数的取值范围为()f x [)0,+∞1(21)()3f a f ->a ( ) A . B . C . D . 2,3⎛⎫+∞ ⎪⎝⎭2,3⎛⎫-∞ ⎪⎝⎭1223⎡⎫⎪⎢⎣⎭,1123⎛⎫ ⎪⎝⎭,【答案】C【解析】根据函数为定义域上的减函数及定义域建立不等式组即可求解.【详解】因为函数是定义在上的减函数,且, ()f x [)0,+∞1(21)(3f a f ->所以, 1213021a a ⎧-<⎪⎨⎪≤-⎩解得, 1223a ≤<故选:C8.已知是偶函数,且在区间上是增函数,则的大小关系是()f x ()0,∞+()()()0.5,1,0f f f --( )A .B . ()()()0.501f f f -<<-()()()10.50f f f -<-<C .D .()()()00.51f f f <-<-()()()100.5f f f -<<-【答案】C【分析】利用偶函数的性质化简要比较的三个数,再根据函数在上的单调性判断出三者的()0,∞+大小关系,从而确定正确选项.【详解】∵函数为偶函数,∴,又∵在区间上是增()f x ()()()0.50.5(11),f f f f -=-=()f x ()0,∞+函数,∴,即.()()()00.51f f f <<()()()00.51f f f <-<-故选C.【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.二、多选题9.函数的图象过( )()log (2)(01)a f x x a =+<<A .第一象限B .第二象限C .第三象限D .第四象限【答案】BCD【分析】画出函数大致图象即可判断.【详解】的图象相当于是把的图象向左平移2个单()log (2)(01)a f x x a =+<<()log 01a y x a =<<位,作出函数的大致图象如图所示,则函数的图象过第二、三、四象限. ()()log 2a f x x =+()01a <<()f x 故选:BCD.10.下列函数中,既是奇函数,又在上单调递增的函数的是( )(0,)+∞A .B .C .D . 3y x =||1y x =+21y x =-+1y x=-【答案】AD【分析】逐个分析各项可得结果.【详解】对于A 项,设,定义域为R ,则,所以是奇函数, 3()y f x x ==3()()f x x f x -=-=-3y x =由,在上单调递增可得在上单调递增,故选项A 正确;0α>y x α=(0,)+∞3y x =(0,)+∞对于B 项,设,定义域为R ,则,所以是偶()||1y f x x ==+()||1||1()f x x x f x -=-+=+=||1y x =+函数,故选项B 错误;对于C 项,设,定义域为R ,,所以是偶函数,2()1y f x x ==-+2()1()f x x f x -=-+=21y x =-+故选项C 错误; 对于D 项,,定义域为,,所以 1()y f x x ==-(,0)(0,)-∞+∞ 1()()f x f x x-==-是奇函数,由,在上单调递减可得在上单调递减, 1y x=-0α<y x α=(0,)+∞1y x -=(0,)+∞所以在上单调递增.故选项D 正确. 1y x=-(0,)+∞故选:AD.11.函数,的图像与直线(为常数)的交点可能有( ) 1y cosx =+π,2π3x æöç÷Îç÷èøy t =t A .0个B .1个C .2个D .3个【答案】ABC 【分析】画出在的图像,即可根据图像得出. 1y cosx =+π,2π3x æöç÷Îç÷èø【详解】画出在的图像如下: 1y cosx =+π,2π3x æöç÷Îç÷èø则可得当或时,与的交点个数为0;0t <2t ≥1y cosx =+y t =当或时,与的交点个数为1; 0=t 322t ≤<1y cosx =+y t =当时,与的交点个数为2. 302t <<1y cosx =+y t =故选:ABC.12.设函数,则下列结论正确的是( )()cos2f x x x -A .的一个周期为()f x π-B .的图像关于直线对称 ()y f x =π6x =-C .的图像关于点对称 ()y f x =π,012⎛⎫ ⎪⎝⎭D .在有3个零点()y f x =[0,2π]【答案】ABC【分析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可()f x【详解】, π()cos22sin 26f x x x x ⎛⎫=-=- ⎪⎝⎭对A ,最小周期为,故也为周期,故A 正确; 2ππ2T ==π-对B ,当时,为的对称轴,故B 正确; π6x =-ππ262x -=-sin y x =对C ,当时,,又为的对称点,故C 正确; π12x =26π0x -=()0,02sin y x =对D ,则, ()0f x =()ππ2sin 202π,Z 66x x k k ⎛⎫-=⇒-=∈ ⎪⎝⎭解得,故在内有共四个零点,故D 错误 ()ππ,Z 212k x k =+∈()f x [0,2π]π7π13π19π,,,12121212x =故选:ABC.三、双空题13.函数的振幅是________,初相是________. 1π3sin 36y x ⎛⎫=+ ⎪⎝⎭【答案】 3 π6【分析】根据振幅和初相的定义可得答案.【详解】振幅,3A =令则初相. 0x =π6ϕ=故答案为:3, π6四、填空题14.函数(,且)的图象必经过点的坐标________.1x y a =+0a >1a ≠【答案】()0,2【分析】利用指数函数的性质即可求解.【详解】令,得,0x =012y a =+=所以函数(,且)的图象必经过点.1x y a =+0a >1a ≠()0,2故答案为:.()0,215.等于________.2222sin 1sin 2sin 3sin 89︒+︒+︒+⋅⋅⋅+︒【答案】44.5【分析】设,由平方关系得到2222sin 1sin 2sin 3sin 89S =︒+︒+︒+⋅⋅⋅+︒求解.2222cos cos 7cos c s 888o 981S =︒+︒+︒+⋅⋅⋅+︒【详解】解:设,2222sin 1sin 2sin 3sin 89S =︒+︒+︒+⋅⋅⋅+︒因为,22222222sin 1cos 89,sin 2cos 88,sin 3cos 87,...,sin 89cos 1︒=︒︒=︒︒=︒︒=︒所以,2222cos cos 7cos c s 888o 981S =︒+︒+︒+⋅⋅⋅+︒两式相加得:,2189S =⨯所以,44.5S =故答案为:44.516.已知,且,则________. ()1sin 535α︒-=27090α-︒<<-︒()sin 37α︒+=【答案】##【分析】设,,则,,从而将所求式子转化成求的53βα︒=-37γα︒=+90βγ︒+=90γβ︒=-cos β值,利用的范围确定的符号.αcos β【详解】设,,那么,从而.53βα︒=-37γα︒=+90βγ︒+=90γβ︒=-于是.因为,()sin sin 90cos γββ︒=-=27090α︒︒-<<-所以.由,得. 143323β︒︒<<1sin 05β=>143180β︒︒<<所以cos β===所以. ()sin 37sin αγ︒+==故答案为:五、解答题17.在平面直角坐标系中,已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,且角α的终边与单位圆交点为P ,,且β是第一象限角,求:和的cos 0.6β=sin()αβ-tan()αβ+值.【答案】 ,sin()αβ-=2tan()11αβ+=-【分析】先利用题给条件求得,,,再利sin αα==tan 2α=-4sin 5β=4tan 3β=用两角差的正弦公式和两角和的正切公式即可求得和的值.sin()αβ-tan()αβ+【详解】角α的终边与单位圆交点为P ,则 sin αα==tan 2α=-由,且β是第一象限角,可得, cos 0.6β=4sin 5β=4tan 3β=则 4sin()sin cos cos sin 0.65αβαβαβ-=-== ()42tan tan 23tan()41tan tan 11123αβαβαβ-+++===----⨯18.已知.求值:tan 2α=(1); sin cos sin cos αααα+-(2).2cos 2sin cos 1ααα--【答案】(1)3;(2) 85-【分析】(1)根据已知利用商数关系化弦为切即可得出答案;(2)利用平方关系和商数关系化弦为切即可得出答案.【详解】(1)∵,tan 2α=∴; sin cos tan 1213sin cos tan 121αααααα+++===---(2). 22222cos 2sin cos 12tan cos 2sin cos 1111co 1s sin ta 4n 1558αααααααααα-----=-=-=-=-++19.已知,. 0πx <<1sin cos 5x x +=(1)求的值;sin cos x x -(2)若,试比较与的大小. sin cos 1sin cos 3θθθθ+=-tan x tan θ【答案】(1) 7sin cos 5x x -=(2)tan tan x θ> 【分析】(1)将已知等式两边平方,利用完全平方公式及同角三角函数间基本关系变形,求出的值,再利用完全平方公式即可求出的值; 242sin cos 25x x =-sin cos x x -(2)根据第一问求出的值,再利用已知等式求出的值,进行比较即可.tan x tan θ【详解】(1)对于,两边平方得, 1sin cos 5x x +=221sin cos 2sin cos 25x x x x ++=所以,∵,∴,,所以, 242sin cos 25x x =-0πx <<sin 0x >cos 0x <sin cos 0x x ->∴,∴; 249(sin cos )12sin cos 25x x x x --==7sin cos 5x x -=(2)联立,解得,所以, 1sin cos 57sin cos 5x x x x ⎧+=⎪⎪⎨⎪-=⎪⎩4sin 53cos 5x x ⎧=⎪⎪⎨⎪=-⎪⎩4tan 3x =-因为,且,所以分子分母同除以有:,解得. sin cos 1sin cos 3θθθθ+=-cos 0θ≠cos θtan 11tan 13θθ+=-tan 2θ=-∴.tan tan x θ>20.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.【答案】(1)(-1,1);(2)奇函数,证明见解析;(3)(0,1).【分析】(1)结合真数大于零得到关于的不等式组即可求得函数的定义域; x (2)结合(1)的结果和函数的解析式即可确定函数的奇偶性;(3)结合函数的单调性得到关于的不等式组,求解不等式组即可求得最终结果.x 【详解】(1)要使函数有意义,则, 1010x x +>⎧⎨->⎩解得,即函数的定义域为;11x -<<()f x (1,1)-(2)函数的定义域关于坐标原点对称,()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=- 是奇函数.()f x ∴(3)若时,由得,1a >()0f x >log (1)log (1)a a x x +>-则,求解关于实数的不等式可得, 1111x x x -<<⎧⎨+>-⎩x 01x <<故不等式的解集为.(0,1)21.已知函数.2()sin cos cos 2f x x x x x =+(1)求的单调递减区间;()f x (2)若函数在上有两个零点,求实数的取值范围. ()()g x f x a =-0,2π⎡⎤⎢⎥⎣⎦a 【答案】(1); 2,,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z (2) 31,2a ⎡⎫∈⎪⎢⎣⎭【分析】(1)先由倍角公式及辅助角公式得,再由正弦函数的单调性求解即()1sin 262f x x π⎛⎫=++ ⎪⎝⎭可;(2)将题设转化为在上有两个解,确定在上的单调性,即可求出实数()a f x =0,2π⎡⎤⎢⎥⎣⎦()f x 0,2π⎡⎤⎢⎥⎣⎦的取值范围.a【详解】(1)21cos211()sin cos cos22cos22cos2222xf x x x x x x x x x-=+=++=++,1sin262xπ⎛⎫=++⎪⎝⎭令,解得,则的单调递减区间为3222,262k x k kπππππ+≤+≤+∈Z2,63k x k kππππ+≤≤+∈Z()f x;2,,63k k kππππ⎡⎤++∈⎢⎥⎣⎦Z(2)函数在上有两个零点,可转化为在上有两个解,当()()g x f x a=-0,2π⎡⎤⎢⎥⎣⎦()a f x=0,2π⎡⎤⎢⎥⎣⎦时,0,6xπ⎡⎤∈⎢⎥⎣⎦,单增,当时,,2,662xπππ⎡⎤+∈⎢⎥⎣⎦()1sin262f x xπ⎛⎫=++⎪⎝⎭,62xππ⎡⎤∈⎢⎥⎣⎦72,626xπππ⎡⎤+∈⎢⎥⎣⎦单减,()1sin262f x xπ⎛⎫=++⎪⎝⎭又,,,要使在上有()10sin162fπ=+=13sin6222fππ⎛⎫=+=⎪⎝⎭71sin0262fππ⎛⎫=+=⎪⎝⎭()a f x=0,2π⎡⎤⎢⎥⎣⎦两个解,则.31,2a⎡⎫∈⎪⎢⎣⎭22.已知函数.1()1xf xx-=+(1)证明函数在上为减函数;()f x(1,)-+∞(2)求函数的定义域,并求其奇偶性;ln(tan)y f x=(3)若存在,使得不等式能成立,试求实数a的取值范围.(,42ππ(tan)tan0f x a x+≤【答案】(1)证明见解析;(2),奇函数;(3).,,44k k k Zππππ⎛⎫-++∈⎪⎝⎭(,3-∞-【解析】(1)利用单调性定义证明即可.(2)根据条件可得,其解集即为函数的定义域,可判断定义域关于原点对称,再根据tan1tan1xx<⎧⎨>-⎩奇偶性定义可判断函数的奇偶性.(3)令,考虑在上有解即可,参变分离后利用基本不等式可求实数的tant x=11tatt-+<+()1,+∞a取值范围.【详解】(1),,,11x∀>-21x∀>-12x x<又,()()()122212121211()()11112x xx xf x f xx x x x----=-+-=+++因为,,,故,,,11x >-21x >-12x x <110x +>210x +>120x x -<故即,所以函数在上为减函数.12())0(f x f x ->12()()f x f x >()f x (1,)-+∞(2)的满足的不等关系有:即, ((ln t )n )a y f x =x 1tan 01tan x x->+()()1tan tan 10x x +-<故,解得, tan 1tan 1x x <⎧⎨>-⎩,44k x k k Z ππππ-+<<+∈故函数的定义域为,,该定义域关于原点对称. ,44k k ππππ⎛⎫-++ ⎪⎝⎭Z k ∈令()((ln ta )n )F x f x =又 ()()()tan tan tan()tan tan 11ln ln ln 11x x x x xF x f -+--===--+,()()()tan ln x f F x =-=-故为奇函数. ln (tan )y f x =(3)令,因为,故. tan t x =(,)42x ππ∈1u >故在上不等式能成立即为 (,)42ππ(tan )tan 0f x a x +≤存在,使得,所以在上能成立, 1t >101t at t-+≤+()11t a t t -≤+()1,+∞令,则且, 1s t =-0s >()21121323t s t t s s s s-==+++++由基本不等式有2s s+≥s 所以时等号成立, ()131t t t -≤=-+1t 故的最大值为a 的取值范围为. ()11t y t t -=+3-(,3-∞-【点睛】本题考查与正切函数、对数函数有关的复合函数的性质的讨论,此类问题常用换元法把复合函数性质的讨论归结为常见函数性质的讨论,本题较综合,为难题.。
湖南省长沙市2023-2024学年高一下学期入学考试数学试卷含答案
湖南2023-2024学年度高一第二学期入学考试数学(答案在最后)命题:(考试范围:必修1)时量:120分钟满分:150分得分:______.一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题意的.)1.已知全集()U {010},{1,3,5,7}U M N x x M N =⋃=∈≤≤⋂=N ∣ð,则集合N =()A.{}010x x ≤≤∣ B.{}010x x ∈≤≤N∣C.{}0,2,4,6,8,9,10 D.{}0,2,4,6,8,10【答案】C 【解析】【分析】根据题意,结合集合的运算,即可得到结果.【详解】{}{010}0,1,2,3,4,5,6,7,8,9,10U M N x x =⋃=∈≤≤=N∣,且()U {1,3,5,7}M N ⋂=ð,则集合N 中不包含元素1,3,5,7,即{}0,2,4,6,8,9,10N =.故选:C2.已知R 上的函数()f x ,则“()00f =”是“函数()f x 为奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据题意,结合函数的奇偶性分别验证充分性以及必要性,即可得到结果.【详解】取()()1f x x x =-,x ∈R ,则()00f =,但()()10,12f f =-=,即()()11f f -≠-,所以函数()f x 不是奇函数,故充分性不满足;若函数()f x 为奇函数,则()()00f f =--,即()00f =,故必要性满足;所以“()00f =”是“函数()f x 为奇函数”的必要不充分条件.故选:B3.为了得到函数cos5xy =的图象,只需把余弦曲线cos y x =上所有的点()A.横坐标伸长到原来的5倍,纵坐标不变B.横坐标缩短到原来的15,纵坐标不变C.纵坐标伸长到原来的5倍,横坐标不变 D.纵坐标缩短到原来的15,横坐标不变【答案】A 【解析】【分析】根据函数()cos y A x ωϕ=+的图象变换规律,横坐标伸缩变换,可得结论.【详解】将函数cos y x =图象上各点的横坐标伸长到原来的5倍,纵坐标不变,得到函数1cos 5y x =的图象.故选:A .4.函数()()1ln f x x x =-的图象可能是()A.B.C. D.【答案】C 【解析】【分析】通过函数的定义域排除D 选项;通过函数的零点、在1x <-,10x -<<,01x <<,1x >四段范围内函数值的正负可排除AB 选项,确定C 选项.【详解】函数()()1ln f x x x =-的定义域为{}0x x ≠,故排除D 选项;令()()1ln 0f x x x =-=,即1x =或=1x -,所以函数有两个零点1,1-,当1x <-时,1x ->,则10x -<,()ln ln 0x x =->,则()()1ln 0f x x x =-<,故排除AB 选项;当10x -<<时,1x -<,则10x -<,()ln ln 0x x =-<,则()()1ln 0=->f x x x ;当01x <<时,10x -<,ln ln 0x x =<,则()()1ln 0=->f x x x ;当1x >时,10x ->,ln ln 0x x =>,则()()1ln 0=->f x x x .所以函数()()1ln f x x x =-的图象可能是C 选项.故选:C.5.已知实数a ,b ,满足33(1)(1)2a b a b -+-≥--恒成立,则a b +的最小值为()A.2B.0C.1D.4【答案】A 【解析】【分析】化简可得33(1)(1)(1)1a a b b -+-≥-+-,再根据函数3y x x =+单调递增判断即可.【详解】33(1)(1)2a b a b -+-≥--,所以33(1)(1)(1)1a a b b -+-≥-+-,因为函数3y x x =+单调递增,所以11a b -≥-,即2a b +≥.故选:A .6.已知4cos 25πα⎛⎫+= ⎪⎝⎭,且2πα<,则sin21cos2αα=+()A.43 B.34C.34-D.43-【答案】D 【解析】【分析】由已知利用诱导公式可求sin α的值,根据同角三角函数基本关系式可求cos α的值,进而根据二倍角公式化简所求即可得解.【详解】解:∵4cos sin 25παα⎛⎫+=-= ⎪⎝⎭且2πα<,所以4sin 5α=-,3cos 5α==所以2sin22sin cos sin 41cos22cos cos 3ααααααα===-+故选:D .7.已知函数())lg f x x =,正实数a ,b 满足()()220f a f b -+=,则2aba b +的最大值为()A.49B.29C.15D.14【答案】B 【解析】【分析】先判定函数的奇偶性及单调性,可由条件得出22a b +=,再结合基本不等式计算即可.【详解】易知函数()f x 定义域为R,且)()lg ()lgf x x x⎤-=+-=-⎦)()lgx f x ==-=-,所以)()lgf x x =+为R 上的奇函数,有()()0f x f x -+=,由复合函数的单调性可知()f x 单调递增,由()()220f a f b -+=,得220a b -+=,即22a b +=,因为,a b 为正实数,则有1122ab a b b a=++,而()12222559a b a b b a b a ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =即23a b ==时等号成立,所以1292b a +≥,则2ab a b +的最大值为29.故选:B.8.已知495ln ,log 3log 17,72425bb c a a b -==++=,则以下关于,,a b c 的大小关系正确的是()A.b c a >>B.a c b>> C.b a c>> D.a b c>>【答案】D 【解析】【分析】根据零点存在性定理可求解23b <<,进而根据指数对数的运算性质结合基本不等式求解c b <的范围,即可比较大小.【详解】由ln 50a a +-=,令()ln 5f a a a =+-,则()f a 在定义域内单调性递增,且()()33ln35ln320,44ln 45ln 410f f =+-=-<=+-=->,由零点存在性定理可得34a <<,49lg3lg17log 3log 1722lg22lg3b =+=+≥==>=,又494917log 3log lo 4813g log b =+<=+,因此23b <<,2272425724625b b c >+=+=,可得2>c ,72425bbc+=,72425252525b b cb b b +=,22724724()()()()125252525b b +<+=,∴25125cb <,2525c b <,c b ∴<,c b a ∴<<.故选:D【点睛】方法点睛:比较大小问题,常常根据:(1)结合函数性质进行比较;(2)利用特殊值进行估计,再进行间接比较;(3)根据结构特征构造函数,利用导数分析单调性,进而判断大小.二、多选题(本大题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.设a ,b ,c ,d 为实数,且0a b c d >>>>,则()A.2c cd <B.a c b d -<-C.ac bd >D.c d a b>【答案】AD 【解析】【分析】利用不等式的性质判断A ,利用特殊值判断BC ,利用作差法,结合不等式的性质判断D .【详解】由0c d >>可得,2c cd <,A 正确;3,1,2,3a b c d ===-=-时,a c b d ->-,B 不正确;3,1,2,3a b c d ===-=-时,ac bd <,C 不正确;因为0a b c d >>>>,所以0,,0ab bc ac c d >>->,所以0,c d bc ad ac ad c d a b ab ab b----=>=>所以c da b>,D 正确;故选:AD.10.已知函数()23xf x a kx =---,给出下列四个结论,其中正确的有()A.若1a =,则函数()f x 至少有一个零点B.存在实数,a k ,使得函数()f x 无零点C.若0a >,则不存在实数k ,使得函数()f x 有三个零点D.对任意实数a ,总存在实数k 使得函数()f x 有两个零点【答案】ABD 【解析】【分析】同一坐标系中,作出函数2,3xy a y kx =-=+的图象,结合图象,利用数形结合法求解.【详解】A 中,当1a =时,函数()213x f x kx =---,令()0f x =,可得213xkx -=+,在同一坐标系中作出21,3xy y kx =-=+的图象,如图所示,由图象及直线3y kx =+过定点(0,3),可得函数()f x 至少一个零点,故A 正确;B 中,当4a =-,0k =时,作出函数24,3xy y =+=的图象,由图象知,函数()f x 没有零点,所以B 正确;C 中,当16,2==-a k 时,在同一坐标系中,作出函数126,32xy y x =-=-+的图象,如图所示,由图象可得,此时函数()f x 有3个零点,所以C 错误;D 中,分别作出当0,0,0a a a =><时,函数2,3xy a y kx =-=+的图象,由图象知,对于任意实数a ,总存在实数k 使得函数()f x 有两个零点,所以D 正确.故选:ABD.11.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.已知某港口水深()f t (单位:m )与时间t (单位:h )从0~24时的关系可近似地用函数π()sin()0,0,2f t A t b A ωϕωϕ⎛⎫=++>>< ⎪⎝⎭来表示,函数()f t 的图象如图所示,则()A.π()3sin5(024)6f t t t =+≤≤B.函数()f t 的图象关于点(12,0)对称C.当5t =时,水深度达到6.5mD.已知函数()g t 的定义域为[0,6],(2)(2)g t f t n =-有2个零点12,t t ,则12πtan 3t t =+【答案】ACD 【解析】【分析】根据图象的最值求出,A b ,再根据图象得到其周期则得到ω,代入最高点求出ϕ,则得到三角函数解析式,则判断A ,再结合其对称性即可判断B ,代入计算即可判断C ,利用整体法和其对称性即可判断D.【详解】对A ,由图知()max 8f t =,()min 2f t =,()()max min32f t f t A -∴==,()()max min52f t f t b +==,()f t 的最小正周期12T =,2ππ6T ω∴==,()π33sin 582f ϕ⎛⎫=++= ⎪⎝⎭ ,()ππ2π22k k ϕ∴+=+∈Z ,解得:()2πk k ϕ=∈Z ,又π2ϕ<,0ϕ∴=,π()3sin 5(024)6f t t t ∴=+≤≤,故A 正确;对B ,令ππ6t k =,()k ∈Z ,解得6t k =,()k ∈Z ,当2k =时,12t =,则(12)3sin 2π55f =+=,则函数()f t 的图象关于点(12,5)对称,故B 错误;对C ,()π3sin55 6.565f ⨯+==,故C 正确;对D ,[]20,6t ∈,则[]0,3t ∈,令(2)(2)0g t f t n =-=,则(2)f t n =,令2t m =,则根据图象知两零点12,m m 关于直线3t =,则126m m +=,即12226t t +=,则123t t +=,则12ππtantan 3t t ==+,故D 正确.故选:ACD.【点睛】关键点睛:本题的关键是利用三角函数模型结合图象求出其解析式.三、填空题(本大题共3个小题,每小题5分,共15分)12.已知半径为120mm 的圆上,有一条弧的长是144mm ,则该弧所对的圆心角(正角)的弧度数为______.【答案】65【解析】【分析】根据弧长公式即可得解.【详解】设圆心角的弧度数为α,则120144α=,解得65α=.故答案为:65.13.若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=________.【答案】5-【解析】【分析】根据同角三角关系求sin θ,进而可得结果.【详解】因为π0,2θ⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0θθ>>,又因为sin 1tan cos 2θθθ==,则cos 2sin θθ=,且22222cos sin 4sin sin 5sin 1+=+==θθθθθ,解得5sin 5θ=或5sin 5θ=-(舍去),所以sin cos sin 2sin sin 5-=-=-=-θθθθθ.故答案为:5-.14.如图,正方形ABCD 的边长为1,,P Q 分别为边,AB DA 上的点.当APQ △的周长为2时,则PCQ ∠的大小为______.【答案】π4【解析】【分析】设出角,PCB QCD αβ∠=∠=,然后求得,AP AQ ,再根据APQ △的周长求得αβ+,即可得解.【详解】设,PCB QCD αβ∠=∠=,则tan ,tan PB DQ αβ==,则1tan ,1tan AP AQ αβ=-=-,PQ =,21tan 1tan αβ∴=-+-即tan tan αβ+=,将上式两边平方,整理得tan 1ta an an t n t αβαβ+=-⋅,即tan()1αβ+=,因为π0,2αβ⎛⎫+∈ ⎪⎝⎭,所以π4αβ+=,所以π4PCQ ∠=.故答案为:π4.【点睛】关键点点睛:解决该试题的关键是能根据边表示出,PCB QCD αβ∠=∠=,的正切值,借助于两角差的正切公式得到结论.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.已知集合2{|1327},{|log 1}xA xB x x =≤≤=>.(1)求()R B A ⋃ð;(2)已知集合{|11}C x a x a =-<<+,若C A ⊆,求实数a 的取值范围.【答案】(1){}3x x ≤;(2)1a ≤.【解析】【分析】(1)由指数函数、对数函数的性质确定集合,A B ,然后由集合的运算法则计算.(2)由集合的包含关系得不等关系,求得参数范围.【详解】解:(1){}03A x x =≤≤,{}2B x x =>,{}2R B x x =≤ð,(){}3RB A x x ⋃=≤ð.(2)当C =∅时,11a a -≥+,即0a ≤成立;当C ≠∅时,11100113a aa a a -<+⎧⎪-≥⇔<≤⎨⎪+≤⎩成立.综上所述,1a ≤.【点睛】易错点睛:本题考查集合的运算,考查由集合的包含关系示参数范围.在A B ⊆中,要注意A =∅的情形,空集是任何集合的子集.这是易错点.16.已知函数()πsin cos 44f x x x ⎛⎫=++ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若5π122414f θ⎛⎫-=-⎪⎝⎭,π0,2θ⎛⎫∈ ⎪⎝⎭,求cos θ的值.【答案】(1)π(2)1314【解析】【分析】(1)利用恒等变换得到()1πsin 224f x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质求解;(2)由5π1π1sin 2242614f θθ⎛⎫⎛⎫-=-=-⎪ ⎪⎝⎭⎝⎭,得到π1sin 67θ⎛⎫-=- ⎪⎝⎭,再由ππcos cos 66θθ⎡⎤⎛⎫=-+ ⎪⎢⎝⎭⎣⎦,利用两角和的余弦公式求解.【小问1详解】解:()π2222sin cos sin cos sin 44224f x x x x x x ⎛⎫⎛⎫=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,2222221πsin cos sin2cos2sin 22244424x x x x x x ⎛⎫=-+=+=+ ⎪⎝⎭,所以最小正周期2π2T π==;【小问2详解】由5π1π1sin 2242614f θθ⎛⎫⎛⎫-=-=-⎪ ⎪⎝⎭⎝⎭,得π1sin 67θ⎛⎫-=- ⎪⎝⎭,因为π0,2θ⎛⎫∈ ⎪⎝⎭,πππ,663θ⎛⎫-∈- ⎪⎝⎭,所以πcos 67θ⎛⎫-== ⎪⎝⎭,所以ππππππcos cos cos cos sin sin 666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,1113727214⎛⎫=--⨯=⎪⎝⎭.17.如图,一个半径为4米的筒车按逆时针方向每π分钟转1圈,筒车的轴心O 距水面的高度为2米.设筒车上的某个盛水筒W 到水面的距离为d (单位:米)(在水面下则d 为负数).若以盛水筒W 刚浮出水面时开始计算时间,则d 与时间t (单位:分钟)之间的关系为sin()0,0,22d A t K A ππωϕωϕ⎛⎫=++>>-<< ⎪⎝⎭.(1)求,,,A K ωϕ的值;(2)求盛水筒W 出水后至少经过多少时间就可到达最高点?(3)某时刻0t (单位:分钟)时,盛水筒W 在过O 点的竖直直线的左侧,到水面的距离为5米,再经过6π分钟后,盛水筒W 是否在水中?【答案】(1)4,2,,26A K πωϕ===-=;(2)3π分钟;(3)再经过6π分钟后盛水筒不在水中.【解析】【分析】(1)先结合题设条件得到T π=,4,2A K ==,求得2ω=,再利用初始值计算初相ϕ即可;(2)根据盛水筒达到最高点时6d =,代入计算t 值,再根据0t >,得到最少时间即可;(3)先计算0t 时03sin 264t π⎛⎫-= ⎪⎝⎭,根据题意,利用同角三角函数的平方关系求0cos 26t π⎛⎫- ⎪⎝⎭,再由6π分钟后00sin()=sin 2sin 26663t t t ππππωϕ⎡⎤⎡⎤⎛⎫⎛⎫++-=-+ ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦,进而计算d 值并判断正负,即得结果.【详解】解:(1)由题意知,T π=,即2ππω=,所以2ω=,由题意半径为4米,筒车的轴心O 距水面的高度为2米,可得:4,2A K ==,当0=t 时,0d =,代入4sin(2)2d t ϕ=++得,1sin 2ϕ=-,因为22ππϕ-<<,所以6πϕ=-;(2)由(1)知:4sin 226d t π⎛⎫=-+ ⎪⎝⎭,盛水筒达到最高点时,6d =,当6d =时,64sin 226t π⎛⎫=-+ ⎪⎝⎭,所以sin 216t π⎛⎫-= ⎪⎝⎭,所以22,Z 62t k k πππ-=+∈,解得,Z 3t k k ππ=+∈,因为0t >,所以,当0k =时,min 3t π=,所以盛水筒出水后至少经过3π分钟就可达到最高点;(3)由题知:04sin 2256t π⎛⎫-+= ⎪⎝⎭,即03sin 264t π⎛⎫-= ⎪⎝⎭,由题意,盛水筒W 在过O 点的竖直直线的左侧,知0cos 206t π⎛⎫-< ⎪⎝⎭,所以0cos 264t π⎛⎫-=- ⎪⎝⎭,所以00313sin 2sin 2666342428t t ππππ⎛⎫-⎡⎤⎡⎤⎛⎫⎛⎫+-=-+=⨯+-⨯= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎝⎭,所以,再经过6π分钟后32172142082d --=⨯+=>,所以再经过6π分钟后盛水筒不在水中.【点睛】本题的解题关键在于准确求解出三角函数模型的解析式,才能利用三角函数性质解决实际问题,突破难点.18.若函数()y f x =对定义域内的每一个值1x ,在其定义域内都存在唯一的2x ,使()()121f x f x =成立,则称该函数为“依赖函数”.(1)判断函数()sin g x x =是否为“依赖函数”,并说明理由;(2)已知函数()24()3h x x a a ⎛⎫=-≥⎪⎝⎭在定义域4,43⎡⎤⎢⎥⎣⎦上为“依赖函数”,若存在实数4,43x ⎡⎤∈⎢⎥⎣⎦,使得对任意的t ∈R ,不等式()()24h x t s t x ≥-+-+都成立,求实数s 的最大值.【答案】18.不是“依赖函数”,理由见解析;19.4112.【解析】【分析】(1)由“依赖函数”的定义举例子判断即可;(2)分类讨论解决函数不等式()()24h x t s t x ≥-+-+恒成立的问题,分离参数265324339s x x⎛⎫+≤+ ⎪⎝⎭,转化为求函数53239y x x =+在4,43x ⎡⎤∈⎢⎥⎣⎦的最小值问题即可.【小问1详解】对于函数()sin g x x =的定义域R 内存在1π6x =,而()22g x =无解,故()sin g x x =不是“依赖函数”.【小问2详解】①若443a ≤≤,故()2()h x x a =-’在4,43⎡⎤⎢⎥⎣⎦上最小值为0,此时不存在2x ,舍去;②若4a >,故()2()h x x a =-’在4,43⎡⎤⎢⎥⎣⎦上单调递减,从而()4413h h ⎛⎫=⎪⎝⎭,解得1a =(舍)或133a =.从而存在4,43x ⎡⎤∈⎢⎥⎣⎦使得对任意的t ∈R ,有不等式()221343x t s t x ⎛⎫-≥-+-+ ⎪⎝⎭都成立,即2226133039t xt x s x ⎛⎫++-++≥ ⎪⎝⎭对R t ∈恒成立,则2226133Δ4039x x s x ⎡⎤⎛⎫=--++≤ ⎪⎢⎥⎝⎭⎣⎦,得2265324339s x x ⎛⎫+≤+ ⎪⎝⎭,由存在4,43x ⎡⎤∈⎢⎥⎣⎦,使265324339s x x ⎛⎫+≤+⎪⎝⎭能成立,又53239y x x =+在4,43x ⎡⎤∈⎢⎥⎣⎦单调递减,故当43x =时,max 532145393x x ⎛⎫+= ⎪⎝⎭,从而26145433s ⎛⎫+≤ ⎪⎝⎭,解得4112s ≤,综上,故实数s 的最大值为4112.19.已知e 是自然对数的底数,()e e1xx f x =+.(1)判断函数()f x 在[)0+∞,上的单调性并证明你的判断是正确的;(2)记()(){}ln 3()e1ln 32xg x a f x a x -⎡⎤=--+--⎣⎦,若()0g x ≤对任意的[)0,x ∈+∞恒成立,求实数a 的取值范围.【答案】(1)函数()f x 在[)0+∞,上单调递增,证明见解析(2)[1,3]【解析】【分析】(1)根据函数单调性的定义,任取12,[0,)x x ∈+∞,且12x x <,可证()()()1212121e e 10e ex x x x f x f x ⎛⎫-=--< ⎪⎝⎭,即()()12f x f x <,则可判断函数单调性;(2)将()0g x ≤对任意的[)0,x ∈+∞恒成立,转化为ln (3)e 1ln 32xa a x ⎡⎤-+≤+⎣⎦恒成立,即可求出a 的取值范围.【小问1详解】解:函数()f x 在[)0+∞,上单调递增,证明如下:任取12,[0,)x x ∈+∞,且12x x <,则()()12121211e e e e xx x x f x f x ⎛⎫⎛⎫-=+-+ ⎪ ⎪⎝⎭⎝⎭()()12121212111e e e e 1e e e e x x x x x x x x ⎛⎫⎛⎫=-+-=-- ⎪ ⎪⎝⎭⎝⎭因为12,[0,)x x ∈+∞,且12x x <,所以21e e 1x x >≥,所以12e e 0x x -<,12e e 1x x >,12110e e x x ->,故()()120f x f x -<,即()()12f x f x <,所以()f x 在[0,)+∞上单调递增.【小问2详解】()ln (3)e 1ln 32xg x a a x ⎡⎤=-+--⎣⎦,问题即为ln (3)e 1ln 32xa a x ⎡⎤-+≤+⎣⎦恒成立,显然0a >,首先(3)e 10x a -+>对任意[0,)x ∈+∞成立,即13,e 0,xa a ⎧<+⎪⎨⎪>⎩因为[0,)x ∈+∞,则1334ex <+≤,所以03a <≤.其次,ln (3)e 1ln 32xa a x ⎡⎤-+≤+⎣⎦,即为2(3)e 13e x xa a -+≤,即23e (3)e 10x x a a +--≥成立,亦即()()3e 1e 10xxa +-≥成立,因为3e 10x +>,所以e 10x a -≥对于任意[0,)x ∈+∞成立,即max1e x a ⎛⎫≥⎪⎝⎭,所以1a ≥.。
河南省林虑中学(林州市第一中学分校)2021-2022学年高一下学期开学考数学试题
32
3
6
8 27
3
2
log4 3
22.已知函数
f
x
ln
kx 1 x 1
为奇函数.
(1)求实数 k 的值;
(2)判断并证明函数 f x 的单调性;
(3)若存在, 1, ,使得函数 f x 在区间 , 上的值域为
ln
m
m 2
,
ln
m
m 2
,求实数 m 的取值范围.
试卷第 4页,共 4页
. .
16.设函数
f
x
x2 log2
2x 2, x 0 x 2 1,2
x
0 ,若互不相等的实数
x 1
、
x 2
、
x3
满足
f x1 f x2 f x3 ,则 x1 x2 x3 的取值范围是
.
三、解答题 17.已知全集U R ,集合 A {x R | 2x 1 1} ,集合 B {x R | 1 x 2} . (1)求集合 A B 及 (ðU A) B ; (2)若集合 C {x R | a x 2a, a 0} ,且 C B ,求实数 a 的取值范围. 18.已知函数 f (x) x2 bx 4 ,且关于 x 的不等式 f (x) 0 的解集为 (1, m) . (1)求实数 b,m 的值; (2)当 x (0, ) 时, f (x) kx 0 恒成立,求实数 k 的取值范围.
④存在三个点 A x1, F x1 , B x2, F x2 ,C x3, F x3 ,使得△ABC 为等边三角形.
其中真命题的序号为( )
A.①②③
B.②③
C.②④
D.②③④
12.已知 55<84,134<85.设 a=log53,b=log85,c=log138,则( )
湖南省衡阳市第八中学2022-2023学年高一下学期开学考试数学试题(含答案)
衡阳市八中2022级高一第二学期开学考试数学考试时间:120分钟 试卷满分:150分一、单选题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1.若{}24xA x =<,{}12B x x =∈-<N ,则A B =( )A .{}12x x -<<B .{}0,1C .{}1D .{}13x x -<<2.命题“()0,0x ∃∈-∞,002sin 0xx +<”的否定是( )A .()0,0x ∃∈-∞,002sin 0xx +≥ B .(),0x ∀∈-∞,2sin 0x x +≥C .(),0x ∀∈-∞,2sin 0x x +<D .()0,0x ∃∈-∞,002sin 0xx +>3.若a,b,c,d ∈R ,则下列说法正确的是( ) A .若a >b,c >d ,则ac >bd B .若a >b ,则ac 2>bc 2 C .若a >b ,则a −c >b −c D .若a <b <0,则1a<1b4.下列各组函数表示同一个函数的是( ) A .x y x=与1y =B .321x x y x +=+与y x= C .211x y x -=-与1y x =+D .221y x x =-+1y x =-5.把函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数πsin 4y x ⎛⎫=- ⎪⎝⎭的图象,则()f x =( )A .7πsin 212x ⎛⎫- ⎪⎝⎭B .πsin 212x ⎛⎫+ ⎪⎝⎭C .7πsin 212x ⎛⎫- ⎪⎝⎭D .πsin 212x ⎛⎫+ ⎪⎝⎭6.已知a =1log 832,b =π0.01,c =sin1,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .a <b <cD .a <c <b7.函数()2x xe ef x x --=的图像大致为( ) A .B .C . D.8.已知函数f(x)={|2x −1|,x ≤1(x −2)2,x >1,函数()y f x a =-有四个不同的的零点x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则( ) A .a 的取值范围是(0,12) B .21x x -的取值范围是(0,1)C .342x x +=D .12342212x x x x +=+ 二、多选题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.下列说法正确的是( )A .偶函数f(x)的定义域为[2a −1,a ],则a =13B .一次函数f(x)满足f(f(x))=4x +3,则函数f(x)的解析式为f(x)=x +1C .奇函数f(x)在[2,4]上单调递增,且最大值为8,最小值为−1,则2f(−4)+f(−2)=−15D .若集合A ={x|−ax 2+4x +2=0}中至多有一个元素,则a ≤−2 10.已知函数()sin cos2f x x x =+,则下列结论正确的是( ) A .函数()f x 的图像关于原点对称 B .函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上单调递增C .函数()f x 在[]0,π上的值域为91,8⎡⎤⎢⎥⎣⎦D .函数()f x 在[],ππ-上有且仅有3个零点11.已知a,b 为正实数,且ab +2a +b =16,则( ) A .ab 的最大值为8 B .2a +b 的最小值为8 C .a +b 的最小值为6√2−3 D .1a+1+1b+2的最小值为√2212.已知函数()f x 是定义在R 上的奇函数,()1f x +是偶函数,当[]()20,1,x f x x x ∈=+,则下列说法中正确的有( ) A .函数()f x 关于直线1x =对称 B .4是函数()f x 的周期 C .()()202220230f f += D .方程ln f xx 恰有4个不同的根三、填空题(本大题共4小题,每小题5分,共20分. 把答案填在答题卡中的横线上) 13.已知θ∈(π2,π),且sin θ=35,则tanθ=______.14.已知幂函数f(x)经过点(9,3),则不等式()211f x x -+<的解集为___________.15.已知函数f(x)=cos(2x −π3)在(0,m)上的值域为(12,1],则m 的取值范围是_________. 16.已知函数f(x)=3x 3x +1+x 3,且f(m)+f(m +1)>1,则实数m 的取值范围是______.四、解答题(本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知命题p :∀x ∈R,ax 2+2x +3≥0;q :∃x ∈[1,2],使x 2+2x +a ≥0. (1)若命题p 是假命题,求实数a 的取值范围;(2)若命题p 是假命题,命题q 是真命题,求实数a 的取值范围.18.(本小题满分12分) 已知函数()1ln1x f x x +=-. (1)判断函数()f x 在()1+∞,上的单调性,并利用定义证明; (2)解不等式()()2232470f x x f x x +++-+->.19.(本小题满分12分)已知函数2()23cos 2cos 1f x x x x a =-++,a ∈R ,且π16f ⎛⎫= ⎪⎝⎭.(1)求a 的值及函数()f x 的单调递增区间; (2)求函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最小值和最大值.20.(本小题满分12分) (1)已知tan (π4+α)=12,求sin 2a−cos 2α1+cos2a的值.(2)求sin40∘(tan10∘−√3)的值.21.(本小题满分12分)2022年10月16日,习近平总书记在中国共产党第二十次全国代表大会土的报告中,提出了“把我国建设成为科技强国”的发展目标,国内某企业为响应这一号召,计划在2023年投资新技术,生产新手机,通过市场分析,生产此款手机全年需投入做定成本250万元,每生产x 千部手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩由市场调研知每部手机的售价为0.7万元,且全年内生产的手机当年能全部销售完.(1)试写出2023年利润L (万元)关于年产量x (千部)的函数解析式; (2)当2023年产量为多少千部时,企业所获利润最大?并求出最大利润.22.(本小题满分12分)已知函数()f x 22x x k -=+⨯,其中 k 为常数.若函数()f x 在区间 I 上()()f x f x -=-,则称函数()f x 为 I 上的“局部奇函数”;若函数()f x 在区间 I 上满足()()f x f x -=,则称函数()f x 为 I 上的“局部偶函数”.(1)若()f x 为[]22-,上的“局部奇函数”,当[]2,2x ∈-时,解不等式()2f x >; (2)已知函数()f x 在区间[]1,1-上是“局部奇函数”,在区间[)(]2,11,2--上是“局部偶函数”,()()[]()[)(],1,1,2,11,2f x x F x f x x ⎧∈-⎪=⎨∈--⋃⎪⎩,对于[]22-,上任意实数123x x x ,,,不等式()()()123F x F x m F x +>+恒成立,求实数m 的取值范围.衡阳市八中2022级高一第二学期开学考试参考答案:1.B【详解】∵242x x <⇒<,|1|213x x -<⇒-<< ∴{|2}A x x =<,{0,1,2}B = ∴{0,1}A B =. 故选:B. 2.B【详解】命题“()0,0x ∃∈-∞,002sin 0xx +<”的否定是:对(,0)x ∀∈-∞,2sin 0x x +≥.故选:B 3.C【详解】对于A ,若a =2,b =1,c =−1,d =−2,则ac =bd =−2,所以A 错误;对于B ,若c =0,则ac 2=bc 2=0,所以B 错误;对于C ,因为a >b ,所以由不等式的性质可得a −c >b −c ,所以C 正确;对于D ,因为a <b <0,所以ab >0,所以a ab <b ab ,即1b <1a,所以D 错误,故选C. 4.B【详解】选项A 函数xy x=的定义域为{}|0x x ≠,而1y =的定义域为R , 故A 错误;选项B 函数321x xy x +=+的定义域为R ,而y x =的定义域为R ,且()232221(10)11x x x x y x x x x ++===+>++,故B 正确; 选项C 函数211x y x -=-的定义域为{}|1x x ≠,而1y x =+的定义域为R ,故C 错误;选项D 函数221y x x -+R ,而1y x =-的定义域为R , 但是2211y x x x =-+-,故解析式不一样,所以D 错误; 故选:B. 5.B【详解】将πsin 4y x ⎛⎫=- ⎪⎝⎭的图象先向左平移π3个单位长度得到πππsin +=sin +4312y x x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将图象上所有点的横坐标扩大为原来的2倍得到πsin +212x y ⎛⎫= ⎪⎝⎭,所以()πsin +212x f x ⎛⎫= ⎪⎝⎭.故选:B . 6.D【详解】∵sin π4<sin1<sin π3,∴√22<c <√32;又a =1log 832=log 328=log 2523=35,b =π0.01>π0=1,.∵√22=5√210>610=35,√32<1,∴a <c <b .故选D7.B【详解】函数()f x 的定义域为{}0x x ≠,关于原点对称()()()22x xx x e e e e f x f x x x -----===--,∴函数()f x 是奇函数,图像关于原点对称,故排除A选项; 又()1121101e e f e e--==->,故排除D 选项; ()()()()()243222xx x x x x ee x e e xx e x e f x xx---+--⋅-++'==,当2x >时,0f x,即()f x 在()2+∞,上单调递增,故排除C 选项. 故选:B. 8.D【详解】()y f x a =-有四个不同的零点1x 、2x 、3x 、4x ,即()f x a =有四个不同的解.()f x 的图象如下图示,由图知:1201,01a x x <<<<<,所以210x x ->,即21x x -的取值范围是(0,+∞). 由二次函数的对称性得:344x x +=,因为121221x x -=-,即12222x x +=,故12342212x x x x +=+. 故选:D 9.AC【详解】对A ,∵偶函数f(x)的定义域为[2a −1,a ],∴2a −1=−a,解得a =13,A 对;对B ,设一次函数f(x)=kx +b(k ≠0),则f(f(x))=f(kx +b)=k(kx +b)+b =k 2x +kb +b,∵f(f(x))=4x +3,∴{k 2=4kb +b =3,解得{k =2b =1,或{k =−2b =−3,∴函数f(x)的解析式为f(x)=2x +1或f(x)=−2x −3,B 错;对C,∵奇函数f(x)在[2,4]上单调递增,且最大值为8,最小值为−1,∴f(2)=−1,f(4)=8,∴f(−2)=−f(2)=1,f(−4)=−f(4)=−8, 2f(−4)+f(−2)=2×(−8)+1=−15,C 对;对D ,∵集合A ={x |−ax 2+4x +2=0}中至多有一个元素,∴方程−ax 2+4x +2=0至多有一个解,当a =0时,方程4x +2=0只有一个解−12,符合题意;当a ≠0,由−ax 2+4x +2=0至多有一个解,可得∆=16+8a ≤0,解得a ≤−2,∴a =0或a ≤−2,D 错.故选AC 10.BD【详解】对于A ,()f x 的定义域为R .因为()()()sin cos 2sin cos2f x x x x x -=-+-=-+, 所以()()f x f x -≠-,则函数()f x 的图象不关于原点对称,故A 错误.对于B ,()2sin cos22sin sin 1f x x x x x =+=-++,当,02x ⎡⎤∈-⎢⎥⎣⎦π,sin y x =在,02π⎡⎤-⎢⎥⎣⎦上单调递增,即[]sin 1,0x ∈-,令sin x t =,[]1,0t ∈-时,函数221y t t =-++在[]1,0-上单调递增,根据复合函数单调性,故B 正确. 对于C ,当[]0,x π∈,即[]sin 0,1∈x 时,[]0,1t ∈,则问题转化为函数221y t t =-++在[]0,1上的值域,二次函数对称轴方程为14t =, 故函数221y t t =-++在10,4⎡⎤⎢⎥⎣⎦上单调递增,在1,14⎡⎤⎢⎥⎣⎦上单调递减,当14x =时,取得最大值为98,当1x =时,取得最小值为0,故值域为90,8⎡⎤⎢⎥⎣⎦,故C 错误.对于D ,令()sin cos20f x x x =+=,即22sin sin 10x x -++=,解得sin 1x =或1sin 2x =-,当[],x ππ∈-时,2x π=或6x π=-或65x π=-,故函数()f x 在[],ππ-上有3个零点,故D 正确. 故选:BD . 11.ABC【详解】因为16=ab +2a +b ≥ab +2√2ab ,当且仅当2a =b 时取等号,解不等式得 −4√2≤√ab ≤2√2,即ab ≤8,故ab 的最大值为8,A 正确;由16=ab +2a +b 得b =16−2a a+1=18a+1−2,所以2a +b =2a +16−2a a+1=2(a +1)+18a+1−4≥2√2(a +1)∙18a+1−4=8,当且仅当2(a +1)=18a+1,即a =2时取等号,此时取得最小值8,B 正确;a +b =a +18a+1−2=a +1+18a+1−3≥6√2−3,当且仅当a +1=18a+1,即a =3√2−1时取等号,C 正确;1a+1+1b+1≥2√1a+1∙1b+1=2√1ab+2a+b+2=√23,当且仅当a +1=b +2时取等号,此时1a+1+1b+1取得最小值√23,D 错误. 故选ABC. 12.ABD【详解】对于A :因为()()1g x f x =+是偶函数, 所以()()g x g x -=,即()()11f x f x -=+ 所以()f x 关于1x =对称,故A 正确. 对于B :因为()()11f x f x -=+,所以()()()()()211f x f x f x f x +=-+=-=-,所以()()()()()42f x f x f x f x +=-+=--=,即周期4T =,故B 正确 对于C :()()()()()()()2022200,20233112,f f f f f f f ==-===-=-=- 所以()()2022202320f f +=-≠,故C 错误;对于D :因为[]()20,1,x f x x x ∈=+,且()f x 关于直线1x =对称,根据对称性可以作出[]1,2x ∈上的图象,又()()2f x f x +=-,根据对称性,可作出[]2,4x ∈上的图象, 又()f x 的周期4T =,作出()y f x =图象与ln y x =图象,如下图所示:所以()f x 与ln y x =有4个交点,故D 正确. 故选: ABD 13.−34【详解】θ∈(π2,π),且sin θ=35∴cos θ=√1−sin 2θ=−45,则tan θ=sinθcosθ=−34故答案为:−34.14.{01}xx <<∣ 【详解】由题意得93a =,解得12a =,故12()f x x =, 则()211f x x -+<即为()()211f x x f -+<,根据12()f x x =在[)0,∞+上为单调增函数,则有2011x x ≤-+<,解得01x <<,故解集为{}1|0x x <<, 故答案为:{}1|0x x <<. 15.(π6,π3]【详解】因为x ∈(0,m),所以−π3<2x −π3<2m −π3,因为f(x)在(0,m)上的值域为(12,1],f(0)=cos(−π3)=12,所以0<2m −π3≤π3,解得π6<m ≤π316.m >−12 【详解】由3x 3x +1联想到构造3x −13x +1,因为f(0)=12,所以考虑f(x)−12=12∙3x −13x +1+x 3,令g(x)=f(x)−12,可知函数g(x)为奇函数且单调递增。
河北省石家庄市二十一中2022-2023学年高一下学期开学考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.已知命题 p : x N,ex ex ,则命题 p 的否定为( )
A. x N, ex>ex
① f (x) 的最小值为 1;② f (x) 的一次项系数为 4 ;③ f (0) 3 ;④ f (x) f (x 2) .
15.已知
f
sin
cos
sin
2
,则
f
cos
π 4
________.
ax a 2, x 0
16.已知
a
0
,函数
f
(x)
sin
ax
π 5
,
0
x
2π
,已知
f
(x)
D. x2 3 y2 4 4 2 2
三、双空题 13.小夏同学发现自己手表的时间比北京时间慢了 20 分钟,他将手表的时间调准,则 手表分针转过的角的弧度数为__________,已知手表分针长1cm ,则分针扫过的扇形面 积为__________ cm2 .
四、填空题 14.写出一个同时具有下列四个性质中的三个性质的二次函数: f (x) __________.
B. x N, ex ex
C. x N, ex ex
D. x N, ex ex
2.已知集合 A x Z x2 x 6 0 , B y y x2 ,则集合 A B 的子集有( )
A.2 个
B.4 个
C.8 个
3.已知幂函数 f (x) 的图象过点 (2,16) ,则 f (x) ( )
2020-2021学年高一数学下学期开学考试试题[1]
2020-2021学年高一数学下学期开学考试试题考生注意:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第II 卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效...........................。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x -2y +1=0在y 轴上的截距为( ) A. B.-1 C.2 D.12、下列各组中两个函数是同一函数的是( )A .4444)()()(x x g x x f == B .33)()(x x g x x f == C .0)(1)(x x g x f == D .2)(24)(2-=+-=x x g x x x f 3.经过点A (-1,4)且在x 轴上的截距为3的直线方程是( )A.x +y +3=0B.x -y +3=0C.x +y -3=0D.x -y -3=04.函数11x y x +=-的定义域是( ) A. ()1,-+∞ B. [)1,-+∞ C. ()()1,11,-+∞ D. [)()1,11,-+∞5.直线2550x y +-+=被圆22240x y x y +--=截得的弦长为( ).A . 4B . 23C . 25D . 466.已知α,β是相异两平面,m ,n 是相异两直线,则下列命题中不正确的是 ( )A.若m ∥n ,m ⊥α,则n ⊥αB.若m ⊥α,m ⊥β,则α∥βC.若m ∥α,α∩β=n ,则m ∥nD.若m ⊥α,m ⊂β,则α⊥β7.设函数f(x)= 则不等式f(x)<f(-1)的解集是 A.(-3,-1)∪(3,+∞)B.(-3,-1)∪(2,+∞)C.(-3,+∞)D.(-∞,-3)∪(-1,3)8.已知函数 满足: ,且在 上为增函数,则A. B.C. D.9.若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m =( ).A .21B . 9C . 21-D . 9-10.已知函数f (x )为奇函数,且当x >0时,xx x f 1)(2-=,则f (-1)= A .-2 B .0 C .1 D .211、与直线3x ﹣4y +5=0关于y 轴对称的直线方程是( ) A .3x+4y ﹣5=0 B .3x+4y+5=0 C .3x ﹣4y+5=0 D .3x ﹣4y ﹣5=012. 设a 、b 、c 都是正数,且,则以下正确的是 A.B. C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13、若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于 ______ .14.已知直线l :kx -y +1-2k =0(k ∈R)过定点P ,则点P 的坐标为 ______ .15.设角θ的终点经过点P (-3,4),那么sin θ+2cos θ=16.设U=R,集合A={},B={};若()∩B=∅,则m= __________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知直线l1上的点满足ax+4y+6=0,直线l2上的点满足(a+1)x+ay-=0.试求:(Ⅰ)a为何值时l1∥l2(Ⅱ)a为何值时l1⊥l2.18.(本小题满分12分)如图,E,F,G,H分别是空间四边形ABCD的边AB,B C,CD,DA上的中点.(1)求证:四边形EFGH为平行四边形;(2)求证:直线BD∥平面EFGH;19. (本小题满分12分)设集合(1)若 ,求实数a的值;(2)若 ,求实数a的取值范围.20.(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?21.(本小题满分12分)已知圆22:(2)(2)1C x y -+-=,(1)过(3,0)P 作圆C 的切线,求切线的方程;(2)求圆C 在两坐标轴上截距相等的切线方程。
高一数学下学期开学考试试题(含答案)
高一年级下学期开学考试数学试题本试卷共22题,共150分,120分钟。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合,,,则=()A. B. C. D.2.已知集合,,则()A. B. C. D.3.函数的图象大致为( )A. B. C. D.4.下列函数中,既是奇函数又在上是增函数的是()A. B. C. D.5.已知是上的单调递增函数,那么的取值范围是()A. B. C. D.6.执行如图所示的程序框图,若输入的,,依次为,,,其中,则输出的为( )A. B. C. D.7.若函数y=f(x)是奇函数,且函数F(x)=af(x)+bx+2在(0,+∞,)上有最大值8,则函数y=F(x)在(-∞,,0)上有 ( )A.最小值-8 B.最大值-8C.最小值-6 D.最小值-48.已知函数的定义域为,且是偶函数.又,存在,使得,则满足条件的的个数为( )A.3 B.2 C.4 D.19.已知,点Q在直线OP上,那么当取得最小值时,点Q的坐标是()。
A. B. C. D.10.定义在上的偶函数满足:当时有,且当时,,则函数的零点个数是( )A.6个 B.7个 C.8个 D.无数个11.下列函数中,是奇函数且存在零点的是()A. B. C. D.12.用二分法求方程的近似解,求得的部分函数值数据如下表所示:则当精确度为0.1时,方程的近似解可取为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数有且仅有三个零点,并且这三个零点构成等差数列,则实数a的值为_______.14.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______ .15.已知,,若,,则______.16.时,恒成立,则的取值范围是_________________________三、解答题:共70分。
2022-2023学年黑龙江省双鸭山市第一中学高一下学期开学考试数学试题
数学(考试时间:120分钟 满分:150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-2.在平面直角坐标系xOy 中,角α以x 轴的非负半轴为始边,终边与单位圆交于点),(2123,则α2sin =( )A .23B .21C .23-D .223.若,32sinlog ,3log ,226.0ππ===c b a 则a 、b 、c 的大小关系为( ) A .c b a >> B .c a b >> C .b a c >> D .a c b >>4.函数x xx f ln 3)(-=的零点所在区间是( )A .()3,4B .()2,3C .()1,2D .()0,15.要得到函数()sin 2f x x =的图象,只需将函数()sin 3g x x π⎛⎫=-⎪⎝⎭图象( ) A.所有点横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移3π个单位. B.所有点横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移6π个单位. C.所有点横坐标缩短到原来的12倍(纵坐标不变),再将所得的图像向左平移3π个单位. D.所有点横坐标缩短到原来的12倍(纵坐标不变),再将所得的图像向左平移6π个单位.6.函数x x x f sin cos )(2+=)(66-ππ≤≤x 的最大值与最小值之和为( )A. 32 B .2 C .0 D . 347.函数()13x f x a -=+(0a >,且1a ≠)的图象过一个定点P ,且点P 在直线10mx ny +-=(0m >,且0n >)图象上,则11m n+的最小值是( )A .9B .8C .5D .48.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”,其中双曲余弦函数就是一种特殊的悬链线函数,其函数表达式为e e cosh 2x x x -+=,相应的双曲正弦函数的表达式为e e sinh 2x x x --=.设函数()sinh cosh x f x x=,若实数a 满足不等式()()232020f a f a ++-<,则a 的取值范围为( ) A .5,42⎛⎫- ⎪⎝⎭ B .54,2⎛⎫- ⎪⎝⎭ C .()5,4,2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .()5,4,2⎛⎫-∞-⋃+∞ ⎪⎝⎭二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列结论正确的是( ) A .7π6-是第三象限角 B .若角α的终边过点(3,4)P -,则3cos 5α=- C .3πcos()sin(π)2A A -=+ D .若圆心角为π3的扇形弧长为π,则该扇形面积为3π210.已知()0,πθ∈,1sin cos 5θθ+=,则( ) A .π,π2θ⎛⎫∈ ⎪⎝⎭B .53cos =θC .3tan 4θ=- D. 7sin cos 5θθ-=11.函数())(0)3f x x πωω=+>相邻两个最高点之间的距离为π,则以下正确的是( )A. ()f x 的最小正周期为 πB. 2 ()3f x π-是奇函数 C. ()f x 的图象关于直线6x π=-对称D. ()f x 在]12125[-ππ,上单调递增12.已知定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[0,2]x ∈时,()22xf x =-,若对任(,]x m ∈-∞都有()6f x ≤,则实数m 的取值可以是( )A .4B .5C .27log 42+ D .27log 52+ 三、填空题:本题共4小题,每小题5分,共20分. 13.已知幂函数()()22321mm f x m x -+=-在()0,∞+上单调递增,则实数m 的值为_________.14.函数)342lg(2+--=kx kx y 的定义域为R ,则实数k 的取值范围是_________. 15.已知=--=+)32sin(,43)12cos(παπα则_________. 16.函数)0)(4sin(2)(>+=ωπωx x f ,若)(x f 在区间(π,2π)内无最值,则ω的取值范围是_________.四、解答题:本题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(10分){}|26A x a x a =-<<-,105x B xx ⎧⎫+=<⎨⎬-⎩⎭(1)若4a =,求A C R(2)若A B B ⋃=,求实数a 的取值范围.18.(12分)已知()()()()3sin 3tan sin 2cos tan 32f ππαπαααπαπα⎛⎫-+- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭. (1)化简)(αf ;(2)若,54)(0-=∈απαf ),,(求1cos 2sin 2αα+的值.19.(12分)已知函数()sin()f x A x B ωϕ=++的一部分图象如图所示,如果0A >,0ω>,2πϕ<.(1)求函数()f x 的解析式;(2)当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数)(x f 的取值范围.20.(12分)已知函数()2log f x x =.(1)设函数()g x 是定义域在R 上的奇函数,当0x >时,()()g x f x =,求函数()g x 的解析式; (2)当14x ≤≤时,函数()()()24a x xh x f f =⋅(其中02a ≤<)的最小值为41-,求实数a 的值.21.(12分)已知函数2cos 2sin 32sin 212cos 21)(22x x x x x f +-=(1)将函数()f x 化简成sin()A x ωϕ+的形式,并求出函数的最小正周期; (2)将函数)(x f 的图像各点的横坐标缩小为原来的21(纵坐标不变),再向左平移12π个单位长度,得到函数)(x g y =的图像. 若方程1)(2=-m x g 在]2,0[π∈x 上有两个不同的解21,x x . 求实数m的取值范围,并求)tan(21x x +的值.22.(12分) 函数43)3sin()cos()(cos 3)(2-++⋅+-+=πϕωϕωϕωx x x x f )20,0(πϕω<<> 同时满足下列两个条件:①)(x f 图象最值点与左右相邻的两个对称中心构成等腰直角三角形; ②)0,32(是)(x f 的一个对称中心;求:(1)当x ∈[0,2]时,求函数)(x f 的单调递减区间; (2)令,)31(41)65()(2m x f x f x g +-+-=若g (x )在]23,65[∈x 时有零点,求此时m 的取值范围.数学参考答案1.C 2.A 3.A 4.B 5.D 6.A 7.A 8.D 9.BCD 10.AD 11.ABD 12.ABC13.0 14.⎥⎦⎤ ⎝⎛023-,15.81- 16.]8541[]810,,( 17.(1));,,(∞+∞=[24]--A C R (2)2a ≤.【详解】(1)若4a =,则{}()|424,2A x x =-<<=-,所以);,,(∞+∞=[24]--A C R ,(2)由105x x +<-得15x -<<,所以()1,5B =-, 因为A B B ⋃=,所以A B ⊆, ①当A =∅时,26a a -≤-,2a ∴≤;②当A ≠∅时,即2a >时,要使A B ⊆,则需1265a a -≥-⎧⎨-≤⎩,解得1112a a ≤⎧⎪⎨≤⎪⎩,解得1a ≤,所以此时a 无解.综上:实数a 的取值范围是2a ≤. 18.【详解】(1)由题意,()()()()3sin 3tan sin sin tan (cos )2=cos sin (tan )cos tan 32f ππαπαααααααπαααπα⎛⎫-+- ⎪⨯-⎝⎭==⨯-⎛⎫-- ⎪⎝⎭ (2)1cos 2sin 2αα+=34-19.(1)()2sin(2)26f x x π=++(2)[1,4]【详解】(1)由图像可知404052,2,2241264A B T πππ-+=====-= 2,2T T ππω∴=∴==,22,2()626k k k Z πππϕπϕπ∴⨯+=+∴=+∈,||,26ππϕϕ<∴=∴()2sin(2)26f x x π=++ (2)对,66x ππ⎡⎤∀∈-⎢⎥⎣⎦, 有2662x πππ-<+<1sin(2)1,1()426x f x π∴-≤+≤∴≤≤20.(1)()()22log ,00,0log ,0x x g x x x x ⎧--<⎪==⎨⎪>⎩(2)1【详解】(1)()g x 是定义域在R 上的奇函数,当0x >时,()()g x f x =. 当0x <时,0x ->,则2log g xg x f xx .当0x =时,()0g x =.故函数()g x 的解析式为()()22log ,00,0log ,0x x g x x x x ⎧--<⎪==⎨⎪>⎩. (2) ()()()()()222222log log 2log log 4log log 224a axx h x f f x x x a x ⎛⎫⎛⎫=⋅=--=-- ⎪ ⎪⎝⎭⎝⎭, 令[]2log 0,2t x =∈,则原命题等价于()()()2k t t a t =--(其中02a ≤<)的最小值为0.25-, 则当22a t时,()2min 220.2522a a k t k +-⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,解得1a =(02a ≤<).故实数a 的值为1. 21.(1)ππ2,6sin )(=⎪⎭⎫⎝⎛+=T x x f . (2))32sin()(π+=x x g )1,13[-∈m )tan(21x x +=3322.(1)函数f (x )的单调递减区间为:[0,]∪[,2].(2)m ∈[﹣,﹣]. 【详解】(1)∵f (x )=cos 2(ωx+φ)﹣cos (ωx+φ)•sin (ωx+φ+)﹣=﹣sin (2ωx+2φ)﹣﹣cos (2ωx+2φ)﹣=[cos (2ωx+2φ)﹣sin (2ωx+2φ)]=cos (2ωx+2φ+),∴函数周期T=,∵令2ωx+2φ+=0,可得函数的一个最大值点O 的坐标为:(﹣,),令2ωx+2φ+=﹣,可得函数的一个最大值点O 的左相邻的对称点A 的坐标为:(﹣,0),令2ωx+2φ+=,可得函数的一个最大值点O 的右相邻的对称点B 的坐标为:(,0),∴由题意可得:|AB|2=2|OB|2,即得:()2=2[(+)2+(﹣)2],解得ω2=,∵ω>0,解得:.∴f (x )=cos (πx+2φ+),∵(,0)是f (x )的一个对称中心,即:cos (+2φ+)=0,∴+2φ+=kπ+,k ∈Z ,解得:φ=﹣,k ∈Z ,∴由0<φ<,可得:φ=.∴f (x )=cos (πx+),∵x ∈[0,2]时,πx+∈[,], ∴当利用余弦函数的图象可得,当πx+∈[π],πx+∈[2π,]时单调递减,即函数f (x )的单调递减区间为:[0,61]∪[67,2]. (2)∵由(1)可得:f (x ﹣)=cosπx ,f (x ﹣)=﹣sinπx . ∴g (x )=f 2(x ﹣)+f (x ﹣)+m=cos 2πx ﹣sinπx+m=+m ﹣(sinπx+)2,∵g (x )在x ∈[,]时有零点,即方程:+m ﹣(sinπx+)2=0在x ∈[,]时有解,∴m=(sinπx+)2﹣在x ∈[,]时有解,∵x ∈[,],sinπx ∈[﹣1,],sinπx+∈[﹣,],(sinπx+)2∈[0,],∴m∈[﹣,﹣].。
安徽省安庆市宿松中学2022-2023学年高一下学期开学考试数学试题(含答案解析)
安徽省安庆市宿松中学2022-2023学年高一下学期开学考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.单位圆上一点P 从()0,1出发,逆时针方向运动π3弧长到达Q 点,则Q 的坐标为()A .12⎛- ⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .1,2⎛- ⎝⎭D .21⎛⎫⎪ ⎪⎝⎭2.《九章算术》是我国算术名著,其中有这样的一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”意思是说:“现有扇形田,弧长30步,直径16步,问面积是多少?”在此问题中,扇形的圆心角的弧度数是()A .154B .415C .158D .1203.已知实数0x y >>,且111216x y +=+-,则x y -的最小值是()A .21B .25C .29D .334.已知函数()()2lg 215f x x a x ⎡⎤=--+⎣⎦在区间()1,+∞上有最小值,则a 的取值范围是()A .()1B .)1,2C .(D .312⎛⎫⎪⎝⎭5.函数sin 4xx xy e +=的图象大致为()A .B .C .D .6.设函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭,则下列结论正确的是()A .()f x 的图象关于直线π12x =-对称B .()f x 的图象关于点π,06⎛⎫⎪⎝⎭对称C .6y f x π⎛⎫=+ ⎪⎝⎭是偶函数D .()f x 在区间π0,3⎡⎤⎢⎥⎣⎦上单调递增7.已知函数()4f x x x =+,()2xg x a =+,若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,则实数a 的取值范围是()A .1,2⎡⎫+∞⎪⎢⎣⎭B .9,2⎡⎫+∞⎪⎢⎣⎭C .[)3,∞-+D .[)1,+∞8.设函数11lg(2),2(),10,2x x x f x x -+->⎧⎪=⎨≤⎪⎩若()0f x b -=有三个不等实数根,则b 的范围是A .(1,10]B .1(,10]10C .(1,)+∞D .(0,10]二、多选题9.下列说法正确的是()A .若sin cos 0αα⋅>,则α为第一象限角B .将表的分针拨快5分钟,则分针转过的角度是30-︒C .终边经过点()(),0a a a ≠的角的集合是ππ,Z 4k k αα⎧⎫=+∈⎨⎬⎩⎭D .在一个半径为3cm 的圆上画一个圆心角为30︒的扇形,则该扇形面积为23πcm 210.已知幂函数223()(1)mm f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b R ∈且()()0f a f b +<,则下列结论可能成立的有()A .0a b +>且0ab <B .0a b +<且0ab <C .0a b +<且0ab >D .以上都可能11.下列说法中正确的是()A .已知函数()log 2a y ax =-(0a >且1a ≠)在()0,1上是减函数,则a 的取值范围是()1,2B .在同一直角坐标系中,函数2log y x =与12log y x =的图象关于y 轴对称C .在同一直角坐标系中,函数2x y =与2log y x =的图象关于直线y x =对称D .已知定义在R 上的奇函数()f x 在(),0∞-内有1010个零点,则函数()f x 的零点个数为202112.已知正数,x y 满足2x y +=,则下列选项正确的是()A .11x y+的最小值是4B .11y x -+最小值为-1C .22xy +的最小值是2D .(1)x y +的最大值是94三、填空题13.已知函数()()3,01,1a a x x f x x x ⎧-<<=⎨≥⎩是定义在()0,∞+上的增函数,则a 的取值范围是______.14.函数tan 216y x π⎛⎫=-+ ⎪⎝⎭的图象的对称中心的坐标为___________.15.若函数()()2log 2a f x x ax =-在区间31,2⎛⎤ ⎥⎝⎦上为减函数,则a 的取值范围是________.16.关于函数()()4sin 23f x x x R π⎛⎫=+∈ ⎪⎝⎭有下列命题,其中正确的是_______.(填序号)①()y f x =是以2π为最小正周期的周期函数;②()y f x =的图象关于直线6x π=对称;③()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称;④()y f x =的表达式可改写为()4cos(2)6f x x π=-.四、解答题17.已知集合()()}0{1|A x x a x a =--+≤,{}2|20B x x x =+-<.(1)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围;(2)设命题()22:,218p x B x m x m m ∃∈+++->,若命题p 为假命题,求实数m 的取值范围.18.已知α是第四象限角.(1)若cos α=()()π3πcos sin 222sin πcos 2παααα⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭++-的值;(2)若25sin 5sin cos 10ααα++=,求tan α的值.19.已知函数()12sin .26f x x π⎛⎫=+ ⎪⎝⎭()1求()f x 的最小正周期及其单调递增区间;()2若[],x ππ∈-,求()f x 的值域.20.已知函数()3131-=+x x f x .(1)证明函数()f x 为奇函数;(2)解关于t 的不等式:()()3120f t f t -+-<.21.某生物病毒研究机构用打点滴的方式治疗“新冠”,国际上常用普姆克实验系数(单位:pmk )表示治愈效果,系数越大表示效果越好.元旦时在实验用小白鼠体内注射一些实验药品,这批治愈药品发挥的作用越来越大,二月底测得治愈效果的普姆克系数为24pmk ,三月底测得治愈效果的普姆克系数为36pmk ,治愈效果的普姆克系数y (单位:pmk )与月份x (单位:月)的关系有两个函数模型(0,1)=>>x y ka k a 与12(0,0)y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求治愈效果的普姆克系数是元旦治愈效果的普姆克系数10倍以上的最小月份.(参考数据:lg20.3010≈,lg30.4711≈)22.已知函数22()log log 24x xf x =⋅.(1)求函数f (x )的值域;(2)若12()()f x f x m ==,且2140x x >>,求实数m 的取值范围.参考答案:1.D【分析】由题意得5π6ππ23QOx ∠=+=,从而得到π55cos ,πsin 66Q ⎛⎫ ⎪⎝⎭,结合诱导公式求出答案.【详解】点P 从()0,1出发,沿单位圆逆时针方向运动π3弧长到达Q 点,所以5π6ππ23QOx ∠=+=,所以π55cos ,πsin 66Q ⎛⎫ ⎪⎝⎭,其中25coscos cos 6611π6πππ⎛⎫=-=- ⎭=-⎪⎝,25s s 1in sin in 66ππ611ππ⎛⎫=-= ⎭=⎪⎝,即Q 点的坐标为:221⎛⎫- ⎪ ⎪⎝⎭.故选:D .2.A【分析】根据扇形面积公式得到面积为120步,设出扇形圆心角,根据212S R α=求出扇形圆心角.【详解】因为直径16步,故半径为8R =步,3081202S ⨯==(平方步),设扇形的圆心角为α,则212S R α=,即1151206424αα=⨯⇒=.故选:A 3.A【分析】根据基本不等式即可求解.【详解】∵0x y >>,等式111216x y +=+-恒成立,∴()()111321621x y x y x y ⎛⎫-+=++-+ ⎪+-⎝⎭,由于0x y >>,所以10,20y x ->+>∵()11212122242112x y x y x y y x ⎛⎫+-+++-=++≥+ ⎪+--+⎝⎭,当且仅当21x y +=-时,即10,11x y ==-时取等号.∴()1346x y -+≥,∴21x y -≥,故x y -的最小值为21.故选:A 4.A【分析】令()2()215t x x a x =--+,根据对数函数的性质可得11(1)0a t a ->⎧⎨->⎩,从而得解.【详解】令()2()215t x x a x =--+,为开口向上的抛物线,对称轴为1x a =-函数()()2lg 215f x x a x ⎡⎤=--+⎣⎦在区间()1,+∞上有最小值,则()2215t x a x =--+在()1,+∞上先减后增,所以22211(1)(1)2(1)5(1)50a t a a a a ->⎧⎨-=---+=--+>⎩,解得21a <<.故选:A.5.A【分析】根据函数的奇偶性,可排除C 、D ,利用()1f 和x →+∞时,()0f x →,结合选项,即可求解.【详解】由题意,函数()sin 4xx xf x e +=的定义域为R ,且()()sin()4()sin 4x xx x x xf x f x e e --+-+-==-=-,所以函数()f x 为奇函数,图象关于原点对称,排除C 、D ;当1x =时,可得()sin141(1,2)f e+=∈,且x →+∞时,()0f x →,结合选项,可得A 选项符合题意.故选:A.6.C【分析】对于A ,求出函数的对称轴,可知不存在Z k ∉使得对称轴为直线π12x =-,A 错误;对于B ,求出函数的对称中心,可知不存在Z k ∉使其一个对称中心为π,06⎛⎫⎪⎝⎭,B 错误;对于C ,由()f x 求出6f x π⎛⎫+ ⎪⎝⎭,利用诱导公式,结合偶函数的定义,可得C 正确;对于D ,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,求出整体π23u x =-的范围,验证cos y u =不是单调递增,D 错误.【详解】由π2=π,Z 3x k k -∈解得ππ,Z 62k x k =+∈,所以函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭的对称轴为ππ,Z 62k x k =+∈,由πππ6212k +=-解得1Z 2k =-∉,故A 错误;由ππ2=π+,Z 32x k k -∈解得5ππ,Z 122k x k =+∈,所以函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭的对称中心为5ππ,0,Z 122k k ⎛⎫+∈ ⎪⎝⎭,由5πππ1226k +=解得1Z 2k =-∉,故B 错误;πcos 2cos2663y f x x x ππ⎡⎤⎛⎫⎛⎫=+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,而()()cos 2cos 2cos 2x x x ⎡⎤-=-=⎣⎦,所以6y f x π⎛⎫=+ ⎪⎝⎭是偶函数,C 正确;令π23u x =-,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2333x ⎡⎤-∈-⎢⎥⎣⎦即ππ,33u ⎡⎤∈-⎢⎥⎣⎦,此时cos y u =在ππ,33u ⎡⎤∈-⎢⎥⎣⎦不是单调递增函数,故D 错误.故选:C.7.C【分析】根据题意得到()()min max f x g x ≤,根据函数单调性得到()min 5f x =,()max 8g x a =+,得到不等式,求出实数a 的取值范围是[)3,∞-+.【详解】若11,12x ⎡⎤∃∈⎢⎥⎣⎦,[]22,3x ∃∈,使得()()12f x g x ≤,故只需()()min max f x g x ≤,其中()4f x x x =+在1,12x ⎡⎤∈⎢⎥⎣⎦上单调递减,故()()min 5114f x f ==+=,()2x g x a =+在[]2,3x ∈上单调递增,故()()max 38g x g a ==+,所以58a ≤+,解得:3a ≥-,实数a 的取值范围是[)3,∞-+.故选:C 8.A【分析】把f (x )﹣b=0有三个不等实数根转化为函数y=f (x )的图象与y=b 有3个不同交点,画出图形,数形结合得答案.【详解】作出函数f (x )=()1122102x Ig x x x -⎧+-⎪⎨≤⎪⎩,>,的图象如图,f (x )﹣b=0有三个不等实数根,即函数y=f (x )的图象与y=b 有3个不同交点,由图可知,b 的取值范围是(1,10].故选A .【点睛】本题考查根的存在性与根的个数判断,考查数学转化思想方法与数形结合的解题思想方法,是中档题.9.BC【分析】A 选项,根据sin ,cos αα同号,确定角所在象限;B 选项,顺时针转动了30°,故B 正确;C 选项,根据终边在第一、三象限的角平分线上,确定角的集合;D 选项,由扇形面积公式进行求解.【详解】A 选项,若sin cos 0αα⋅>,则α为第一象限角或第三象限角,故A 错误;B 选项,将表的分针拨快5分钟,顺时针转动30°,故分针转过的角度是30-︒,故B 正确;C 选项,终边经过点()(),0a a a ≠的角的终边在直线y x =上,故角的集合是ππ,Z 4k k αα⎧⎫=+∈⎨⎬⎩⎭,C 正确;D 选项,扇形面积为22211π3π3cm 2264S R α==⨯⨯=,故D 错误.故选:BC .10.BC【分析】先求出幂函数的解析式,3()f x x =,根据奇函数和增函数解不等式,即可得到0a b +<.【详解】因为223()(1)mm f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b R ∈且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC 11.CD【分析】分别由复合函数的单调性、底数互为倒数的对数函数的图象、互为反函数的两个函数的图象及奇函数的性质进行判断即可.【详解】对于A ,令log a y u =,()0,u ∈+∞,2u ax =-,∵函数()log 2a y ax =-(0a >且1a ≠)在()0,1上是减函数,∴2u ax =-在()0,1单调递减,由复合函数的单调性知,log a y u =在()0,u ∈+∞单调递增,且当1x =时,210u a =-⨯≥,∴201a a -≥⎧⎨>⎩解得12a <≤,∴a 的取值范围是(]1,2,故选项A 错误;对于B ,∵函数2log y x =与12log y x =的底数2与12互为倒数,∴在同一直角坐标系中,函数2log y x =与12log y x =的图象关于x 轴对称,故选项B 错误;对于C ,∵指数函数2x y =与对数2log y x =的底数相同,∴函数2x y =与2log y x =互为反函数,∴在同一直角坐标系中,函数2x y =与2log y x =的图象关于直线y x =对称,故选项C 正确;对于D ,∵奇函数()f x 定义域为R ,∴()()00f f -=-,即()00f =,0是函数()f x 的一个零点;又∵奇函数的图象关于原点对称,()f x 在(),0∞-内有1010个零点,∴()f x 在()0,∞+有1010个零点,∴()f x 的零点个数为1010110102021++=,故选项D 正确.故选:CD 12.CD【分析】A 利用“1”代换求最值,B 因为2x y +=,所以2y x =-,且02x <<,代入11y x -+中化简构造基本不等式验证即可,C 先把式子变形,再运用基本不等式,D 先构造()+13x y +=,再运用基本不等式.【详解】A.因为正数,x y 满足2x y +=,即12x y+=所以11121x y x x y y ⎛⎫+⎛⎫+=+⋅ ⎪ ⎪⎝⎭⎝⎭11122222y x x y =+++≥+=,当且仅当22y x x y=,即1x y ==时等号成立,故选项A 不正确.B.因为2x y +=,所以2y x =-,且02x <<,所以111(2)2111y x x x x x -=--=+-+++()113311x x =++-≥=-+,当且仅当111x x =+⇒+0x =或2x =-,不满足故取不到最小值1-,故B 选项不正确.C.()2222x y x y xy +=+-()()2222222x y x y x y ++⎛⎫≥+-== ⎪⎝⎭,当且仅当1x y ==时等号成立,故选项C 正确.D.因为2x y +=,所以()+13x y +=,则()219124x y x y ++⎛⎫+≤= ⎪⎝⎭,当且仅当312x y =+=时等号成立,故选项D 正确.故选:CD.13.[)2,3【分析】由已知,要想保证函数()f x 是定义在()0,∞+上的增函数,需满足分段函数两部分在各自区间上单调递增,然后再满足连续单增,即比较当1x =时,左边函数的最大值小于等于右边函数的最小值,列式即可完成求解.【详解】由已知,函数()()3,01,1a a x x f x x x ⎧-<<=⎨≥⎩是定义为在()0,∞+上的增函数,则(3)y a x =-在()0,1上为单调递增函数,a y x =在[)1,+∞上为单调递增函数,且(3)11a a -⨯≤,所以30031a a a ->⎧⎪>⎨⎪-≤⎩,解得23a ≤<,所以a 的取值范围是[)2,3.故答案为:[)2,314.,1124k ππ⎛⎫+ ⎪⎝⎭Z k ∈【分析】利用正切函数的对称中心求解即可.【详解】令26x π-=2k π(Z k ∈),得412k x ππ=+(Z k ∈),∴对称中心的坐标为(,1)()412k k Z π+∈π.故答案为:,1124k ππ⎛⎫+ ⎪⎝⎭(Z k ∈)15.24(0,](1,)33⋃【分析】令2()2t x x ax =-,分1a >和01a <<两种情况讨论,结合二次函数的性质得到不等式组,解得即可.【详解】解:令2()2t x x ax =-,则()0t x >,当1a >时,log a y x =是增函数,由()()2log 2a f x x ax =-在区间31,2⎛⎤ ⎥⎝⎦上为减函数,则2()2t x x ax =-在31,2⎛⎤ ⎥⎝⎦上为减函数,故113021a t a ⎧≤⎪⎪⎪⎛⎫>⎨ ⎪⎝⎭⎪⎪>⎪⎩,即1193041a a a ⎧≤⎪⎪⎪->⎨⎪>⎪⎪⎩,解得413a <<;当01a <<时,log a y x =是减函数,由()()2log 2a f x x ax =-在区间31,2⎛⎤ ⎥⎝⎦上为减函数,则2()2t x x ax =-在31,2⎛⎤ ⎥⎝⎦上为增函数,故()1321001a t a ⎧≥⎪⎪≥⎨⎪<<⎪⎩,即1322001a a a ⎧≥⎪⎪-≥⎨⎪<<⎪⎩,解得203a <≤,综上,a 的取值范围是.24(0,](1,33⋃.故答案为:24(0,](1,)33⋃16.③④【解析】根据周期公式可得①不正确.【详解】()y f x =是以π为最小正周期的周期函数,故①不正确;因为2()4sin(2)4sin 26633f ππππ=⨯+=4≠±,所以②不正确;因为()4sin[2()4sin 00663f πππ-=⨯-+==,所以③正确;因为()4sin 24sin[(2)]326f x x x πππ⎛⎫=+=- ⎪⎝⎭4cos(2)6x π=-,所以④正确.故答案为:③④【点睛】本题考查了三角函数的周期,考查了三角函数的对称轴,考查了三角函数的对称中心,考查了诱导公式,属于基础题.17.(1)()1,1-(2)[]1,2-【分析】(1)分别求解一元二次不等式化简A 、B ,再由已知可得集合A 真包含于集合B 即可得到不等式组,解得即可;(2)写出特称命题的否定,再由一元二次方程根的分布列关于m 的不等式组求解.【详解】(1)解:(1)由()()10x a x a --+≤,即1a x a -≤≤,所以()()}10|}1{{|A x x a x a x a x a =--+≤≤≤=-,由220x x +-<,即()()120x x -+<,解得2<<1x -所以{}{}2|20|21B x x x x x =+-<=-<<,∵x A ∈是x B ∈的充分不必要条件,所以集合A 真包含于集合B ,∴121a a ->-⎧⎨<⎩,解得11a -<<,即()1,1a ∈-;(2)解:因为命题()22:,218p x B x m x m m ∃∈+++->为假命题,所以()22:,218p x B x m x m m ⌝∀∈+++-≤为真命题,设()()22218g x x m x m m =+++--,则()()2010g g ⎧-≤⎪⎨≤⎪⎩即()()()()2222221280121180m m m m m m ⎧-++⨯-+--≤⎪⎨++⨯+--≤⎪⎩,解得1632m m -≤≤⎧⎨-≤≤⎩,所以12m -≤≤,即[]1,2m Î-.18.(1)15-(2)12-或13-【分析】(1)先由余弦值求出正切值,再结合诱导公式,化弦为切,代入求值即可;(2)变形得到22222sin sin cos tan tan 1sin cos tan 15αααααααα++==-++,求出tan α的值.【详解】(1)∵α是第四象限角,cos α=sin α=∴sin tan 2cos ααα==-,∴()()π3πcos sin sin cos tan 11222sin πcos 2π2sin cos 2tan 15αααααααααα⎛⎫⎛⎫--+ ⎪ ⎪++⎝⎭⎝⎭===-++--+-+.(2)∵21sin sin cos 5ααα+=-,∴22222sin sin cos tan tan 1sin cos tan 15αααααααα++==-++,∴1tan 2α=-或1tan 3α=-.19.(1)4T π=,424,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)⎡⎤⎣⎦【分析】()1由三角函数的周期公式求周期,再利用正弦型函数的单调性,即可求得函数的单调区间;()2由x的范围求得相位的范围,进而得到1πsin x 1226⎛⎫-≤+≤ ⎪⎝⎭,即可求解函数的值域.【详解】(1)由题意,知()1πf x 2sin x 26⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期2πT 4π12==.又由π1ππ2kπx 2kπ2262-≤+≤+,得4π2π4kπx 4kπ33-≤≤+,k Z ∈.所以()f x 的单调递增区间为4π2π4kπ,4kπ33⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)因为πx π-≤≤,所以π1πx 222-≤≤,则π1π2πx 3263-≤+≤,所以1πsin x 1226⎛⎫-≤+≤ ⎪⎝⎭,所以1π2sin x 226⎛⎫+≤ ⎪⎝⎭,即()f x 2≤≤.所以()f x的值域为.⎡⎤⎣⎦【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中熟记()y Asin ωx φ=+型函数的图象和性质,准确计算是解答的此类问题的关键,着重考查了推理与运算能力,属于基础题.20.(1)证明见解析(2)12t t ⎧⎫<-⎨⎬⎩⎭【分析】(1)根据奇偶性的定义即可证明,(2)根据函数的单调性以及奇偶性即可转化成自变量的大小关系,解不等式即可.【详解】(1)因为函数()f x 的定义域为R ,关于原点对称,且()()11311331311313xxx x xx f x f x ------====-+++,所以函数()f x 是奇函数;(2)由()3131221313131x x x x x f x -+-===-+++,由于31x y =+为定义域内的单调递增函数且310x y =+>,所以131x y =+单调递减,因此函数()f x 是定义域为R 的增函数,而不等式()()3120f t f t -+-<可化为()()312f t f t -<--,再由()()f x f x -=-可得()()312f t f t -<-,所以312t t -<-,解得21t <-,故不等式的解集为12t t ⎧⎫<-⎨⎬⎩⎭.21.(1)选择模型(0,1)=>>x y ka k a 符合要求;该函数模型的解析式为32332xy ⎛⎫=⋅ ⎪⎝⎭,112x ≤≤,*N x ∈;(2)六月份.【分析】(1)根据两函数特征选择模型(0,1)=>>x y ka k a ,并用待定系数法求解出解析式;(2)先求出元旦治愈效果的普姆克系数,从而列出不等式,结合*N x ∈,解出6x ≥,得到答案.【详解】(1)函数(0,1)=>>x y ka k a 与12(0,0)y px k p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数(0,1)=>>x y ka k a 的值增加的越来越快,而函数12y px k =+的值增加的越来越慢,由于这批治愈药品发挥的作用越来越大,因此选择模型(0,1)=>>x y ka k a 符合要求.根据题意可知2x =时,24y =;3x =时,36y =,∴232436ka ka ⎧=⎨=⎩,解得32332k a ⎧=⎪⎪⎨⎪=⎪⎩.故该函数模型的解析式为323()32x y =⋅,112x ≤≤,*N x ∈;(2)当0x =时,323y =,元旦治愈效果的普姆克系数是32pmk 3,由32332()10323x ⋅>⨯,得3()102x >,∴32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,∵*N x ∈,∴6x ≥,即治愈效果的普姆克系数是元旦治愈效果的普姆克系数10倍以上的最小月份是六月份.22.(1)1,4⎡⎫-+∞⎪⎢⎣⎭(2)3,4⎛⎫+∞ ⎪⎝⎭【分析】(1)利用对数运算将函数化简,再使用换元法即可求得函数值域;(2)用换元法得到两根的关系,再根据方程有两根0∆>,以及韦达定理,即可求得参数范围.【详解】(1)因为()f x 定义域为()0,x ∈+∞,则()22222()(log 1)(log 2)log 3log 2f x x x x x =--=-+设2log x t R =∈,令22311()32()244g t t t t =-+=--≥-,所以()f x 值域为1,4⎡⎫-+∞⎪⎢⎣⎭(2)设211log x t =,222log x t =因为2140x x >>所以2221log log 4x x >即2221log log 2x x >+,即212t t >+,所以212t t ->则2()32g t t t m =-+=的两根为12,t t 整理得2320t t m -+-=因为2(3)41(2)0m ∆=--⨯⨯->解得14m >-再由韦达定理可得:12123·2t t t t m+=⎧⎨=-⎩则21t t -=2=解得34m >综上,3,4m ⎛⎫∈+∞ ⎪⎝⎭。
河北省邯郸市大名县第一中学2021-2022学年高一下学期开学考试数学试题
0.5 D.这 100 名参赛者得分的中位数为 65
12.已知 M 为 VABC 的重心, D 为 BC 的中点,则下列等式成立的是( )
uuur uuur uuuur A. MA MB MC
B.
uuur MA
uuur MB
uuur MC
0
C.
uuuur BM
2
uuur BA
1
uuur BD
33
试卷第 5 页,共 5 页
试卷第 3 页,共 5 页
16.已知一组样本数据 x1,x2,…,x10,且 x12 + x22 +…+ x120 =2020, 平均数 x 11 ,则 该组数据的标准差为.
四、解答题
17.已知向量
r a
与
r b
的夹角
3 4
,且
r a
3,
r b
2
2.
(1)求
rr ab
,
r a
r b
;
(2)求
r a
A. 1 2i
B. 1 2i
C. 2 i
D. 2 i
5.从 2, 4,6,8 中任取 2 个不同的数 a,b ,则 a b 4 的概率是( )
A. 1
2
B. 1 3
C. 1 4
D. 1 6
6.如图,正方形 OABC 的边长为 1,它是一个水平放置的平面图形的直观图,则原图
形的周长为( )
A.4
(按得分分成[40,50),[50,60),[60,70),[70,80),[80,90] 这五组),则下列结论正确的是( )
试卷第 2 页,共 5 页
A.直方图中 a 0.005
B.此次比赛得分不及格的共有 40 人
河南省信阳市2022-2023学年高一下学期阶段性测试(开学考)数学试题(解析版)
所以 的取值范围为 ;
小问2详解】
由(1)知, 且 , 为减函数,
要使函数 在 上为增函数,
根据复合函数的单调性可知, ,且
则 ,解得 ,
所以存在 使得函数 在 上为增函数,并且在此区间的最小值为 .
20.已知函数 .
(1)求函数 的单调递减区间;
(2)若当 时,关于 的不等式 有解,求实数 的取值范围.
2022—2023学年(下)高一年级阶段性测试(开学考)
数学(答案在最后)
考生注意:
1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
又 , , , ,
则 .
故答案为: .
16.已知函数 ,若 有三个零点,则 ______.
【答案】
【解析】
【分析】先计算出 的零点,再根据 零点的个数求得 的值.
【详解】依题意 , 的开口向下,对称轴为 , ,
由 解得 , ,
由于 有三个零点,
所以 ,解得 (负根舍去).
故答案为:
四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】D
【解析】
【分析】取特值并根据充分条件和必要条件的定义可得答案.
【详解】当 时, 不能推出 ,
当 时, 不能推出 ,
所以“ ”是“ ”的既不充分也不必要条件.
2022-2023学年上海市控江中学高一年级下册学期开学考试数学试题【含答案】
2022-2023学年上海市控江中学高一下学期开学考试数学试题一、填空题1.已知全集,则_________.{}{}210,27U x x A x x =<≤=<<A =【答案】[]7,10【分析】根据补集的定义写出补集即可.【详解】解:,则.{}{}210,27U x x A x x =<≤=<<A ={}|710x x ≤≤故答案为:.[]7,102.函数的定义域是__________.()f x =【答案】()(],22,3-∞-- 【分析】根据题意列出不等式解出即可.【详解】要使函数有意义则:,303202x x x x -≥≤⎧⎧⇒⎨⎨+≠≠-⎩⎩所以函数的定义域为,()(],22,3-∞-- 故答案为:.()(],22,3-∞-- 3.已知幂函数的图像不经过原点,则实数__________.()()22325mm f x m m x --=+-⋅m =【答案】2【分析】根据幂函数的定义及定义域直接求参数值.【详解】由已知函数为幂函数,()()22325mm f x m m x --=+-⋅得,解得或,251m m +-=2m =3m =-当时,,定义域为,函数图像不经过原点,2m =()4f x x -=()(),00,∞-+∞ 当时,,定义域为,且,函数图像经过原点,3m =-()16f x x =R ()00f =综上所述:,2m =故答案为:.24.数列中,若,且,则__________.{}n a 13a =112n n a a +=+9a =【答案】7【分析】利用等差数列通项公式可直接求得结果.【详解】由,知:数列是以为首项,为公差的等差数列,112n n a a +=+13a ={}n a 312.()9139172a ∴=+-⨯=故答案为:.75.函数在区间上为严格减函数的充要条件是_________.2()21f x x ax =--[]1,3【答案】3a ≥【分析】根据二次函数的性质,建立对称轴与所给区间的关系即可求解.【详解】因为函数在区间为严格减函数,2()21f x x ax =--[]1,3所以二次函数对称轴,3x a =≥故答案为:3a ≥6.设函数f (x ),若f (α)=9,则α=_____.200x x x x -≤⎧=⎨⎩,,>【答案】﹣9或3【分析】对函数值进行分段考虑,代值计算即可求得结果.【详解】由题意可得或,09αα≤⎧⎨-=⎩209αα⎧⎨=⎩>∴α=﹣9或α=3故答案为:﹣9或3【点睛】本题考查由分段函数的函数值求自变量,属简单题.7.若数列满足,前5项和为,则__________.{}n a 113n n a a +=-61275a =【答案】127【分析】分和两种情况讨论,结合等比数列的求和公式以及通项公式运算求解.10a =10a ≠【详解】设数列的前项和为,{}n a n n S ∵,则有:113n na a +=-当时,则,故,不合题意;10a =0n a =0n S =当时,则数列是以公比的等比数列,10a ≠{}n a 13q =-故,解得,515111361611812713a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦===⎛⎫-- ⎪⎝⎭13a =则;4451113327a a q ⎛⎫==⨯-=⎪⎝⎭综上所述:.5127a =故答案为:.1278.定义在R 上的奇函数在上的图像如图所示,则不等式的解集是____.()f x [)0,∞+()0x fx ⋅ 【答案】[]3,3-【分析】根据奇函数关于原点对称得函数简图,再分类讨论解不等式即可.【详解】根据函数为奇函数,可作出函数的简图,如图所示:不等式或或,()()000x x f x f x >⎧⋅⇒⎨≥⎩ ()00x f x <⎧⎨≤⎩0x =由图可得:或或,03x <≤-<3≤0x 0x =综上:解集为:[]3,3-故答案为:.[]3,3-9.已知为正整数),且数列共有100项,则此数列中最大项为第n a =n {}n a __________项.【答案】45【分析】根据数列的通项公式,判断数列的单调性,即可判断数列的最大项.【详解】由解析式可知,n a ==时,1=*n N ∈当时,数列单调递减,且[]*1,44,N n n ∈∈{}n a 1n a <当时,数列单调递减,且,[]*45,100,N n n ∈∈{}n a 1n a >所以当时,数列取得最大值.45n ={}n a 故答案为:4510.已知函数在上严格增,则实数的取值范围是________.log ,01()(3),1ax x f x a x a x <≤⎧=⎨-->⎩()0,∞+a 【答案】31,2⎛⎤⎥⎝⎦【分析】利用分段函数单调递增列不等关系求解即可【详解】因为函数在上严格增,log ,01()(3),1ax x f x a x a x <≤⎧=⎨-->⎩()0,∞+所以,解得,即实数的取值范围是,130log 1(3)1aa a a a >⎧⎪->⎨⎪≤-⋅-⎩312a <≤a 31,2⎛⎤ ⎥⎝⎦故答案为:31,2⎛⎤ ⎥⎝⎦11.已知函数,,与函数,,对任意()23f x a x a =⋅+1,12x ⎡⎤∈-⎢⎥⎣⎦()115xg x ⎛⎫=- ⎪⎝⎭[]1,0x ∈-,总存在,使得成立,则实数的取值范围是__________.11,12x ⎡⎤∈-⎢⎥⎣⎦[]21,0x ∈-()()12f x g x =a 【答案】[]0,1【分析】根据恒能成立的思想可确定两函数值域的包含关系,结合指数函数和一次函数值域的求法,根据包含关系可构造不等式组求得结果.【详解】设的值域为,的值域为,()f x A ()g x B 由对任意,总存在,使得成立知:;11,12x ⎡⎤∈-⎢⎥⎣⎦[]21,0x ∈-()()12f x g x =A B ⊆在上单调递减,,即;()g x []1,0-()04g x ∴≤≤[]0,4B =当时,,即,满足;0a =()0f x =0A =A B ⊆当时,在上单调递增,,0a ≠()f x 1,12⎡⎤-⎢⎥⎣⎦()221332a a f x a a ∴-+≤≤+即,由得:,解得:;2213,32A a a a a ⎡⎤=-++⎢⎥⎣⎦A B ⊆22130234a a a a ⎧-+≥⎪⎨⎪+≤⎩01a <≤综上所述:实数的取值范围为.a []0,1故答案为:.[]0,112.已知函数,若实数满足,则()35lg25xf x x x+=++-a b 、()()22314f a f b +-=为__________.【分析】由题知满足任意,都有,进而得,再根据基本不等()f x x ∈R ()()4f x f x +-=2231a b +=式求解即可.【详解】解:令,因为,()35lg5x g x x x +=+-()()()35lg 5x g x x g x x --=-+=-+所以,函数是上的奇函数,()35lg5xg x x x +=+-R 所以函数关于中心对称,()()2g x f x =-(0,0)所以,关于中心对称,()35lg25xf x x x +=++-(0,2)所以,满足任意,都有. ()f x x ∈R ()()4f x f x +-=因为,()()22314f a f b +-=所以,即.22310a b +-=2231a b +=226122a b++=≤==,时取等号,=12a=12b=±所以二、单选题13.若、为实数,则成立的一个充要条件是()a b()0ab a b-<A.B.C.D.11a b<<11b a<<11a b<11b a<【答案】D【分析】将命题进行等价变换,即可得其充要条件.()0ab a b-<【详解】()0ab a b-<220a b ab⇔-<22a b ab⇔<⇔222222a b aba b a b<11b a⇔<故选D.【点睛】本题考查用不等式的性质等价转化不等式,要注意不等式性质成立的条件,属于基础题. 14.若函数f(x)=log2(kx2+4kx+3)的定义域为,则取值范围是R kA.B.C.D.30,4⎛⎫⎪⎝⎭30,4⎡⎫⎪⎢⎣⎭30,4⎡⎤⎢⎥⎣⎦(]3,0,4⎛⎫-∞⋃+∞⎪⎝⎭【答案】B【分析】利用对数函数的性质,将函数的定义域转化为kx2+4kx+3>0恒成立即可.【详解】要使函数y=log2(kx2+4kx+3)的定义域为R,则kx2+4kx+3>0恒成立.若k=0,则不等式kx2+4kx+3>0等价为3>0,∴k=0成立.若k≠0,要使kx2+4kx+3>0恒成立,则,216430kk k>⎧⎨=-⨯<⎩即,解得.2430kk k>⎧⎨-<⎩34k<<综上:.304k ≤<故选B.【点睛】本题以对数函数的定义域为切入点,主要考查了不等式恒成立问题,其中要注意对二次项系数k 的讨论是解答本题的关键.15.等差数列中,首项为、公差不为零,前项和为,若是的3倍,则与的{}n a 1a d n n S 8S 4S 1a d 比为( )A .B .C .D .5:22:55:11:5【答案】A【分析】根据题意结合等差数列的前项和运算求解.n ()112n n n S na d -=+【详解】由题意可得:,则,即,843S S =11874383422a d a d ⨯⨯⎛⎫+=+ ⎪⎝⎭118281218a d a d +=+注意到,整理得.10,0a d ≠≠1:5:2a d =故选:A.16.已知非空集合满足:,已知函数,对于下列两A B 、,A B A B ⋃=⋂=∅R ()2,21,x x Af x x x B ⎧-∈=⎨-+∈⎩个命题:①存在无穷多非空集合对,使得方程无解;②存在唯一的非空集合对(),A B ()2f x =-,使得为偶函数.下列判断正确的是( )(),A B ()f x A .①正确,②错误B .①错误,②正确C .①②都正确D .①②都错误【答案】A【分析】根据分段函数的性质,可得答案.【详解】设,,,R a ∃∈[),A a =+∞(),B a =-∞易知当时,,当时,,x B ∈()21f x a >-+x A ∈()2f x a ≤-令,故①正确;22122a a -+≥-⎧⎨-<-⎩32a <≤当,时,显然函数为偶函数;{}0A x x =≠{}0B x x ==()f x 当,时,由,解得,故函数此时也为偶函数,故{}1A x x =≠{}1B x x ==221x x -=-+1x =()f x②错误.故选:A.三、解答题17.已知等差数列中,首项,公差,且是等比数列的前三项.{}n a 116a =0d ≠156,,a a a {}n b (1)求数列与的通项公式;{}n a {}n b (2)设数列的前项和为,且记,试比较与的大小.{}n a n n S 4log nn n T b =n S nT【答案】(1)*3319,4,N n n n a b n n -=-∈+=(2)当时,;当时,;当为正整数.29n >n n S T <29n =n n S T =029,,n n n S T n <<>【分析】(1)根据等差数列定义并利用等比数列性质可解得公差,再求出数列的前三项3d =-{}n b 可得其公比,即可写出数列与的通项公式;14q ={}n a {}n b (2)利用等差数列前项和公式和对数运算法则可得,,作差法即可n 23352n n n S -+=23n T n n =-+比较出与的大小.n S n T 【详解】(1)由题意可得,65114164,5165d d d d a a a a =+=+=+=+由等比数列性质可得,2516a a a =⋅即,解得或(舍)()()216416165d d +=⨯+3d =-0d =所以,19(1)163(1)31n n a n a d n +-=---=+=即,11253616,4,1b a b a b a ======所以数列是以为首项,公比的等比数列;{}n b 116b =14q =即,13111441164nn n n b b ---⎛⎫⎛⎫⋅=⨯= ⎪⎪⎝⎭=⎝⎭所以数列与的通项公式分别为{}n a {}n b *3319,4,N n n n a b n n -=-∈+=(2)由等差数列前项和公式可得;n ()2133522n n S n a a n n+-+==由可得,4log nn n T b =3244log log 43n n n T n b n n n -===-+所以,()()22229335292223n n S n n n n T n n n n -+---+-==+-=-由于,所以当时,,即;*N n ∈029n <<0n n S T ->n n S T >当时,,,29n >0n n S T -<n n S T <当时,,29n =0n n S T -=n nS T =综上可得,当时,,当时,,当为正整数.29n >n n S T <29n =n n S T =029,,n n n S T n <<>18.已知函数.()|2|f x x a a =-+(1)当a=2时,求不等式的解集;()6f x ≤(2)设函数.当时,,求的取值范围.()|21|g x x =-x R ∈()()3f x g x +≥a 【答案】(1);(2).{|13}x x -≤≤[2,)+∞【详解】试题分析:(1)当时;(2)由2a =⇒()|22|2f x x =-+⇒|22|26x -+≤⇒13x -≤≤等价于()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+⇒()()3f x g x +≥,解之得.|1|3a a -+≥2a ≥试题解析: (1)当时,.2a =()|22|2f x x =-+解不等式,得.|22|26x -+≤13x -≤≤因此,的解集为.()6f x ≤(2)当时,,x R ∈()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+当时等号成立,12x =所以当时,等价于. ① x R ∈()()3f x g x +≥|1|3a a -+≥当时,①等价于,无解.1a ≤13a a -+≥当时,①等价于,解得.1a >13a a -+≥2a ≥所以的取值范围是.a [2,)+∞【解析】不等式选讲.19.新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为400万元,每生产万箱,需另投入成本万元,当产量不足60万箱时,x ()p x;当产量不小于60万箱时,,若每箱口罩售价100元,()21502p x x x =+()64001011860p x x x =+-通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式;(销售利润=销售总价-固定成本-生产成本)(2)当产量为多少万箱时,该口罩生产厂所获得利润最大,最大利润值是多少(万元)?【答案】(1)2150400,060264001460,60x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元.【分析】(1) 根据产量的不同取值范围讨论利润y 关于产量x 的不同对应关系即可求解.x (2) 分别求出分段函数的最大值,比较大小即可求出利润的最大值.【详解】(1)当时,;060x <<2211100504005040022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭当时,.60x ≥6400640010010118604001460y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭所以,;2150400,060264001460,60x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当时,,060x <<()2211504005085022y x x x =-+-=--+当时,y 取得最大值,最大值为850万元;50x =当时,,60x≥6400146014601300y x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当时,即时,y 取得最大值,最大值为1300万元.6400x x =80x =综上,当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元.20.已知数列的前项和满足:为常数,且,;{}n a n n S (1)1n n aS a a =--(a 0a ≠1)a ≠(1)求的通项公式;{}n a (2)设,若数列为等比数列,求的值;21nn nS b a =+{}n b a (3)若数列是(2)中的等比数列,数列,求数列的前项和.{}n b (1)n n c n b =-{}n c n n T【答案】(1);(2);(3)nn a a =131239344n n n T +-=⋅+【分析】(1)由公式求得通项公式;11,1,2n n n S n a S S n -=⎧=⎨-⎩ (2)简化数列,再由等比数列的通项公式的结构特征,得出,解得参数;{}n b 2101a a +=-a (3)由(2)求出数列的通项,根据通项结构特征,采用错位相减法求数列的前项和.{}n c {}n c n 【详解】解:(1)当时,,1n =11(1)1a S a a =--,,1a a ∴=11(1)1n n a S a a --=--当时,且,2n (1)1n n a S a a =--11(1)1n n a S a a --=--两式做差化简得:1n n a a a -= 即:,1n n a a a -=数列是以为首项,为公比的等比数列,∴{}n a a a .∴(),0,1n n a a a a a =≠≠为常数且(2),2221(1)1(1)n n n n S a a b a a a a =+=+---若数列为等比数列,{}n b 则,即.2101a a +=-13a =(3)由(2)知,3n n b =∴(1)3n n c n =- ①23031323(1)3n n T n ∴=⨯+⨯+⨯+⋯+-⋯ ②23413031323(2)3(1)3n n n T n n +=⨯+⨯+⨯+⋯+-⨯+-⨯⋯①②得:-234123333(1)3n n n T n +-=+++⋯+--⨯1329322n n +-⎛⎫=⨯- ⎪⎝⎭.∴1239344n n n T +-=+ 【点睛】本题主要考查求数列通项公式,已知等比数列求参数,求数列前项和,利用错位相减求n 前前项和是关键,属于中档题.n 21.已知函数,记.()()2x f x x =∈R ()()()()()(),g x f x f x h x f x f x =--=+-(1)求不等式的解集:;()()228f x f x -≤(2)设为实数,若存在实数,使得成立,求的取值范围;t []01,2x ∈()()0021h x t g x =⋅-t (3)记(其中均为实数),若对于任意的,均有,()()()8222H x f x a f x b =⋅+⋅+a b 、[]0,1x ∈()1H x ≤求的值.a b 、【答案】(1)(],2-∞(2)9120⎡⎤⎢⎥⎣⎦(3)12,8.5a b =-=【分析】(1)利用因式分解法,结合指数函数的单调性进行求解即可;(2)利用换元法,结合指数函数的单调性、对钩函数的单调性、基本不等式进行求解即可;(3)根据二次函数的性质进行求解即可.【详解】(1)所以()()()()222822280242202402,x x x x x f x f x x -≤⇒-⋅-≤⇒-+≤⇒-≤⇒≤不等式的解集为;(],2-∞(2)设,,()()21h x t g x =⋅-[]1,2x ∈,()()()2222222122322x x x x x x x x t t ----+=--⇒-+=-令,因为函数在上单调递增,所以,22x x m -=-22x x m -=-[]1,2x ∈315,24m ⎡⎤∈⎢⎥⎣⎦于是有,,当且仅当时取等号,即时取等号,因3t m m =+3t m m =+≥=3m m =m =为函数在单调递减,在上单调递增,3t m m =+32⎡⎢⎣154⎤⎥⎦当时,,当时,,因此,32m =72t =154m =9120t =9120t ⎡⎤∈⎢⎥⎣⎦存在实数,使得成立,所以;[]01,2x ∈()()0021h x t g x =⋅-9120t ⎡⎤∈⎢⎣⎦(3),()()()822282222x x H x f x a f x b a b=⋅+⋅+=⋅+⋅+令,因为,所以,2x n =[]0,1x ∈[]1,2n ∈于是有,当时,,()282H n n an b =++[]1,2n ∈()1H n ≤所以有,()()22118221182212132421132421121211888H a b a b H a b a b a a a b b H ⎧⎧⎧⎪⎪≤⎪++≤-≤++≤⎪⎪⎪⎪⎪⎪≤⇒++≤⇒-≤++≤⎨⎨⎨⎪⎪⎪⎛⎫⎪⎪⎪-≤-+≤-+≤-≤ ⎪⎪⎪⎪⎩⎝⎭⎩⎩由,18221182211312132421132421a b a b a a b a b -≤++≤-≤++≤⎧⎧⇒⇒-≤≤-⎨⎨-≤++≤-≤---≤⎩⎩由,22218221182212822124812112188a b a b a a a a a b b -≤++≤-≤++≤⎧⎧⎪⎪⇒⇒-≤++≤⇒-≤≤-⎨⎨-≤-+≤-≤-≤⎪⎪⎩⎩所以,12a =-因此有,即.1824217.58.58.5118218.59.5b b b b b -≤-+≤≤≤⎧⎧⇒⇒=⎨⎨-≤-≤≤≤⎩⎩12,8.5a b =-=【点睛】关键点睛:利用指数函数和对钩函数的单调性,结合二次函数的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016—2017学年度高一下学期开学考试
数学试题
考试时间:2017.02
(共150分,考试时间120分钟)
一、选择题
1.已知α是第二象限角,(,5)P x 为其终边上一点,且2cos 4x α=,则x 等于( ) A .3 B .3± C . 2- D . 3-
2.设sin(1),cos(1),tan(1)a b c =-=-=-,则有( )
A .a b c <<
B .b a c <<
C .c a b <<
D .a c b <<
3.钝角ABC ∆的三边长为连续自然数,则这三边长为( )
A .1,2,3
B .2,3,4
C .3,4,5
D .4,5,6
4.ABC ∆满足下列条件:①︒===3043B c b ,,;②︒===3085A b a ,,;
③︒===60336B b c ,,;④︒===60129C b c ,,。
其中有两个解的是( )
A .①②
B .①④
C .①②③
D .③④
5.锐角ABC ∆中,角,,A B C 对应的边分别是,,a b c ,若22sin ,2,3A a =
=2ABC S ∆=,则b 的值为( )
A .3
B .322
C . 22
D . 23 6.函数tan sin |tan sin |y x x x x =+--在区间3(,)22
ππ内的图象是( )
7.设(4,3)a =,a 在b 方向上的投影为522,b 在x 轴上的投影为2,且14b ≤,则b 为( ) A . (2,14) B .2(2,)7
- C .2
(2,)7- D .(2,8)
8.定义在R 上的偶函数()f x 在[1,0]-上是减函数,若,A B 是锐角三角形的两个内角,则( )
A .(sin )(cos )f A f
B > B .(sin )(cos )f A f B <
C .(sin )(sin )f A f B >
D .(cos )(cos )f A f B <
9.如图,在ABC ∆中,AD 是BC 边上的中线,F 是AD 上的一点, 且
15AF FD =,连接CF 并延长交AB 于E ,则AE EB
=( ) A .112 B .13 C .15 D .110 10.若函数()2sin()3f x x πω=+
,且()2,()0,||f f αβαβ=-=-的最小值是2
π,则()f x 的单调递增区间是( ) A .5[,]()1212k k k Z ππππ-
+∈ B .[,]()36
k k k Z ππππ-+∈ C .2[2,2]()33k k k Z ππππ-+∈ D .5[2,2]()66k k k Z ππππ-+∈ 11.将函数()2sin(2)4f x x π=+
的图象向右平移(0)ϕϕ>个单位,再将图象上每一点的横坐标缩短到原来的12倍(纵坐标不变),所得图象关于直线4
x π=对称,则min ϕ= ( ) A .34π B .2π C .38π D .8
π 12.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( )
A .111A
B
C ∆和222A B C ∆都是锐角三角形
B .111A B
C ∆和222A B C ∆都是钝角三角形
C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形
D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形
二、填空题
13. 2002年在北京召开的国际数学家大会的会标是以我国古代数学家赵爽的
弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成一个 大正方形(如图所示).如果小正方形的面积为1,大正方形的面积为25,
直角三角形中较小的锐角为θ,那么cos2θ的值等于
14、ABC ∆中,已知b c a b a 24=+=-,,且最大角为︒120,则该三角形最长边为 .
15.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .
16. 下列判断:①若22
0a b +=,则0a b ==;②已知,,a b c 是三个非零向量,若0a b +=,则a c b c ⋅=⋅;③,a b 共线⇔a b a b ⋅=;④a b a b <⋅;⑤3a a a a ⋅⋅=;⑥222a b ab +≥;⑦非零向量,a b 满足:0a b ⋅>,则a 与b 的夹角为锐角;⑧若a 与b 的夹角为θ,则cos b θ表示向量b 在向量a 方向上的投影.其中正确的是________.
三、解答题
17.根据下列条件,解三角形.
(1) ABC ∆中,已知3,60,1b B c ===;
(2) ABC ∆中,已知6,45,2c A a ===.
18.在ABC ∆中,角,,A B C 对应的边分别是,,a b c .已知cos 23cos()1A B C -+=,
(1)求角A 的大小;
(2)若ABC ∆的面积53,5S b ==,求sin sin B C 的值.
19.若353sin(),cos()41345ππαβ+=-=,且3044
ππαβ<<<<,求cos()αβ+的值. 20.已知两个不共线的向量,OA OB 的夹角为θ(θ为定值),且3,2OA OB ==,
(1)若3π
θ=,求OA AB 的值;
(2)若点M 在直线OB 上,且OA OM +的最小值为32
,试求θ的值.
21 .已知向量3(sin ,),(cos ,1)4a x b x ==-
(1)当,a b 平行时,求22cos sin x x -的值; (2)设函数()2()f x a b b =+⋅,已知在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若
63,2,sin 3a b B ===
,求()4cos(2),[0,]63
f x A x ππ++∈的取值范围. 22.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,123cos ,cos 135
A C ==, (1)求索道A
B 的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C 处互相等待的时间不超过3 min ,乙步行的速度应控制在什么范围内?
附加题(10分):在四边形ABCD 中,,A B 是定点,,C D 是动点,且3AB =,1BC CD AD ===,
若BCD ∆与BAD ∆的面积分别为S 与T .
(1)求22
S T +的取值范围;
(2)求22S T +取最大值时,BCD ∠的值.。