两条直线平行与垂直的条件

合集下载

22人教版高中数学新教材选择性必修第一册--2.1.2 两条直线平行和垂直的判定

22人教版高中数学新教材选择性必修第一册--2.1.2 两条直线平行和垂直的判定
例 已知点 (2,2), (5, −2) ,点 在 轴上,分别求满足下列条件的点
的坐标.
[解析] 思路分析 (1)根据两角相等,判断 与 的关系,然后
转化为斜率的关系求解. (2)根据 ∠ 是直角,得出 ⊥ ,然后
转化为斜率之积为-1求解.
(1) ∠ = ∠ ( 是坐标原点);
3.能利用两条直线平行或垂直
的几何意义.
的条件解决问题.
1.两条直线平行:
1 = 2
对于斜率分别为 1 , 2 的两条直线 1 , 2 ,有 1 ∥ 2 ⇔ ①____________.
2.两条直线垂直:
如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于
-1;反之,如果两条直线的斜率之积等于-1,那么它们互相垂直. 即 1 ⊥
先由图形作出猜测,再利用直线的斜率关系进行判定. (2)由图形的形状求
参数(一般是点的坐标)时,要根据图形的特征确定斜率之间的关系,既要
考虑斜率是否存在,又要考虑图形可能出现的各种情况.
已知 (1, −1), (2,2), (3,0) 三点,若 ⊥ ,且 ∥ ,求点 的坐标.
么 1 与 2 (
A
)
A. 垂直
B. 平行
C. 重合
D. 相交但不垂直
[解析] ∵ 直线 1 经过 (−3,4) , (−8, −1) 两点,
∴ 直线 1 的斜率 1 =
4+1
−3+8
= 1.
∵ 直线 2 的倾斜角为 135∘ ,
∴ 直线 2 的斜率 2 = tan 135∘ = −1 ,
+2
9
= −1 ,
直观想象、逻辑推理——判断平面图形的形状

10.2两条直线平行与垂直的条件

10.2两条直线平行与垂直的条件
(2)垂直于直线 2x y 3 0 .
10.2.2两条直线垂直的条件
如图,当 l1 l2 时,
(1)斜率均存在时:l1 : y k1x b1 ;l2 : y k2x b2
k1
tan1
BC AB
k2
tan2
tan(π 3 )
tan3
AB BC
所以 k1 k2 1.
(2)如直线 l1 的斜率不存在,即1 90 ,则直线 l2 的倾斜
(1)斜率存在时,l1 : y k1x b1 ;l2 : y k2 x b2( b1 b2 )
若 1
平行;
2
0 时,则k1
k2
0,直线
y b1 和直线 y b2
若 1 2 0 时,则 k1 k2 0 ,直线 y k1x b1 和直
线 y k2x b2 平行.
(2)斜率不存在时:l1 : x x1 ,l2 : x x2( x1 x2 ),
2.P(1,0) 是直线 l上一点,且平行于经过 A(3,5) 和 B(2, 7)两点
的直线,求直线 l 的方程.
3.直线 ax y 5 0 与直线 3x 2y c 0平行,判断 a, c
的取值.
10.2.2两条直线垂直的条件
如图:l1 l2他们的倾斜角之间满足 1 2 90 ,那么 他们的斜率之间又存在着什么样的关系呢?
解:(1)两条直线斜率都不存在,即两条直线都与 x 轴垂直,
所以 l1 / /l2 .
(2)l2 可化为y
以 l1 / /l2 .
3x 5,有 kl1
kl2
3
且 bl1
1 bl2
5,所
(3)kl1
2 3
kl2
2 3
,所以 l1与l2 相交

高中数学 两条直线的平行与垂直

高中数学 两条直线的平行与垂直

典例导学
即时检测



2.与直线2x+3y+5=0平行,且在两坐标轴上截距的绝对值之和为 10 . 3 的直线l的方程为 解析:设与直线2x+3y+5=0平行的直线l的方程为 2x+3y+c1=0(c1≠5),
典例导学
即时检测



二、两条直线平行或垂直条件的应用 如图,在平行四边形OABC中,点A(3,0),点C(1,3). (导学号51800070)
(1)求AB所在直线的方程; (2)过点C作CD⊥AB于点D,求CD所在直线的方程. 思路分析:已知四边形OABC是平行四边形,可以利用平行四边 形的有关性质求AB的斜率,利用两条直线垂直的条件求CD的斜率, 进而求相应直线的方程.
∴AB
即 3x+5y+2=0. ∵点 C(12,6)不在 AB 上 , ∴AB∥CD.
12-2 ∵kAD= 2+4
-4-2 3 12-6 3 =- ,kCD= =- , 6+4 5 2-12 5 3 的方程为 y-2=- (x+4), 5
=
∴kAB· kAD=-1,即 AB⊥AD.
5 , 3
典例导学
∴m=2.
1
∴当 m=2时,l1⊥l2.
1
典例导学
即时检测



1.已知A(-4,2),B(6,-4),C(12,6),D(2,12),下列结论正确的个数是 ( ) (导学号51800069) ①AB∥CD;②AB⊥AD;③AC⊥BD;④AC∥BD. A.1 B.2 C.3 D.4
解析: ∵kAB=
典例导学
即时检测

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结

小学数学平行与垂直知识点总结在小学数学的学习中,“平行与垂直”是非常重要的几何概念。

理解和掌握这些概念,对于孩子们后续学习更复杂的几何知识,以及培养空间想象力和逻辑思维能力都有着至关重要的作用。

接下来,让我们详细地总结一下这部分的知识点。

一、平行的概念平行,简单来说就是指两条直线在同一平面内永远不会相交。

比如说,我们常见的铁路轨道,它们的两条铁轨始终保持着相同的距离,并且永远不会碰到一起,这就是平行的一个典型例子。

在数学中,我们用符号“∥”来表示平行。

例如,直线 a 平行于直线b,可以记作 a∥b。

判断两条直线是否平行,有以下几个关键要点:1、两条直线必须在同一平面内。

如果不在同一平面,即使它们看起来不相交,也不能称之为平行。

2、这两条直线之间的距离要处处相等。

也就是说,无论在直线上的哪个位置测量,它们之间的距离都是一样的。

二、平行的性质1、经过直线外一点,有且只有一条直线与已知直线平行。

2、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

三、垂直的概念垂直是指两条直线相交成直角(90 度)的情况。

比如我们常见的墙角,相邻的两面墙就形成了垂直的关系。

我们用符号“⊥”来表示垂直。

例如,直线 a 垂直于直线 b,可以记作 a⊥b。

四、垂直的性质1、在同一平面内,过一点有且只有一条直线与已知直线垂直。

2、直线外一点与直线上各点连接的所有线段中,垂线段最短。

五、平行与垂直的关系平行和垂直是两种不同的位置关系,但它们又有着密切的联系。

如果两条直线互相平行,那么其中一条直线的垂线也一定垂直于另一条直线。

反过来,如果两条直线互相垂直,那么其中一条直线的平行线也一定与另一条直线垂直。

六、在生活中的应用平行和垂直的概念在我们的日常生活中有着广泛的应用。

比如,平行的应用:1、建筑物中的平行结构:许多建筑物的柱子、梁等结构都是平行的,这样可以保证建筑物的稳定性和美观性。

2、道路上的行车道:公路上的行车道通常是平行的,这样可以保证车辆有序行驶,减少交通事故的发生。

人教版高中数学必修二课件 3.1.2 两条直线平行与垂直的判定

人教版高中数学必修二课件 3.1.2 两条直线平行与垂直的判定

k2=_______.
解:由斜率定义,直线l的斜率k=tan 30°= 3, 3
因为l1∥l,所以k1=k=
3 3
.
因为l2⊥l,所以k2·k=-1,
所以k 2
=
1 k
=

3.
答案: 3
3
3
16
例3 已知A(-6,0),B(3,6),P(0,3),Q(6, -6),试判断直线AB与PQ的位置关系.
C.0
D. 1
2
解:选A.l1,l2的斜率分别为2,-a,由l1∥l2,可知
a=-2.
12
思考3 设两条直线l1,l2的斜率分别为k1,k2 ,
l1 ⊥ l2时,k1与k2满足什么关系?
提示:
如图,α2 =α1 + 90o,
tanα2
=
tan(α1
+ 90o
)=
-
1 tanα1
,
即k1k2 = -1.
3.1.2 两条直线平行与垂直的判定
1
平面内两条直线有哪些位置关系? 平行或相交
2
为了在平面直角坐标系内表示直线的倾斜程度, 我们引入倾斜角的概念,进而又引入了直线的斜率.
y
.
O
x
能否通过斜率来 判断两条直线的
位置关系?
3
1.理解并掌握两条直线平行与垂直的条件. (重点)
2.会运用条件判断两直线是否平行或垂直. (难点)
反之,成立,可得
y l2
l1
α1 α2
O
x
l1 l2 k1k2 = 1.
13
思考4
设两条直线l1的斜率k1 = 0,l2的斜率不存在,
l1 ⊥ l2吗?

空间直线的平行与垂直关系

空间直线的平行与垂直关系

空间直线的平行与垂直关系直线的平行与垂直关系是几何学中的基本概念之一,这个概念在我们日常生活中也是无处不在的。

在建筑、设计、城市规划、工程等领域中,了解直线的平行与垂直关系至关重要。

本文将介绍直线的平行与垂直的定义、性质以及应用。

首先,我们来看直线的平行关系。

当两条直线在平面上永不相交,且在同一平面上的任意两点之间连线都与这两条直线相交,我们可以说这两条直线是平行的。

以字母 "||" 表示直线的平行关系,如果直线a || 直线b,则可以写作 a || b。

直线的平行关系有以下几个重要性质:1. 平行性质一:如果两条直线都与同一平面上的第三条直线平行,那么这两条直线必定平行。

2. 平行性质二:如果两条直线分别与同一平面上的两条平行线平行,那么这两条直线也平行。

3. 平行性质三:如果直线a与b平行,直线b与c平行,那么直线a与c平行。

直线的垂直关系与平行关系相对应。

当两条直线在平面上相交且交角为90度,我们可以说这两条直线是垂直的。

以一个类似于 "⊥" 的符号表示直线的垂直关系,如果直线a ⊥直线b,则可以写作 a ⊥ b。

直线的垂直关系也有几个重要性质:1. 垂直性质一:如果两条直线都与同一平面上的第三条直线垂直,那么这两条直线必定垂直。

2. 垂直性质二:如果一条直线与平面上的一条直线垂直,那么与该平面上的另一条直线平行的直线也与该直线垂直。

3. 垂直性质三:如果直线a与b垂直,直线b与c垂直,那么直线a与c平行。

直线的平行与垂直关系在很多领域中都有广泛的应用。

以下是几个常见的应用实例:1. 建筑和设计:在建筑和设计中,了解平行和垂直关系对于设计合理的建筑和室内布局至关重要。

例如,在设计房间时,我们应该确保墙壁平行或垂直于地面,以获得更美观的效果。

2. 道路和交通:平行和垂直关系在规划和设计道路和交通系统时也非常重要。

道路的平行布局可以提高交通流畅性,而垂直的交叉路口可以确保交通的安全。

两条直线平行与垂直的判定题型总结及习题测试含答案

两条直线平行与垂直的判定题型总结及习题测试含答案

两条直线平行与垂直的判定题型总结及习题测试含答案两条直线平行与垂直的判定一、基础知识1.两条直线平行的判定(1)l1∥l2,说明两直线l1与l2的倾斜角相等,当倾斜角都不等于90°时,有k1=k2;当倾斜角都等90°时,斜率都不存在.(2)当k1=k2时,说明两直线l1与l2平行或重合.2.两直线垂直的判定(1)当两直线l1与l2斜率都存在时,有k1·k2=-1⇔l1⊥l2;当一条直线斜率为0,另一条直线斜率不存在时,也有l1⊥l2.(2)若l1⊥l2,则有k1•k2=-1或一条直线斜率不存在,同时另一条直线的斜率为零.3.如何判断两条直线的平行与垂直判断两条直线平行或垂直时,要注意分斜率存在与不存在两种情况作答.二、典例剖析题型一直线平行问题例1:下列说法中正确的有( )①若两条直线斜率相等,则两直线平行.②若l1∥l2,则k1=k2.③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.④若两条直线的斜率都不存在,则两直线平行.规律技巧:判定两条直线的位置关系时,一定要考虑特殊情况,如两直线重合,斜率不存在等.一般情况都成立,只有一种特殊情况不成立,则该命题就是假命题. 变式训练1:已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m的值为( )A.-8B.0C.2D.10题型二直线垂直问题例2:已知直线l1的斜率k1= ,直线l2经过点A(3a,-2),B(0,a2+1),且l1⊥l2, 34求实数a 的值.变式训练2:已知四点A(5,3),B(10,6),C(3,-4),D(-6,11).求证:AB ⊥CD. 题型三 平行与垂直的综合应用例3:已知长方形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D 的坐标.规律技巧:利用图形的几何性质解题是一种重要的方法. 易错探究例4:已知直线l 1经过点A(3,a),B(a-2,3),直线l 2经过点C(2,3),D(-1,a-2),若l 1⊥l 2,求a 的值.错因分析:只有两条直线的斜率都存在的情况下,才有l 1⊥l 2k 1•k 2=-1,本题中直线l 2的斜率存在,而l 1的斜率不一定存在,因此要分l 1的斜率存在与不存在两种情况解答. 正解:三、基础强化训练1.下列命题①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等;121122:l l ,k k 1.35k ,,53351,53a a k a a a a --==-⊥∴⋅---∴⋅=---=-错解又③如果两直线的斜率之积为-1,则它们垂直;④如果两直线垂直,则它们斜率之积为-1.2.已知点A(1,2),B(m,1),直线AB与直线y=0垂直,则m的值为( )A.2B.1C.0D.-13.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( )A.锐角三角形B.钝角三角形C.以A为直角顶点的直角三角形D.以B为直角顶点的直角三角形4.已知l1⊥l2,直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45°B.135°C.-45°D.120°5.经过点P(-2、-1)、Q(3,a)的直线与倾斜角为45°的直线垂直.则a=________.6.试确定m的值,使过点A(2m,2),B(-2,3m)的直线与过点P(1,2),Q(-6,0)的直线(1)平行;(2)垂直.7.已知A(1,5),B(-1,1),C(3,2),若四边形ABCD是平行四边形,求D点的坐标.8.如果下列三点:A(a,2)、B(5,1),C(-4,2a)在同一直线上,试确定常数a的值.9.若三点A(2,2),B(a,0),C(0,4)共线,则a 的值等于____.10. l 1过点A(m,1),B(-3,4),l 2过点C(0,2),D(1,1),且l 1∥l 2,则m=_______.题组练习一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的 A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是 A m=1 B m=±1 C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是 A 锐角不为450的直角三角形 B 顶角不为900的等腰三角形 C 等腰直角三角形 D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于 A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是A 4πα-B απ-4C 43πα-D απ-45 二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__ 三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。

两条直线平行与垂直判定-PPT课件

两条直线平行与垂直判定-PPT课件
学而不思则罔●▂●思而不学则殆 持续更新,欢迎收藏
1
1 斜率存在时两直线平行.
y
l1 l2
1
O
2
x
学而不思则罔●▂●思而不学则殆 持续更新,欢迎收藏
2
结论1: 如果直线L1,L2的斜率为k1,k2.那么 L1∥L2 k1=k2
注意:上面的等价是在两直线斜率存在的前提下才成立的, 缺少这个前提,结论并不存立.
学而不思则罔●▂●思而不学则殆 持续更新,欢迎收藏 4
2 斜率存在时两直线垂直.
y
y
y
l2
l1 2
O
l2 1xFra bibliotekl1l1 1
x
O
l2 2
x
1
O
2



学而不思则罔●▂●思而不学则殆 持续更新,欢迎收藏
5
结论2: 如果两直线的斜率为k1, k2,那么,这两条直线垂直 的充要条件是k1·k2= -1 注意:上面的等价是在两直线斜率存在的前提下才成立的, 缺少这个前提,结论并不存立. 特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: 当另一条直线的斜率为0时, 则一条直线的倾斜角为900,另一条直线的倾斜角为0° 两直线互相垂直
l l k k 1 或 l ,l 一斜率不存在 为 0 1 2 1 2 1 2
学而不思则罔●▂●思而不学则殆 持续更新,欢迎收藏 6
例3:
已知A(-6,0),B(3,6),P(0,3)
Q(6,6),判断直线AB与PQ的位置关系。
例4:
已知A(5,-1),B(1,1),C(2,3)三点, 试判断△ABC的形状。
学而不思则罔●▂●思而不学则殆 持续更新,欢迎收藏

人教A版数学必修二课件:3.1.2 两条直线平行与垂直的判定

人教A版数学必修二课件:3.1.2 两条直线平行与垂直的判定
VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
多端互通
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。
抽奖特权
福利特权
知识影响格局,格局决定命运!
其他特 VIP专享精彩活动
α2tan α1=-1,
1
所以 tan α2=-tan
1
.
又0°≤α1<180°,0°≤α2<180°,
所以tan α2=tan(90°+α1),
则α2=90°+α1,所以l1⊥l2.
3.对任意两条直线,如果l1⊥l2,一定有k1·k2=-1吗?为什么?
提示:不一定,因为如果直线l1和l2分别平行于x,y轴,则k2不存在,所
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
服务特

共享文档下载特权
赠送每月15次共享文档下载特权,自
赠送的共享文档下载特权自VIP生效起每月发放一次,
享受100次共享文档下载特权,一次
综上所述,a的值为0或5.
反思感悟反思感悟两直线垂直的判定方法
两条直线垂直需判定k1k2=-1,使用它的前提条件是两条直线斜率
都存在,若其中一条直线斜率不存在,另一条直线斜率为零,此时两
直线也垂直,注意讨论的全面性.
-14-
3.1.2
两条直线平行与垂直的判定
探究一
探究二

高中数学必修2直线与圆常考题型:两条直线平行与垂直的判定

高中数学必修2直线与圆常考题型:两条直线平行与垂直的判定

两条直线平行与垂直的判定【知识梳理】1.对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,有l 1∥l 2⇔k 1=k 2.2.如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l 1⊥l 2⇔k 1·k 2=-1.【常考题型】题型一、两条直线平行的判定【例1】 根据下列给定的条件,判断直线l 1与直线l 2是否平行.(1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3);(3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23);(4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5-(-3)-3-3=-43≠-45,故l 1∥l 2. (2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4-(-1)3-(-2)=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2.【类题通法】判断两条不重合直线是否平行的步骤【对点训练】1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD的斜率存在,则与其平行的直线AB的斜率也存在.k AB=m-0-5-(m+1)=m-6-m,k CD=5-30-(-4)=12,由于AB∥CD,即k AB=k CD,所以m-6-m=12,得m=-2.经验证m=-2时直线AB的斜率存在,所以m=-2.题型二、两条直线垂直的问题【例2】已知直线l1经过点A(3,a),B(a-2,-3),直线l2经过点C(2,3),D(-1,a-2),如果l1⊥l2,求a的值.[解]设直线l1,l2的斜率分别为k1,k2.∵直线l2经过点C(2,3),D(-1,a-2),且2≠-1,∴l2的斜率存在.当k2=0时,a-2=3,则a=5,此时k1不存在,符合题意.当k2≠0时,即a≠5,此时k1≠0,由k1·k2=-1,得-3-aa-2-3·a-2-3-1-2=-1,解得a=-6.综上可知,a的值为5或-6.【类题通法】使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l1与l2一个斜率为0,另一个斜率不存在时,l1⊥l2;l1与l2斜率都存在时,满足k1·k2=-1.【对点训练】2.已知定点A(-1,3),B(4,2),以A、B为直径作圆,与x轴有交点C,则交点C的坐标是________.解析:以线段AB为直径的圆与x轴的交点为C,则AC⊥BC.设C(x,0),则k AC=-3x+1,k BC=-2x-4,所以-3x+1·-2x-4=-1,得x=1或2,所以C(1,0)或(2,0).答案:(1,0)或(2,0)题型三、平行与垂直的综合应用【例3】 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32-(-4)=13, k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3, k BC =3-56-2=-12. 所以k AB =k CD ,由图可知AB 与CD 不重合,所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1, 所以AB ⊥AD ,故四边形ABCD 为直角梯形.【类题通法】1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况.【对点训练】3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =y x -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB ·k CD =-1,k DA =k BC ,所以⎩⎨⎧ 1×y -4x =-1,y x -1=-23.解得⎩⎪⎨⎪⎧x =10,y =-6.即D (10,-6). 【练习反馈】1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行;②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.A .1个B .2个C .3个D .4个解析:选A 若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( )A .平行B .重合C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点,∴EF ∥AB .∴k EF =k AB =-1-32-0=-2. 答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________.解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145. 答案:1455.判断下列各小题中的直线l 1与l 2的位置关系.(1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40);(3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0);(4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5).解:(1)k 1=-10,k 2=3-220-10=110. ∵k 1k 2=-1,∴l 1⊥l 2.(2)l1的倾斜角为90°,则l1⊥x轴.k2=40-4010-(-10)=0,则l2∥x轴,∴l1⊥l2.(3)k1=0-11-0=-1,k2=0-32-(-1)=-1,∴k1=k2.又k AM=3-1-1-0=-2≠k1,∴l1∥l2.(4)∵l1与l2都与x轴垂直,∴l1∥l2.。

2022-2023学年高一数学:两条直线平行和垂直的判定

2022-2023学年高一数学:两条直线平行和垂直的判定

k AB k BC 1,
ABC是直角三角形.
B
O
x
A
练一练
1.已知△ABC的顶点为A(5,-1),B(1,1),C(2,m),若△ABC为直角三角形,
求m的值.

m+1 1+1
若∠A为直角,则AC⊥AB,∴kAC·kAB=-1, 即 2-5 ·1-5=-1,解得 m=-7;
1+1 m-1
1

A.
1

B.a
C.-
1
)
1

D.- 或不存在
解析:若 a≠0,则 l2 的斜率为-;若 a=0,则 l2 的斜率不存在.
答案:D
3.已知直线l1的倾斜角为45°,直线l1∥l2,且l2过点A(-2,-1)和B(3,a),则a的值为
-(-1)
=1,即
3-(-2)
解析:由题意,得
.
a=4.
答案:4
(3)当两条直线的斜率都存在时,若有两条直线的垂直关系,则
可以用一条直线的斜率表示另一条直线的斜率.
典例4
已知A(-6,0),B(3,6),P(0,3),Q(6,-6),试判断直线AB与PQ
的位置关系.
解:直线AB的斜率k AB
2
3
, 直线PQ的斜率k PQ .
3
2
y
2 3

4.已知△ABC的三个顶点分别是A(2,2),B(0,1),C(4,3),点D(m,1)在边BC的高所在的直线上,
则实数m=
.
解析:设直线 AD,BC 的斜率分别为 k ,k ,由题意,得 AD⊥BC,
AD
则有 k ·k =-1,
AD
所以有

两条直线的位置关系讲义

两条直线的位置关系讲义

两条直线的位置关系讲义一、知识梳理1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2. (3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. 注意:1.直线系方程(1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ).(2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +n =0(n ∈R ).2.两直线平行或重合的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行或重合的充要条件是A 1B 2-A 2B 1=0.3.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0.4.过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2.5.点到直线、两平行线间的距离公式的使用条件(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( )(2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定为-1.( )(3)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( ) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )(6)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB 的中点在直线l 上.( ) 题组二:教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )A. 2 B .2- 2 C.2-1 D.2+13.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.题组三:易错自纠4.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于( )A .2B .-3C .2或-3D .-2或-35.直线2x +2y +1=0,x +y +2=0之间的距离是______.6.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.三、典型例题题型一:两条直线的位置关系典例已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.思维升华:(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.题型二:两直线的交点与距离问题1.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是_____.2.若直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为___________.思维升华:(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等.题型三:对称问题命题点1:点关于点中心对称典例过点P(0,1)作直线l,使它被直线l1:2x+y-8=0和l2:x-3y+10=0截得的线段被点P平分,则直线l的方程为________________.命题点2:点关于直线对称典例如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.3 3 B.6C.210 D.25命题点3:直线关于直线的对称问题典例已知直线l:2x-3y+1=0,求直线m:3x-2y-6=0关于直线l的对称直线m′的方程.跟踪训练:已知直线l:3x-y+3=0,求:(1)点P(4,5)关于l的对称点;(2)直线x-y-2=0关于直线l对称的直线方程;(3)直线l关于(1,2)的对称直线.注意:用直线系求直线方程一、平行直线系由于两直线平行,它们的斜率相等或它们的斜率都不存在,因此两直线平行时,它们的一次项系数与常数项有必然的联系.典例1求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程.二、垂直直线系由于直线A1x+B1y+C1=0与A2x+B2y+C2=0垂直的充要条件为A1A2+B1B2=0.因此,当两直线垂直时,它们的一次项系数有必然的联系.可以考虑用直线系方程求解.典例2求经过A(2,1),且与直线2x+y-10=0垂直的直线l的方程.三、过直线交点的直线系典例3经过两条直线2x+3y+1=0和x-3y+4=0的交点,并且垂直于直线3x+4y-7=0的直线方程为______.四、反馈练习1.直线2x +y +m =0和x +2y +n =0的位置关系是( )A .平行B .垂直C .相交但不垂直D .不能确定2.“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=04.一只虫子从点O (0,0)出发,先爬行到直线l :x -y +1=0上的P 点,再从P 点出发爬行到点A (1,1),则虫子爬行的最短路程是( ) A. 2 B .2 C .3 D .45.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( ) A.423 B .42 C.823D .22 6.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点 ( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)7.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.9.已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________.10.已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =________;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为________.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于4 2.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P的坐标;若不能,请说明理由.13.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(-4,2),(3,1),则点C 的坐标为()A.(-2,4) B.(-2,-4)C.(2,4) D.(2,-4)14.已知动直线l:ax+by+c-2=0(a>0,c>0)恒过点P(1,m)且Q(4,0)到动直线l的最大距离为3,则12a+2c的最小值为________.15.如图,已知直线l1∥l2,点A是l1,l2之间的定点,点A到l1,l2之间的距离分别为3和2,点B是l2上的一动点,作AC⊥AB,且AC与l1交于点C,则△ABC的面积的最小值为________.16.在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位长度,沿y轴正方向平移5个单位长度,得到直线l1.再将直线l1沿x轴正方向平移1个单位长度,沿y轴负方向平移2个单位长度,又与直线l重合.若直线l与直线l1关于点(2,3)对称,则直线l的方程是______________.。

8.4.2两条直线平行垂直的条件

8.4.2两条直线平行垂直的条件

例1 已知两条直线: l1:2x-4y+7=0,l2:2x+y-5=0, 求证:l1⊥l2.
• 变式1:求过点A(2,1)且与直线2x+y10=0垂直的直线方程. • 变式2:已知直线ax+(1-a)y-3=0与直线 (a-1)x+(2a+3)y-2=0互相垂直,求a的值.
判定定理: 当直线L1和L2有斜截式方程 L1:y=k1x+b1 L2: y=k2x+b2 时,
结论:
l1 l2 a·b 0 1 k1k 2 0 即k1k 2 1

l1 l2 A1 A2 B1B2 0
④若两直线斜率都不存在,则两直线平 行. A. 1个 B. 2个 C. 3个 D. 4个
1. 判断下列直线对是否平行 平行
经过两点A( 2, 3), B(-1, 0)的直线 l1
经过点P(1,0)且斜率为1的直线 l2 2. 已知过A(-2, m)和B(m ,4)的直线与 斜率为-2的直线平行,则m的值为( A ) A. - 8 B. 0 C. 2 D. 10
那么L1∥L2 k1=k2且b1≠b2
l1 // l2 k1 k2且b1 b2或l1 , l2斜率都不存在且不重合

• 练习: 判断下列直线组的位置关系: • (1)l1:2x-4y+7=0,l2:x=2y-5;

(2)l1:x-2y+1=0, l2:3x=6y-3.
练习:求过点A(1,-4),且与直线 2x+3y+5=0平行的直线方程。
例1 : 两条直线L1:2x-4y+7=0,L2:x-2y+5=0求证:L1∥L2
例 2: 求过点A(1,-4)且与直线2x+3y+5=0平行的直线的方程。

(完整)两条直线平行与垂直的判定题型总结及习题测试含答案,推荐文档

(完整)两条直线平行与垂直的判定题型总结及习题测试含答案,推荐文档

两条直线平行与垂直的判定一、基础知识1.两条直线平行的判定(1)l1∥l2,说明两直线l1与l2的倾斜角相等,当倾斜角都不等于90°时,有k1=k2;当倾斜角都等90°时,斜率都不存在.(2)当k1=k2时,说明两直线l1与l2平行或重合.2.两直线垂直的判定(1)当两直线l1与l2斜率都存在时,有k1·k2=-1⇔l1⊥l2;当一条直线斜率为0,另一条直线斜率不存在时,也有l1⊥l2.(2)若l1⊥l2,则有k1•k2=-1或一条直线斜率不存在,同时另一条直线的斜率为零.3.如何判断两条直线的平行与垂直判断两条直线平行或垂直时,要注意分斜率存在与不存在两种情况作答.二、典例剖析题型一直线平行问题例1:下列说法中正确的有( )①若两条直线斜率相等,则两直线平行.②若l1∥l2,则k1=k2.③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.④若两条直线的斜率都不存在,则两直线平行.规律技巧:判定两条直线的位置关系时,一定要考虑特殊情况,如两直线重合,斜率不存在等.一般情况都成立,只有一种特殊情况不成立,则该命题就是假命题. 变式训练1:已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m的值为( )A.-8B.0C.2D.10题型二直线垂直问题例2:已知直线l1的斜率k1= ,直线l2经过点A(3a,-2),B(0,a2+1),且l1⊥l2,求实数a的值. 3 4变式训练2:已知四点A(5,3),B(10,6),C(3,-4),D(-6,11).求证:AB ⊥CD. 题型三 平行与垂直的综合应用例3:已知长方形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D 的坐标.规律技巧:利用图形的几何性质解题是一种重要的方法. 易错探究例4:已知直线l 1经过点A(3,a),B(a-2,3),直线l 2经过点C(2,3),D(-1,a-2),若l 1⊥l 2,求a 的值.错因分析:只有两条直线的斜率都存在的情况下,才有l 1⊥l 2k 1•k 2=-1,本题中直线l 2的斜率存在,而l 1的斜率不一定存在,因此要分l 1的斜率存在与不存在两种情况解答. 正解:三、基础强化训练1.下列命题①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等; ③如果两直线的斜率之积为-1,则它们垂直; ④如果两直线垂直,则它们斜率之积为-1.2.已知点A(1,2),B(m,1),直线AB 与直线y=0垂直,则m 的值为( ) A.2B.1C.0D.-1121122:l l ,k k 1.35k ,,53351,53a a k a a a a --==-⊥∴⋅---∴⋅=---=-Q 错解又3.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( )A.锐角三角形B.钝角三角形C.以A为直角顶点的直角三角形D.以B为直角顶点的直角三角形4.已知l1⊥l2,直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45°B.135°C.-45°D.120°5.经过点P(-2、-1)、Q(3,a)的直线与倾斜角为45°的直线垂直.则a=________.6.试确定m的值,使过点A(2m,2),B(-2,3m)的直线与过点P(1,2),Q(-6,0)的直线(1)平行;(2)垂直.7.已知A(1,5),B(-1,1),C(3,2),若四边形ABCD是平行四边形,求D点的坐标.8.如果下列三点:A(a,2)、B(5,1),C(-4,2a)在同一直线上,试确定常数a的值.9.若三点A(2,2),B(a,0),C(0,4)共线,则a的值等于____.10. l1过点A(m,1),B(-3,4),l2过点C(0,2),D(1,1),且l1∥l2,则m=_______.题组练习一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的 A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是 A m=1 B m=±1 C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是A 锐角不为450的直角三角形B 顶角不为900的等腰三角形C 等腰直角三角形D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于 A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是A 4πα-B απ-4C 43πα-D απ-45二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__ 三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。

直线平行与垂直课件PPT课件

直线平行与垂直课件PPT课件
直线平行与垂直课件ppt课件
contents
目录
• 直线平行与垂直的基本概念 • 直线平行与垂直的判定定理 • 直线平行与垂直的应用 • 直线平行与垂直的作图方法 • 直线平行与垂直的习题及解析
01 直线平行与垂直的基本概 念
直线平行的定义
总结词
同一平面内,不相交的两条直线
详细描述
直线平行是指两条直线在同一平面内,且不相交。这意味着它们没有交点,并 且始终保持相同的距离。
05 直线平行与垂直的习题及 解析
基础习题
基础习题1:判断下列说法是否正确,并说明理由。如果 错误,请给出反例。
两条直线被第三条直线所截,如果内错角相等,则这两 条直线平行。
基础习题2:已知直线a和b平行,点A在直线a上,点B、 C、D在直线b上,且AB=BC=CD=DE,那么线段AE是点 A到直线b的什么线?
交通
在道路和交通标志的设计中,直线平行和垂直的性质也得到 了广泛应用。例如,在道路交叉口的设计中,需要确保各个 道路相互垂直或平行,以确保交通的顺畅和安全。
在工程设计中的应用
机械设计
在机械设计中,为了确保机器的稳定性 和功能性,常常需要利用直线平行和垂 直的性质。例如,在设计和制造机器零 件时,需要确保各个部分相互垂直或平 行,以确保机器的正常运转和安全性。
VS
电子工程
在电子工程中,直线平行和垂直的性质也 得到了广泛应用。例如,在电路板的设计 中,需要确保各个线路相互垂直或平行, 以确保电流的顺畅流通。
04 直线平行与垂直的作图方 法
平行线的作图方法
1. 确定一个点
选择一个已知点作 为起点。
3. 画出直线
根据确定的方向和 起点,画出直线。
平行线的定义

高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2

高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2

2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。

线的平行与垂直

线的平行与垂直

线的平行与垂直线的平行和垂直是几何学中的基本概念,它们在各个领域的数学问题中都起着重要的作用。

本文将围绕线的平行和垂直展开讨论,介绍其定义、性质以及相关的应用。

一、线的平行先来看线的平行概念。

在平面几何中,如果两条线段在平面上没有任何交点,我们就称这两条线段是平行的。

举个例子,我们可以想象一段直线在纸上画出来,再在纸上画一条与之不相交的直线。

这样,这两条直线就是平行的。

除了上述的直观定义,我们还可以用更为准确的语言进行描述。

根据欧氏几何,如果两条直线在同一平面上,且除了原点外它们上所有点的数量都相等,那么这两条直线是平行的。

平行线还有一些重要的性质。

首先,平行线之间的距离在整个线段上是相等的。

其次,与同一条直线平行的两条线段也是平行的。

此外,平行线之间的夹角是相等的。

线的平行在实际生活中有着广泛的应用。

例如,在建筑设计中,我们常常需要确保墙壁或梁柱之间是平行的,以确保结构的稳定。

再比如,地图中的经线和纬线也是平行的,方便我们在地球上定位和导航。

二、线的垂直接下来,我们来介绍线的垂直概念。

在平面几何中,如果两条线段相交时,相交角度为90度,我们就称这两条线段是垂直的。

例如,在我们的日常生活中,立起的直角是最直观、常见的垂直线。

同样地,我们可以给出一种准确的定义。

如果两条直线在同一平面上相交,并且相交角为90度,那么这两条直线是垂直的。

线的垂直也有一些重要的性质。

首先,垂直线之间是相交的,且相交点是唯一的。

其次,与同一条直线垂直的两条线段也是垂直的。

另外,垂直线之间的夹角是相等的。

线的垂直同样在现实生活中有着广泛的应用。

例如,在建筑物的设计和施工中,我们常需要确保墙壁或柱子是垂直的,以便保证建筑物的稳定性。

三、线的平行和垂直的关系线的平行和垂直有着密切的关系。

从定义上看,两条直线如果既不平行也不垂直,则它们是相交的。

因此,平行是垂直的反义词;垂直是平行的反义词。

此外,线的平行和垂直还有一种重要的关系,即垂直于同一条直线的两条线段是平行的。

两条直线平行与垂直的判定 课件

两条直线平行与垂直的判定 课件
第三章 3.1 直线的倾角与斜率
3.1.2 两条直线平行与垂直的判定
• ●知识衔接
• 1.直线的倾斜角与斜率. • 当直线倾斜角α≠90°时,斜率k=_____t_an_α___.当直线倾斜
角α=90°时,斜率k_不__存__在_____. • 直线倾斜角的范围是_0_°__≤_α_<_1_8_0_°______,直线斜率的取值
(4)l1 的斜率不存在,k2=12--11=0,画出图形,如下图所示,
则 l1⊥x 轴,l2⊥y 轴,∴l1⊥l2.
• 平面内两条直线相交,而且它们的夹角是___直__角_____,那 么这两条直线垂直.
• 4.已知直线l1的斜率为0,且直线l1⊥l2,则直线l2的倾斜角 为( )
• A.0° B.135° • C.90° D.180° • [答案] C • 5.直线l1的倾斜角为45°,l2∥l1,则l2的倾斜角为
[解析] 由题意知 A,B,C,D 四点在坐标平面内的位置, 如右图,
由斜率公式可得 kAB=2-5--34=13, kCD=-0-3-36=13, kAD=-30--3-4=-3, kBC=36--52=-12.
所以 kAB=kCD,由图可知 AB 与 CD 不重合, 所以 AB∥CD,由 kAD≠kBC,所以 AD 与 BC 不平行. 又因为 kAB·kAD=13×(-3)=-1, 所以 AB⊥AD, 故四边形 ABCD 为直角梯形.
两直线的倾斜角不相等,则一定 ③√
相交,故③正确
• 2.直线l1的斜率为k1=-3,直线l2的斜率为k2=-3,则l1与 l2( )
• A.平行 B.垂直
• C.重合 D.平行或重合
• [答案] D
3.已知直线 l1 的斜率为 a,l2⊥l1,则 l2 的斜率为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讨论
已知直线 l1 : A1x+B1y+C1 = 0
l2 : A2x+B2y+C2= 0
(A1B1C1 ≠ 0 ,A2B2C2≠ 0 ).
那么 l1//l2的充要条件是什么?
A1 B1 C1 A2 B2 C2
答: l1//l2
思考
如果直线 ax+2y+2 = 0 与3x-y-2 = 0 平行,那么系数a = ( )
思考 1.已知直线 l1 : x ay 2a 2 0
l2 : ax y 1 a 0
试求 ( 1) 若 l1 // l2 ,
(2)
答:a=1
a
的值.
的值.
若 l1 l2 , 试求
答:a=0
a
例5、求过点P(3,5)且垂直于直线 2x –4 y – 5 = 0
的直线方程. 解:设所求直线方程为 4x + 2y + C = 0 因为所求直线过点P(3,5),将其坐标代入方程, 得 4×3 + 2×5 + C = 0 解得 C = – 22 所以,所求直线方程为 2x + y –11= 0
⑷ 已知两直线l1:(3+m)x + 4y +3m + 5 = 0, l2:2x + (5+m)y +2 = 0,当m为何值时l1∥l2,
讨论
两直线如果 l1 : A1 x B1 y C1 0 l2 : A2 x B2 y C2 0
那么 l1 l2 的充要条件是什么?
答: l1 l2 A 1A 2 B 1B2 0
思考:直线l1的斜率k1 0, 直线l2的
斜率k2不存在,那么 l1 l2 ?
【问题】由直线方程你能直接判断两直线的 位置关系吗? • 对于斜率都存在的两条直线 • l1:y=k1x+b1 • l2:y=k2x+b2 • • (1) l1与l2平行 k1=k2且b1≠b2 • (2) l1与l2 重合 k1=k2 且b1= b2 • (3) l1与l2相交 k1≠k2
A. - 3
B. - 6
C. - 3/2
D. 2/3
数学运用
判断下列各对直线的位置关系:
⑴ l1:2x - y -7= 0 l2:3x +2y -7= 0 ⑵ l1:2x - 6y + 4 = 0 l2:4x - 12y +8= 0 ⑶ l1:4x + 2y +4 = 0 l2:2x + y - 3 = 0
y
Q P B
Oபைடு நூலகம்
A
x
kBA kPQ BA∥ PQ
例3 、 (1)过点A(2,3)且与直线 2 x y 5 0 平行的直线方程。 (2)过点A(2,3)且与直线 2 x y 5 0 垂直的直线方程。
【典型例题】 例4、求过点P(3,–5)且平行于直线 2x – y – 5 = 0 的直线方程.
⑴ l 1:y l 2: y ⑵ l 1: y l 2: y
= 2x =3x-1 = 3x + 2 = 3x -1
问题2: 能否通过斜率来判断两条直线的位 置关系?
例:分别画出下列各组直线,并通过图像探讨如何 用斜率来判断两条直线的位置关系。
(1) y 2 x, y 2 x 1, y 2 x 2 (2) y 2, y 1 (3) x 2, x 4
l1 : 2 x 4 y 5 0; l 2 : 2x y 3 0
求证:l1 l2
1 5 l1 : y x l 2 : y 2 x 3 2 4
1 得 k 1 , k 2 2 2 1 显然k1 k 2 ( 2) 1 2
l1 l 2
y y0 k ( x x0 )
斜截式方程
y kx b
特殊情况
①直线和x轴平行时,倾斜角α=0°
y y0 0或y y0
②直线与x轴垂直时,倾斜角α=90°
x x0 0或x x0
问题1 :由直线方程你能直接判断两直线的 位置关系吗?
1.判断下列各对直线的位置关系:
解:设所求直线方程为 2x – y +C = 0
因为所求直线过点P(3,–5),将其坐标代入方程, 得 2×3 – (–5 )+C = 0 解得 C = – 11 所以,所求直线方程为 2x – y – 11 = 0
注:直线 Ax+B y+C1=0与直线 Ax+B y+C2=0 互相平行.
例5已知直线
一:两条直线平行的条件
l1 // l2 k1 k2
思考:
如果直线斜率不存在,如何判断平行?
• 例 2:
(1) y x, y x 1 (2) y x 1, y 3x 3 (3) y 2, x 1
二:两条直线垂直的条件
1 l1 l2 k1 或k1 k2 1 k2
两条直线的平行与垂直
上节回顾
倾斜角
y α O x l
斜率
斜率k=tanα
α=900时, 直线无斜率. α为锐角时,k>0; α为钝角时,k<0; α为00时,k=0.
两点间斜率公式
y2 y1 tan x2 x1
取值范围为: 0o≤α<180o
直线垂直于x轴时, 公式不适用!
点斜式方程
注:直线 Ax+B y+C1=0与直线 – Bx+A y+C2=0 互相垂直.
1 5 b1 , b2 2 6
又l1和l2在y轴上的截距分别是
k1 k2且b1 b2 l1 // l2
例2

已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试 判断直线BA与PQ的位置关系,并证明你的结论。
30 1 解 : k BA 2 (4) 2 2 1 1 k PQ 1 (3) 2
例 1 已知两条直线 l1和l2的方程分别是:
l1 : x 2 y 1 0; l2 : 3x 6 y 5 0
求证:l1 // l2
证明:将l1和l2的方程化为斜截式,得 1 1 1 5 l1 : y x l2 : y x 2 2 2 6
1 l1和l2的斜率k1 k2 2
相关文档
最新文档