2013国赛四旋翼飞行器论文 (2).
四旋翼无人机设计与制作毕业论文
四旋翼无人机设计与制作毕业论文目录摘要 ................................................................................................ 错误!未定义书签。
Abstract ................................................................................................... 错误!未定义书签。
1绪论 .. (2)1.1研究背景及意义 (2)1.2 国内外四旋翼飞行器的研究现状 (2)1.2.1国外四旋翼飞行器的研究现状 (2)1.2.2国内四旋翼飞行器的研究现状 (4)1.3 本文研究内容和方法 (5)2 四旋翼飞行器工作原理 (7)2.1 四旋翼飞行器的飞行原理 (7)2.2 四旋翼飞行器系统结构 (7)3 四旋翼飞行器硬件系统设计 (9)3.1 微惯性组合系统传感器组成 (9)3.1.1 MEMS陀螺仪传感器 (9)3.1.2 MEMS加速度计传感器 (9)3.1.3 三轴数字罗盘传感器 (10)3.2 姿态测量系统传感器选型 (10)3.3 电源系统设计 (12)3.4 其它硬件模块 (12)3.4.1 无线通信模块 (12)3.4.2 电机和电机驱动模块 (13)3.4.3 机架和螺旋桨的选型 (14)3.4.4 遥控控制模块 (15)4 四旋翼飞行器姿态参考系统设计 (17)4.1 姿态参考系统原理 (17)4.2 传感器信号处理 (18)4.2.1 加速度传感器信号处理 (18)4.2.2 陀螺仪信号处理 (18)4.2.3 电子罗盘信号处理 (19)4.3 坐标系 (19)4.4 姿态角定义 (20)4.5 四元数姿态解算算法 (21)4.6 校准载体航向角 (29)5 四旋翼飞行器系统软件设计 (31)5.1 系统程序设计 (31)5.1.1 姿态参考系统软件设计 (31)5.1.2 PID控制算法设计 (32)结论 (34)参考文献 (35)绪论1.1研究背景及意义随着MEMS传感器、无刷电机、单片机以及锂电池技术的发展,四旋翼飞行器现在已经成为航模界的后起之秀。
四轴飞行器设计毕业设计论文
目录第一部分设计任务与调研 (1)1研究背景 (1)2毕业设计的主要任务 (1)第二部分设计说明 (2)1理论分析 (2)2设计方案 (6)2.1 微控制器的选择 (6)2.2 无线模块的选择 (7)2.3 其他模块图片 (9)第三部分设计成果 (10)第四部分结束语 (11)第五部分致谢 (12)第六部分参考文献 (13)第一部分设计任务与调研1研究背景四轴飞行器具备VTOL(Vertical Take-Off and Landing,垂直起降)飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。
可应用于军事上的地面战场侦察和监视,获取不易获取的情报。
能够执行禁飞区巡逻和近距离空中支持等特殊任务,可应对现代电子战、实现通信中继等现代战争模式。
在民用方面可用于灾后搜救、城市交通巡逻与目标跟踪等诸多方面。
工业上可以用在安全巡检,大型化工现场、高压输电线、水坝、大桥和地震后山区等人工不容易到达空间进行安全任务检查与搜救工作,能够对执行区域进行航拍和成图等。
因此,四轴飞行器的研究意义重大。
2毕业设计的主要任务本设计基于Arduino平台的四轴飞行器,包括Arduino最小系统、传感器模块、供电模块、电机驱动模块、蓝牙通讯模块等部分组成。
通过Arduino最小系统采集各传感器模块的数据并进行分析,将处理结果送入电机驱动模块进行姿态调整,实现四轴平稳飞行,系统框图如下:图1 系统框图第二部分设计说明1理论分析设计一个基于Arduino开源硬件平台的最小系统板,采集传感器的数据,传递给主芯片,芯片通过具体算法得出数据调整翼动部分实现水平。
下面将分析一种常见的四轴飞行器姿态解算方法,Mahony的互补滤波法。
此法简单有效,先定义Kp,Ki,以及halfT 。
Kp,Ki,控制加速度计修正陀螺仪积分姿态的速度halfT ,姿态解算时间的一半。
此处解算姿态速度为500HZ,因此halfT 为0.001#define Kp 2.0f#define Ki 0.002f#define halfT 0.001f初始化四元数float q0 = 1, q1 = 0, q2 = 0, q3 = 0;定义姿态解算误差的积分float exInt = 0, eyInt = 0, ezInt = 0;以下为姿态解算函数。
全国电子设计大赛省一获奖论文-四旋翼
.学校统一编号:HLJ-B-学校名称:哈尔滨理工大学队长姓名:学生姓名:指导教师:时间:四旋翼自主飞行器摘要四旋翼的结构是一种比较简单和直观化的稳定控制性飞行器。
通过调节4个电机转速改变旋翼转速,改变升力的变化调整飞行器的姿态和位置。
四旋翼飞行器的动力来源是无刷直流电机,因此针对该类无刷直流电机的调速系统对飞行器的性能起着决定性的作用。
四旋翼的动力来源为无刷直流电机,采用单边pwm 的控制方式实现电机的调速,采用三段式启动方式实现电机的软启动。
用超声波传感器测距是四旋翼飞行器定高,采用ov7620摄像头循迹使飞行器从A区到B区。
通过对四旋翼工作模式与控制参数的研究,得到相应的控制算法,然后编程实现,模拟相应的飞行姿态,实验结果表示四旋翼实现自主飞行、自主悬停控制。
关键词:四旋翼飞行器;无刷直流电机;PWMabstractThe structure of the four rotor is a relatively simple and intuitive stability controlling aircraft. By adjusting the four motor speed change the rotor speed, the change of lift change aircraft attitude and position. Four rotor aircraft power source is brushless dc motor, so for this class of brushless dc motor speed control system plays a decisive role on the performance of the aircraft. Four rotor power source for the brushless dc motor, motor speed control is realized by using unilateral PWM control mode, the three-step startup mode was adopted to realize motor soft start. Four rotor aircraft with ultrasonic sensor range is set high, use ov7620 camera tracking make aircraft from area A to area B. Through the study of four rotor working mode and the control parameters, get the corresponding control algorithm, and then simulate the flight attitude, programming the results said four rotor to realize autonomous flight, hovering control independently.Key words: four rotor aircraft; Brushless dc motor; PWM目录四旋翼自主飞行器 (1)摘要 (1)一、设计任务 (3)1.1 任务 (3)1.2.1 基本要求 (4)1.2.2 发挥部分 (4)二、方案论证 (5)1、控制器模块方案 (5)三、理论分析与计算 (5)1、系统硬件设计与实现 (5)1.1陀螺仪和加速度传感器 (6)1.2控制系统 (7)1.3超声波传感器 (7)1.4摄像头ov7620 (8)2、软件系统设计 (9)2、1PWM脉冲宽度调制 (9)2、2数学PID控制算法 (10)四、测试结果与误差分析 (11)1、飞行测试 (11)2、无刷电机测试 (11)五、结论、心得体会 (12)参考文献 (12)附录: (13)附录1 :元器件明细表 (13)附录2:仪器设备清单 (13)附录3:程序清单 (13)一、设计任务1.1 任务四旋翼自主飞行器(下简称飞行器)摆放在图1所示的A区,一键式启动飞行器起飞;飞向B区,在B区降落并停机;飞行时间不大于45s。
毕业设计论文四旋翼飞行器PID控制器的设计
第一章 四旋翼飞行器概述
1.1引言
目前国内外对飞行器的研究主要包括三种:固定翼、旋翼及扑翼式,四旋翼飞行器在布局形式上属于旋翼式的一种。国外早在上世纪初期就开始研究四旋翼飞行器。这种飞行器由军方率先研发并制造用于情报侦查等领域。很多科技企业、大学及研究所也研发并实现了自己的四旋翼飞行器。
目前,国内有很多致力于开源四旋翼飞行器研发的科技企业及技术团队,最受欢迎的有匿名科创开发的匿名四轴,圆点博士小四轴等。匿名四轴的控制方法主要是对姿态欧拉角进行控制,圆点博士小四轴主要是对姿态四元数进行控制,控制效果都很好。这给很多电子技术爱好者提供了丰富的学习资料。
国内有很多针对多旋翼飞行器的技术论坛,也有很多技术论坛专门开设了四旋翼飞行器讨论版块,汇聚了众多四旋翼飞行器的爱好者,提供了飞行器技术学习和提升的平台。
本设计主要介绍一种四旋翼飞行器的实现方案,以意法半导体公司生产的基于AMR Cortex-M3内核的STM32F103C8T6微型控制器作为计算控制单元,以Invensense公司生产的MPU6050作为惯性测量单元,整合飞行器姿态,以NRF24L01无线通信模块作为通信渠道,实现了上位机与下位机各项数据的实时传输,使用WFLY07遥控器实现了对四旋翼飞行器的无线遥控。本文详细介绍了四旋翼飞行器的飞行原理、硬件构造和软件设计,设计了一种PID控制器,实现了四轴飞行器的各项动作控制。
Yaw角为偏航角,如图,机体绕Z轴旋转产生原来XOZ面的夹角,为偏航角。
在+模式下,A组螺旋桨与B组螺旋桨基本没有关系。实现基本的飞行动作只需调节一组螺旋桨的转速。当四个螺旋桨转速相同时,螺旋桨间的扭力矩相互抵消,实现飞行器姿态水平,如果增加螺旋桨的转速,可实现飞行器上升,下降等动作。当1、3号螺旋桨转速增加,而2、4号螺旋桨转速不变时,飞行器可以实现偏航。当1、3号螺旋桨转速不变,2号螺旋桨转速增加,4号螺旋桨转速减小,飞行器可实现横滚运动,即飞行器向左飞。当2、4号螺旋桨转速不变,1号螺旋桨转速增加,3号螺旋桨转速减小,飞行器可实现俯仰运动,即飞行器向前后飞。由此,可以想像飞行器在不同螺旋桨转速下的飞行动作。
201X电子设计大赛四旋翼自主飞行器_(B_题)
2013年全国大学生电子设计竞赛论文【本科组】课题:四旋翼自主飞行器(B 题)摘要为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。
首先进行了各单元电路方案的比较论证,确定了硬件设计方案。
四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。
采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。
通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense 的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。
通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。
通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。
关键词:四旋翼自主飞行器,红外,寻线,超车,单片机1、系统方案的设计与论证1.1 系统总体框架整个系统分为系统模块、角度检测模块、电机驱动模块、电源模块、显示模块。
各模块的系统框图如图1所示。
图1 系统模块框图1.2 方案论证与比较(1)控制模块传统的51单片机广为应用,具有使用简便、便宜价格等优点,但是其运算能力较低,速度较慢,功能相对单一,难以实现较复杂的任务要求。
四旋翼飞行器毕业论文
四旋翼飞行器毕业论文随着科技的不断发展和人们生活水平的不断提高,现代航空技术取得了长足的发展,航空器种类日益丰富,其中四旋翼飞行器也越来越受到人们的关注和喜欢。
四旋翼飞行器是一种由四个电动机驱动旋转的旋翼,通过不同旋翼旋转速度的协调,控制飞行器的飞行姿态,实现飞行的目的。
它具有体积小、重量轻、机动性好、简单易操作等优势,同时可完成多种飞行任务,如航拍、搜救、越野竞速等。
本篇毕业论文将从四旋翼飞行器的发展历程、工作原理以及其在军事和民用领域上的应用等方面进行详细介绍。
一、四旋翼飞行器的发展历程早在20世纪60年代,美国国防部就开始研制一种可以远距离侦察和无人攻击的,能够垂直起降的飞行器,即直升机无人机。
后来随着电子技术的发展,直升机无人机逐渐淘汰,直到四旋翼飞行器出现。
1970年代,欧洲某个国家开始研制一种四旋翼飞行器,以执行监察、识别突发事件、洪灾救援等多种任务。
1990年代,美国开始研制四旋翼飞行器,主要用于情报收集和巡逻。
而到了21世纪,四旋翼飞行器开始进入了广泛应用的时期,被应用于工业、航拍、救援等不同领域。
二、四旋翼飞行器的工作原理四旋翼飞行器的工作原理就是通过控制各电机的旋转速度实现不同方向的推力,进而控制飞行姿态。
四旋翼飞行器包含四个电机,通过正反转和加减速控制旋翼的旋转速度,以实现飞行。
不同的旋翼间通过协调的控制实现整体运动,达到平稳飞行和各种飞行姿态的控制。
三、四旋翼飞行器的应用四旋翼飞行器在不同领域均有广泛应用,如:1、民用领域主要应用于航拍、农业、物流、救援等。
在航拍领域,四旋翼飞行器可以飞入空旷的天际,实现高清晰度的照片和视频拍摄。
而在农业方面,四旋翼飞行器可以对农作物进行施肥、喷洒农药等工作,提高农业效率。
此外,四旋翼飞行器还被应用于物流配送和救援等领域。
2、军事领域四旋翼飞行器在军事领域的作用主要是情报收集和实施巡逻。
四旋翼飞行器可以远程操控,对敌方情况进行监测和侦察,收集有用信息,并可以执行攻击任务。
四旋翼自主飞行器(B题)
2013全国电子设计大赛瑞萨杯2013年全国大学生电子设计竞赛四旋翼自主飞行器(B题)【XX组】2013年9月6日目录1系统方案..................................... 错误!未定义书签。
1.1平衡传感器的论证与选择............ 错误!未定义书签。
1.2 巡线方案的论证与选择.............. 错误!未定义书签。
1.3停机坪寻找方案的论证与选择 (1)1.4控制系统的论证与选择.............. 错误!未定义书签。
2系统理论分析与计算.. (4)2.1 控制理论的分析 (4)2.1.1 四元数与欧拉角的理论计算 (4)2.1.2控制方式 (5)2.1.2 对PID的分析 (5)2.2节能论证 (6)2.2.1电源的选择 (6)3电路与程序设计 (7)3.1电路的设计 (7)3.1.1R5F100LEA 芯片引脚图 (7)3.1.2电机驱动电路 (8)3.1.3 传感器电路原理图 (9)3.2程序的设计 (9)3.2.1程序功能描述与设计思路 (9)3.2.2程序流程图 (10)4测试方案与测试结果 (12)4.1测试方案 (12)4.2 测试条件与仪器 (12)4.3 测试结果及分析 (12)4.3.1测试结果(数据) (12) (12)4.3.2测试分析与结论 (12)附录:源程序 (13)摘要四轴飞行器为成品改造玩具四轴航模,采用瑞萨公司的R5F100LEA型号单片机产生PWM通过驱动电路来驱动四个无心杯电机的转动产生一个向上的力,通过四元数算法处理传感器MPU6050采集的机身平衡信息并进行闭环的PID控制来保持机身的平衡。
通过激光收发来采集赛道信息来进行飞行器的循迹。
通过采集停机坪的信息进行降落。
经测试,系统基本可以完成题目要求。
关键字:四周飞行器R5F100LEA 四元数算法PID控制AbstractThe model aircraft Been modified by Four aircraft toys axis ,use of Renesas microcontroller to generate the PWM, R5F100LEA model through the drive circuit to drive four cups unintentional rotation of the motor produces an upward force, through the quaternion algorithm processing six-axis sensor MPU6050 collection balance information of the body and closed-loop PID control to maintain the body balance. Track by linear CCD to capture the tracking information for the aircraft. On the tube on then\tube through the infrared the information collected After testing, the system can be completed subject requirements.Keywords: four weeks Aircraft R5F100LEA Quaternions PID control algorithm1 系统方案本系统主要由中央处理单元,巡线模块,平衡控制单元,电机驱动模块,电源模块,停机坪信息采集单元组成。
基于arm的四轴飞行器的设计
毕业设计(论文)题目:基于ARM的四轴飞行器的设计*名:**学号: **********专业:电子信息工程班级: 01所在学院:电气信息学院2013年 5 月目录摘要 (II)Abstract (III)第一章绪论 (1)1.1 课题背景 (1)1.2 课题内容 (2)第二章总体设计 (5)2.1 系统组成 (5)2.2 软硬件功能分配 (5)2.3 I/O口分配 (6)第三章理论及计算 (9)3.1 滤波算法 (9)3.2 姿态转换与数据融合算法 (14)3.3 平衡控制算法 (17)3.4 飞行控制算法 (19)第四章硬件设计 (23)4.1 STM32最小系统电路 (23)4.2 电源供应电路 (24)4.3 各传感器驱动电路 (25)4.4 主控板PCB (28)第五章软件设计 (31)5.1 程序流程设计 (31)5.2 底层驱动子程序设计 (32)5.3 飞行姿态检测子程序设计 (33)5.4 平衡自稳子程序设计 (35)5.5 上位机数据采集子程序设计 (35)第六章调试 (37)总结 (41)致谢 (43)参考文献 (45)摘要四轴飞行器是一种集单片机技术、传感器技术、自动控制原理、无线传输技术于一身的机电一体化智能机器人。
该系统可在空中自动实现悬停,并可由人工无线控制航向以及飞行速度。
系统主要集成了内核为Cotex-M3的ARM主控芯片STM32F103、集三轴加速度计和三轴陀螺仪于一体的传感器芯片MPU6050、三轴地磁仪芯片HMC5883、高灵敏度气压计BMP180、高清晰度液晶显示模块OLED、无线传输模块NRF24L01、蓝牙串口等。
系统利用C语言进行开发,数据采集使用IIC总线协议,数字信号滤波采用一阶低通滤波、互补滤波以及滑动窗口滤波,系统控制使用增量式PID以及位置式PD算法,并在设计中使用到了MDK4.0、Altium Designer9.0、虚拟示波器、串口调试助手以及PROE5.0等开发工具。
(完整版)基于单片机的微型四旋翼飞行器毕业设计论文
[摘要]本文对微型四旋翼飞行器自平衡算法进行研究,详细分析了应用互补滤波器,进行信号处理的思路和参数整定过程,应用滤波后的数据,进行飞行器姿态角度融合,解算出飞行器实时的俯仰角、翻滚角、偏航角。
在解算出飞行姿态角度的基础上应用PID算法控制四旋翼飞行器进行自平衡悬停及相关的运动姿态控制。
硬件上,采用STM32F103作为微控制器,以MPU6050作为四旋翼飞行器姿态传感器件,通过AO3402MOS管驱动四个空心杯电机改变飞行器姿态,设计结果是能准确测量飞行器姿态并将测量角度输出给相应坐标的电机,进行姿态调整。
本文将从硬件、软件初始化、控制算法及调试等几个篇幅详细展示整个微型四旋翼飞行器的制作过程。
[关键词] 微型四旋翼飞行器;互补滤波算法;PD控制算法;STM32F103;自平衡Abstract: This paper is a research about algorithm of Quadrotor Micro-aircraft Self-balancing. It will detailed analysis the idea about using Complementary filter deal with the digital signals and the basis of flying-Angle using PID algorithm controlling Quadrotor Micro-aircraft achieves the self-balancing control. Hardware uses STM32F103 as micro controller, with MPU6050 as attitude sensor of Quadrotor Micro-aircraft, through AO3402MOS tube driving four result can accurately measure spacecraft attitude and output the measuring Angle to the corresponding coordinates of the motor and realize the attitude adjustment. This article will show the whole production process of the Quadrotor Micro-aircraft in detail from the , control algorithm, debug and so on.Key words: Micro four rotor aircraft;Complementary filter;PD control algorithm; STM32F103;Self-balancing目录1 绪论............................................................................................................................1.1 本课题的研究意义及必要性 ............................................................................1.2 相关领域国内外研究现状及发展趋势 ............................................................1.3论文篇幅简介 .....................................................................................................2 四旋翼飞行器系统分析 ...............................................................................................2.1系统基本原理 .....................................................................................................2.2系统功能要求 .....................................................................................................2.3 系统可行性分析 ................................................................................................3 四旋翼飞行器总体设计 ...............................................................................................3.1 功能模块划分 ....................................................................................................3.2 系统模块设计图 ................................................................................................3.3 系统流程图.........................................................................................................3.4 开发工具和开发框架介绍 ................................................................................3.4.1 Altium Designer 6.9介绍........................................................................3.4.2 Keil for ARM介绍 ..................................................................................3.4.3 Serial_Digital_Scope V2介绍 ................................................................4 四旋翼飞行器详细方案设计 .......................................................................................4.1 硬件模块的功能及设计 ....................................................................................4.1.1 最小系统板STM32F103模块 ..............................................................4.1.2 低压差电源模块 .....................................................................................4.1.3 倾角传感器模块 .....................................................................................4.1.4 空心杯电机驱动模块 .............................................................................4.1.5 NRF24L01无线模块...............................................................................4.2 驱动程序功能及设计 ........................................................................................4.2.1 最小系统板初始化 .................................................................................4.2.2 MPU6050初始化 ....................................................................................4.2.3 NRF24L01初始化...................................................................................4.2.4 空心杯电机驱动初始化 .........................................................................5 四旋翼飞行器控制算法实现 .......................................................................................5.1角度及角速度数据处理算法 .............................................................................5.1.1 互补滤波器可行性分析 .........................................................................5.1.2 互补滤波器算法软件实现 .....................................................................5.2姿态控制算法 .....................................................................................................5.2.1 PID控制算法可行性分析.......................................................................5.2.2 PID控制算法软件实现...........................................................................5.2.3 多维度控制量输出融合算法 .................................................................6 四旋翼飞行器综合调试 ...............................................................................................6.1基本功能实现 .....................................................................................................6.1.1 姿态角度数据采集功能 .........................................................................6.1.2 四旋翼飞行器遥控功能 .........................................................................6.1.3 电机多维度矢量输出功能 .....................................................................6.2高级功能实现 .....................................................................................................6.2.1 姿态角度数据融合功能 .........................................................................6.2.2 四旋翼飞行器自平衡飞行功能 .............................................................结束语............................................................................................................................致谢..................................................................................................................................参考文献............................................................................................................................附录A 部分代码..............................................................................................................1 绪论1.1 本课题的研究意义及必要性信息时代,微电子技术及惯性传感器件的不断进步,使自平衡算法实现成为可能。
最好最详细四轴飞行器论文
菜鸟飞行器交流群 200718960 更多资料下载:https:///index.htm?spm=2013.1.w5002-1174......................................................................错误!未定义书签。 1.1 研究背景与意义 ...............................................................错误!未定义书签。 1.2 国内外研究现状 ...............................................................错误!未定义书签。 1.3 论文的主要工作 ...............................................................错误!未定义书签。 第二章 四轴飞行器工作原理 ............................................错误!未定义书签。 2.1 四轴飞行器机械结构 .....................................................错误!未定义书签。 2.2 四轴飞行器飞行动作原理 .............................................错误!未定义书签。 2.3 四轴飞行器坐标系统 .....................................................错误!未定义书签。 2.4 四轴飞行器姿态 ........................................................................................... 5 2.4.1 姿态解算 ..................................................................................................... 5 2.4.2 姿态控制 ..................................................................................................... 6 2.5 电机串级 PID 控制 ....................................................................................... 7 2.5.1 串级 PID 控制器简介 .................................................................................. 7 2.5.2 串级 PID 控制器在四轴飞行器中的应用 ................................................... 8 第三章 四轴飞行器硬件组成 .......................................................................... 9 3.1 电机 .............................................................................................................. 9 3.1.1 无刷电机厂商的选择 .................................................................................. 9 3.1.2 无刷电机参数的选择 .................................................................................. 9 3.1.3 无刷电机使用注意事项 ............................................................................ 10 3.2 电调 ............................................................................................................ 10 3.2.1 电调选型 ................................................................................................... 10 3.2.2 电调编程 ................................................................................................... 11 3.2.3 电调使用注意事项 .................................................................................... 11 3.3 螺旋桨 ........................................................................................................ 12 3.3.1 浆的选型 ................................................................................................... 12 3.4 机架的选择................................................................................................... 13 3.5 电池和充电器 ............................................................................................... 13 3.5.1 电池的选择 ................................................................................................ 14 3.5.2 电池使用注意事项 .................................................................................... 14 3.5.3 充电器 ....................................................................................................... 14 3.6 遥控器 .......................................................................................................... 15 3.7 飞控板 .......................................................................................................... 15 3.7.1 STM32F103 单片机简介 ............................................................................. 16 3.7.2 陀螺仪加速度计传感器 MPU6050 简介 ..................................................... 17 3.7.3 其它传感器简介 ........................................................................................ 18 3.7.4 电源模块 ................................................................................................... 18
四旋翼无人机小论文介绍
四旋翼⽆⼈机⼩论⽂介绍四旋翼⽆⼈机⾃适应导航控制通过在课堂上⽼师讲解的关于导航和制导的⼀些基本知识,我对导航这门学问产⽣了极其浓厚的兴趣。
在课下,我通过⾃⼰查找⼀些相关的⽂献和资料对于导航的知识进⾏了进⼀步的学习,下⾯我将针对“四旋翼⽆⼈机⾃适应导航控制”这篇论⽂,对我学习到的⼀些基础知识进⾏⼀下简要的介绍。
但由于时间以及知识储备有限,所以并没有作深⼊的研究。
⾸先,本篇论⽂主要研究的内容是四旋翼(Quadrotor)⽆⼈机的导航问题。
解决了传统导航⽅法的⽬标定位误差和实时性差等问题。
主要采取的控制⽅法是基于CLOS技术的导航控制⽅法。
下⾯我将针对论⽂中的每个部分进⾏简要的介绍,并阐述⼀下我所学习到的⼀些基本知识。
1. 引⾔在第⼀部分“引⾔”中,作者主要针对现阶段四旋翼⽆⼈机在国内外的⼀些基本发展现状进⾏了简要的介绍,并说明了本篇论⽂所解决的问题所具有的⼀些实际的意义,最后概括的介绍了基于CLOS技术的导航控制⽅法的⼀些基本情况。
通过查阅相关资料,我主要有以下两个⽅⾯的收获:第⼀,是关于四旋翼⽆⼈机的基本发展情况的了解。
从国内情况来看,国内四旋翼⽆⼈机的研究⽔平相对滞后,同⼀些科技相对发达的国家尚有⼀定差距;其次,国内的⽆⼈机研究近些年来主要集中在北航,南航等⼀些知名的院校,主要研究的课题包括⽆⼈机的⾃主导航试飞等⽅⾯。
从总体情况来看,国内的四旋翼⽆⼈机领域开发不深,有许多可以深⼊探究的地⽅。
与国内相⽐,国外的四旋翼⽆⼈机研究⽔平则相对较⾼,国外⽆⼈机的发展在⼀定程度上是和⼀些科研竞赛是息息相关的。
⽐较知名的如“国际空中机器⼈⼤赛(IARC)”,该项赛事在⼀定程度上反映了国际上对⽆⼈机研究的程度,是⼀项国际公认的⽐赛。
此外,我还了解到了⽆⼈机的发展历史,下⾯做简要的阐述:1.1907年,法国Breguet兄弟制造了第⼀架四旋翼式直升机Breguet -Richet “旋翼机 1 号”,这次飞⾏中没有⽤到任何的控制,所以飞⾏稳定性是很差。
四旋翼飞行器飞行控制系统研究与设计
四旋翼飞行器飞行控制系统研究与设计四旋翼飞行器是无人机中常见的一种飞行器类型,在军事、民用等领域有着广泛的应用。
而对于这种飞行器,飞行控制系统的研究与设计是其性能和稳定性的关键。
一、四旋翼飞行器的工作原理四旋翼飞行器是一种通过四个独立的旋翼进行飞行的飞行器。
它的工作原理是通过调节不同旋翼的转速和倾斜角度,控制飞行器的姿态和飞行方向。
通过这种方式,飞行器可以实现上下、前后、左右的飞行运动,并且可以在空中悬停。
二、四旋翼飞行器飞行控制系统基本组成四旋翼飞行器的飞行控制系统主要由传感器、控制算法和执行器三部分组成。
传感器用于获取飞行器的姿态和状态数据,控制算法用于根据传感器数据计算控制指令,执行器则用于执行控制指令,调节旋翼的转速和倾斜角度。
1. 传感器传感器是飞行控制系统的数据获取部分,主要用于获取飞行器的姿态、位置和运动状态等数据。
常见的传感器包括陀螺仪、加速度计、磁力计、气压计等。
陀螺仪用于测量飞行器的角速度,加速度计用于测量飞行器的加速度,磁力计用于测量飞行器的方向,气压计用于测量飞行器的高度。
这些传感器可以提供给控制算法所需的姿态和状态数据,为飞行器的控制提供支持。
2. 控制算法控制算法是飞行控制系统的核心部分,它主要用于根据传感器数据计算控制指令,调节飞行器的姿态和飞行状态。
常见的控制算法包括PID控制、模糊控制、自适应控制等。
PID控制是一种经典的控制算法,它通过比例、积分和微分三部分组成,可以根据误差信号调节执行器输出,实现对飞行器的精确控制。
模糊控制是一种基于模糊逻辑的控制方法,可以处理复杂的非线性系统,对于四旋翼飞行器的控制具有一定的优势。
自适应控制是一种基于自适应参数的控制方法,可以根据飞行器的动态特性实时调节控制参数,适应不同的飞行环境和工况。
3. 执行器执行器是飞行控制系统的执行部分,主要用于控制飞行器的旋翼转速和倾斜角度,调节飞行器的姿态和飞行状态。
常见的执行器包括电动调速器、舵机等。
四轴飞行器毕业设计论文
四轴飞行器毕业设计论文
摘要:
本文主要介绍了一种四轴飞行器的设计与实现,以满足特定的需求。
通过对四轴飞行器的设计原理、结构、控制方法以及相关技术的介绍和分析,实现了飞行器的简单控制和稳定飞行。
通过实验验证了该设计的可行
性和优越性,为今后更复杂的四轴飞行器的设计提供了一定的基础和参考。
1.引言
2.设计原理
3.设计结构
本文设计的四轴飞行器采用过程控制方式,使用材料和组件包括主控
制器、电池、电机、螺旋桨等。
四个电机驱动四个螺旋桨,通过调节螺旋
桨的转速来实现飞行器的悬停和飞行。
4.控制方法
本文中采用PID控制器来实现对四轴飞行器的控制。
PID控制器可以
根据感知系统的反馈信号实时调整螺旋桨的转速,使飞行器能够在空中保
持平稳的飞行状态。
5.相关技术
在四轴飞行器的设计和实现过程中,涉及到的相关技术包括姿态测量、位置测量、通信协议、无线传输等。
通过这些技术的应用和优化,可以提
高飞行器的性能和使用体验。
6.实验与结果
通过实验验证了该设计的可行性和优越性。
实验结果表明,飞行器能够实现定点悬停、平稳飞行的任务,并具有较好的稳定性和控制性能。
7.结论
本文设计了一种简单的四轴飞行器,并实现了其控制和稳定飞行。
通过对该设计的分析和实验验证,证明了其可行性和优越性。
今后可以基于该设计进一步优化和发展更复杂的四轴飞行器。
全国电赛四旋翼论文汇总共四份
2013年全国大学生电子设计竞赛四旋翼自主飞行器(B题)【本科组】2013年9月7日摘要:本系统由数据采集、数据信号处理和飞行姿态和航向控制部分组成。
系统选用瑞萨R5F100LEA单片机作为主控芯片,对从MPU-6050芯片读取到的一系列数据进行PID算法处理并给飞行器的电调给出相应指令从而达到对飞行器的飞行姿态的控制。
采用MPU-6050芯片采集四旋翼飞行器的三轴角速度和三轴角加速度数据。
用红外传感器来检测出黑色指示线,以保证飞行器不脱离指定飞行区域及达到指定圆形区域。
利用超声波传感器来检测飞行器与地面的距离,以保证飞行器能越过一米示高线。
利用电磁铁来吸取和投放铁片。
关键词:瑞萨R5F100LEA单片机MPU-6050模块红外传感器循迹电磁铁拾取铁片超声波测距PID算法1目录1系统方案 (3)1.1控制系统的选择 (3)1.2飞行姿态控制的论证与选择 (3)1.3高度测量模块的论证与选择 (3)1.4电机调速模块的选择 (3)1.5循迹模块的方案选择 (3)1.6薄铁片拾取的方案的论证与选择 (3)1.7角速度与角加速度测量模块选择 (4)2设计与论证 (4)2.1控制方法设计 (4)2.1.1降落及飞行轨迹控制设计 (4)2.1.2飞行高度控制设计 (4)2.1.3飞行姿态控制设计 (5)2.1.4铁片拾取与投放控制设计 (5)2.2参数计算 (5)3电路与程序设计 (6)3.1系统组成 (6)3.2 原理框图与各部分电路图 (6)3.2.1原理框图 (6)3.3系统软件与流程图 (6)4测试方案与测试结果 (7)4.1测试方案 (7)4.2测试条件与仪器 (7)4.3测试结果分析 (7)5结论 (8)附录 (8)附一:元器件明细表 (8)附二:仪器设备清单 (8)附三:源程序 (8)2一系统方案本系统主要由控制模块、薄铁片拾取、高度测量模块、电机调速模块、循迹模块、角速度和角加速度模块组成,下面分别论证这几个模块的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本文对四桨碟形飞行器进行了初步的研究和设计。
首先,对飞行器各旋翼的升力做了测试,分析了升力产生效率与PWM频率的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。
本飞行器采用R5F100LE单片机为主控制器,通过四元数算法处理传感器MPU6050采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。
整个控制系统包括电源模块、角度传感器模块、电子调速模块、超声波测距模块及微处理器模块等。
角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。
本系统经过飞行测试,可以达到设计要求。
关键字:R5F100LE单片机、角度传感、PWM频率、PID控制。
目录1系统方案 (2)1.1 电子调速模块的选择 (2)1.2角度传感模块的论证与选择 (2)1.3 超声波测距的选择 (3)1.4 电源的论证与选择 (3)2系统理论分析与计算 (3)2.1 控制理论的分析 (3)2.1.1控制方式 (3)2.1.2 PID算法 (4)2.1.3 PID计算 (4)3电路与程序设计 (4)3.1电路的设计 (4)3.1.1系统总体框图 (4)3.1.2 电机驱动电路 (5)3.1.3 HC-SR04子系统电路 (6)3.1.4电源 (6)3.2程序的设计 (6)3.2.1程序功能描述 (6)3.2.2主程序流程图 (6)4测试方案与测试结果 (7)4.1测试方案 (7)4.2 测试条件与仪器 (10)4.3 测试结果及分析 (10)4.3.1测试结果(数据) (11)4.3.2测试分析与结论 (11)附录1:电路原理图 (12)附录2:源程序 (14)四旋翼自主飞行器()1系统方案本系统主要由电子调速模块、角度传感模块、超声波测距模块、电源模块组成,下面分别论证这几个模块的选择。
1.1 电子调速模块的选择由于飞行器需要强大的动力,普通的电机不适合飞行器的开发,无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。
它具有可靠性高、无换向火花、机械噪声低等优点,更重要的是无刷电机经常被使用在控制要求比较高,转速比较高的设备上,如航模,精密仪器仪表等对电机转速控制严格,转速达到很高的设备上。
所以我们采用A2208型号无刷电机,通过电子调速器根据R5F100LE单片机控制PWM的占空比输出的大小来控制电机,使这个电子调速模块能准确实时的控制电机的转速,来控制飞行器的各项指标。
1.2角度传感模块的论证与选择方案一:采用角度传感器:这个模块实际上是加速度传感器,内部是测X,Y,Z轴方向上的三个加速度,然后单片机或者arm通过读取三个加速度值,通过反正切artan 运算来算出角度值。
因为是间接得到,所以在外部设备有抖动的状态下误差较大,一般还动过一个陀螺仪得出的角速度值,两者通过卡尔曼滤波融合,得到一个相对抗扰动的角度值。
方案二:采用陀螺仪mpu6050模块: 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。
人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。
陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。
然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
陀螺仪的作用是测定加速度的矢量,优点是不受磁场影响。
最终方案:相比较后,我们认为mpu6050模块较适合飞行器姿态的控制,最终选择方案二。
1.3 超声波测距的选择我们采用HC-SR04模块进行超声波测距,来控制飞行高度。
HC-SR04模块能提供2cm--400cm的非接触式距离感测功能,其基本工作原理为采用IO口TRIG触发测距,给至少10us的高电平信号,模块自动发送8个40khz的方波,自动检测是否有信号返回,有信号返回通过IO口ECHO输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。
测试距离=(高电平持续的时间*声速(340m/s))/2。
基于它的工作原理,我们决定用HC-SR04来采集数据来控制飞行器的飞行高度。
1.4 电源的论证与选择方案一:采用铅酸电池:铅酸电池(VRLA),是一种电极主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。
铅酸电池荷电状态下,正极主要成分为二氧化铅,负极主要成分为铅;放电状态下,正负极的主要成分均为硫酸铅。
方案二:采用锂聚合物电池:它也是锂离子电池的一种,但是与液锂电池(Li-ion)相比具有能量密度高、更小型化、超薄化、轻量化,以及高安全性和低成本等多种明显优势,是一种新型电池。
在形状上,锂聚合物电池具有超薄化特征,可以配合各种产品的需要,制作成任何形状与容量的电池。
该类电池可以达到的最小厚度可达0.5mm。
相同容量的铅酸电池比锂聚合物电池便宜很多,但重量比锂聚合物电池重很多!而飞行器的载重能力有限,所以最终选择方案二锂聚合物电池。
2系统理论分析与计算2.1 控制理论的分析2.1.1控制方式本次比赛的难点在于如何使飞行器在空中较好的实现平衡控制,然后使其进行巡线飞行和降落。
文中所研究的四旋翼结构属于X型分布即螺旋桨M1和M4与M2和M3关于X轴对称螺旋桨M1和M2与M3和M4关于Y轴对称如图1所示对于四旋翼的模型践行简单的数学物理建模。
通过陀螺仪返回的留个数据进行四元数拟合处理得到空间欧拉角。
然后返回给系统进行闭环PID控制。
2.1.2 PID算法当被控对象的结构和参数不能完全掌握或得不到精确的数学模型,控制理论的其他技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便. 即使当我们不完全了解一个系统和被控对象,或是不能通过有效的测量手段来获得系统参数时,也适合采用PID 控制技术.PID 控制器就是根据系统的误差,利用比例、积分、微分计算。
2.1.3 PID计算PID计算方式如图2-1所示。
图2-1 PID计算方式经过测算和推导,我们得出了PID的计算公式为2-1。
(2-1)在该飞行器系统中,PID各个参数经过调试得出:K=1P=300I=0D=1253电路与程序设计3.1电路的设计3.1.1系统总体框图系统总体框图如图3-1所示。
图3-1系统总体框图3.1.2 电机驱动电路图3-2电机驱动系统电路3.1.3 HC-SR04子系统电路图3-3 HC-SR04子系统电路3.1.4电源电源由变压部分、滤波部分、稳压部分组成。
为整个系统提供5V或者12V电压,确保电路的正常稳定工作。
这部分电路比较简单,都采用三端稳压管实现,故不作详述。
3.2程序的设计3.2.1程序功能描述根据题目要求软件部分主要实现传感检测和PWM输出的更改。
(1)传感检测功能:设置高度和角度的输出信号类型。
(2)PWM输出:根据检测的数据,通过PID算法更改PWM的输出。
3.2.2主程序流程图图3-4 主程序流程图4测试方案与测试结果4.1测试方案1、硬件测试测量飞行器距离地面距离使用超声波模块。
之前没有使用过瑞萨单片机,所以先用51单片机编程用1602显示超声波所测就离进行调试。
然后再将51单片机的程序改到瑞萨单片机里。
飞行器的不确定因素很多,最先使用电源箱进行测试比使用电池更容易控制。
为防止飞行器飞出伤人,用四根结实的尼龙绳将飞行器的四个底座固定在地面进行基础测试。
2、软件仿真测试配置仿真器图4-1 选择仿真器图4-2 配置仿真器(1)如图4-1所示,CubeSuite+ 适用多种仿真器(IECUBE、E1、E20、EZ Emulator、 Simulator),在 Project Tree Panel 中单击 RL78 Simulator 右键,选择 Using Debug ToolRL78 E1,为本次调试选用仿真器 E1 。
(2)如图4-2所示,在 Project Tree Panel 中双击 RL78 E1(Serial),开启 Property 窗口,设置 E1 输出 5V 驱动电源。
下载目标文件目标文件就是由用户程序编译成的二进制文件,扩展名是 *.lmf。
CubeSuite+面板上的 Download (快捷键 F6 ) 按钮,或从菜单中选择Debug– > Build & Download ,即可开始下载目标文件。
执行与停止程序下载目标文件后,自动启动如下窗口。
源程序区执行按钮汇编程序区图4-3 CubeSuite+ 调试主面板(1)执行程序:点击主面板工具栏上的执行按钮(快捷键 F5),或从Debug 菜单中选择 Go。
(2)单步执行:点击主面板工具栏上的 Execution Step in 按钮(快捷键 F11),或从 Debug 菜单中选择 Step in。
( Execution Step over 按钮(快捷键F10)也是单步执行,但执行时,将整个函数作为一步,跳过函数实现代码。
)(3)停止执行:在程序执行期间,按停止按钮(快捷键 Shift+F5),或从 Debug 菜单中选择 Stop。
(3)重启:点击重启钮(快捷键 Ctrl+F5),或从 Debug 菜单中选择 CPU Reset,无论程序是否在执行,都可以执行重启操作。
调试功能变量监控功能(1)观察变量:在代码中,选择用户需要观察的变量,单击右键,选择 Register to Watch1,将变量添加到 W atch 1窗口,这样就可以观测到该变量的当前值。
随着程序的执行,变量的值也会刷新。
图4-4 启动变量监控图4-5 Watch 窗口(2)修改变量值:在 Watch 窗口的显示变量值(Value)区域,双击需要改变的变量值,即可修改该变量的值。
通过这种操作,就可以在调试中很方便地测试变量的各种数值,而不必重新修改和编译程序。
这个监控功能也可以用来观察和修改 SFR 的值。
Action Event 功能通过简单的设定,Action Event 功能可以方便的显示调试中的变量的变化。
(1)开启 Action Event 功能:在代码中,选择用户需要观察的变单击右键,选择 Register Action Event,开启 Action Event 对话框,设定输出名称。
○1输出名称○K图4-6 开启 Action Event 功能图4-7 3.8 Action Event 对话框设定完成后,该变量的行就会显示红色,并且在行号旁边显示 Action Event 标志。
程序执行时,在 OutPut Panel 中,根据程序的运行情况,会输出该变量的变化过程。
(2)关闭 Action Event 功能:程序停止时,在设定变量的行,选中 Action Event 标志,单击右键,选择 Delete Events ,关闭 Action Event 功能。