函数及其图像
常见三角函数图像及其性质
常见三角函数图像及其性质三角函数介绍正弦函数主词条:正弦函数格式:sin(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数函数图像:波形曲线值域:[]1,1-余弦函数主词条:余弦函数格式:cos(θ)作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数函数图像:波形曲线值域:[]1,1-正切函数主词条:正切函数格式:tan(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。
函数图像:上图平面直角坐标系反映值域:()∞-∞,+余切函数主词条:余切函数格式:cot(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数值域:()∞-∞,+正割函数主词条:正割函数格式:sec(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角邻边长度的比值求出,函数值为上述比的比值,也是cos(θ)的倒数函数图像:上图平面直角坐标系反映值域:(][)∞-1-,1∞,+余割函数主词条:余割函数格式:csc(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角对边长度的比值求出,函数值为上述比的比值,也是sin(θ)的倒数值域:(][)∞-1-∞,+,1。
高中数学的所有重要函数图像及其性质图像特点单调性定义域值域
数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。
可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
高中常见函数图像及基本性质
常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。
补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。
函数图像总结
函数图像总结函数图像总结函数图像总结一基本函数图像1y=kx(x≠0)2y=kx+b(k≠0)3y4yax2bxc(a0)5yxa6yxk(k0)xk(k0)7yax(a 0,a1)x8ylogax(a0,a1)二抽象图像平移f(x)f(x+1)f(x)f(x-1)f(x)f(x)+1f(x)f(x)-1f(x)f(2x)f(x)2f(x) f(x)f(2x+2)y=f(-x)变成y=f(-x+2)练习:cosxcos2xcos2xcos(2x+4)cosxcos2x+4三图像的变换1f(x)f(|x|)保留y轴右边的,左边关于右边y轴对称2f(x)|f(x)|保留x轴上方的,下方关于x轴对称3f(x)f(-x)y轴对称4f(x)-f(x)x轴对称5f(x)-f(-x)原点对称6f(x)f(|x+1|)先根据1方法变成f(|x|),在向左平移一个单位得到f(|x+1|)7f(x)f(|x|+1)先向左平移一个单位得到f(x+1),再根据1方法变成f(|x|+1)8f(x)与f1(x)的图象关于直线yx对称联想点(x,y),(y,x)9f(x)与f(2ax)的图象关于点(a,0)对称egf(x)= 2x与g(x)=-2x关于对称一、函数yf(x)与函数yf(x)的图象关系函数yf(x)的图象是由yf(x)的图象经沿y轴翻折180°而得到的(即关于y轴对称)。
注意它与函数yf(x)满足f(x)f(x)的图象是不同的,前者代表两个函数,后者表示函数yf(x)本身是关于y轴对称的。
(二)伸缩变换及其应用:函数yaf(bx)的图像可以看作是由函数yf(x)的图像先将横坐标伸长(|b|<1)或缩短(|b|>1)到原来的1倍,再把纵坐标伸长(|a|>1)或缩短(|a|<1)到原来的|a|倍即可得到。
如:|b|1的图像x1要求:1会画y=|x+1|y=-2会画f(x)=lg|x|以及f(x)=|lgx|3会画f(x)=|lg|x+1||以及f(x)=x2-4|x|+5f(x)=|x2-2x-3|二1由图像可知f(x+1)为偶函数对称轴为2由图像可知f(x+1)为奇函数关于点(,)对称Eg、对a,bR,记max{a,b}=(A)0(B) a,ab,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值是b,a<b13(C)(D)3901(选讲)1、yf(x)绕原点顺时针方向旋转;yf(x)12、yf(x);yf (x)绕原点逆时针方向旋转9000yQP(a,b)(yf(x)yQ1xP1(b,a)(yf1(x))P(a,b)(yf(x)0P1(b,a)1(yf(x))0(乙)x(甲)(图五)0说明:关于绕原点旋转180的变换实际上就是关于原点对称的问题。
函数图像 课件-函数及其图像
因为x表示的实际含义是正方形的边长, 边长只能为正。
2021/6/1
计算并填写下表: x 0 0.5 1 1.5 2 2.5 3
S=x2( x>0) 0 0.25 1 2.25 4 6.25 9
如果我们在直角坐标系中,将你所填表格中的自变量x 及对应的函数值S当作一个点的横坐标与纵坐标,即可在 坐标系中得到一些点。
24 t/h
活动结论:
1.一天中每时刻t都有唯一的气温T与之对应.可以认为, 气温T是时间t的函数.
2.这天中凌晨4时气温最低为一3℃,14时气温最高为8℃.
3.从0时至4时气温呈下降状态,即温度随时间的增加而下 降.从4时至14时气温呈上升状态,从14时至24时气温又呈下 降状态. 4.我们可以从图象中直观看出一天中气温变化情况及任一 时刻的气温大约是多少.
在菜地浇水 从菜地到玉米地 给玉米地锄草
y/千米
2
2021/6/1
1.1小 明
o 15 25 37 55
80 x/分
你能回答下列问题了吗?
1.从家到菜地用了多少时间? 菜地离小明家有多远?
2.小明给菜地浇水用了多少时间?
y/千米
2
3.从菜地到玉米地用了多少时间? 菜地离玉米地有多远?
4.小明给玉米地锄草用了多少时间?
2021/6/1
x 0 0.5 1 1.5 2 2.5 3 …
同但
S=x2 (x>0)
0
0.25
1 2.25 4
6.25
9
S
…
时实 表根际 示据上 与描出我们
xs
9
S=x2(x>的对0)的点描出
6.25
河南专升本六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y=C(其中C为常数);αy=x y=x2y=x3R R RR[0,+∞)R奇偶奇增[0,+∞)增增(-∞,0]减y y=x2 y=x2x-1O1)当α为正整数时,函数的定义域为区间为x ∈(-∞,+∞),他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数;3)当α为正有理数m 时,n 为偶数时函数的定义域为(0,+∞),n 为奇数时函数的定义域为(-n∞,+∞),函数的图形均经过原点和(1,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数y =a x(x 是自变量,a 是常数且a >0,a ≠1),定义域是R ;[无界函数]1.指数函数的图象:y(0,1)Oy =ax(a >1)y =1xy =ax(0<a <1)y(0,1)Oy =1x2.指数函数的性质;1))当a >1时函数为单调增,当0<a <1时函数为单调减;2))不论x 为何值,y 总是正的,图形在x 轴上方;3))当x =0时,y =1,所以它的图形通过(0,1)点。
⎩=*=3.(选,补充)指数函数值的大小比较a ∈N *;a.底数互为倒数的两个指数函数⎛1⎫xf (x )=a x,f (x )= ⎪⎝a ⎭的函数图像关于y 轴对称。
h (x )=3xf (x )=2xy(0,1)b.1.当a >1时,a 值越大,y =a x的图像越靠近y 轴;Ox⎛1⎫xg (x )= ⎪y⎝3⎭⎛1⎫xq (x )= ⎪b.2.当0<a <1时,a 值越大,y =a x的图像越远离y 轴。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。
且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。
函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。
三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。
(完整版)高中化学常见函数图像
完整版)高中化学常见函数图像1.引言在高中化学学习中,我们经常会遇到各种各样的函数图像,这些函数图像代表了不同化学反应的关系式。
掌握常见的化学函数图像可以帮助我们更好地理解和分析化学反应的特性和规律。
本文将介绍高中化学中常见的函数图像及其特点。
2.常见的化学函数图像2.1 直线函数图像直线函数图像在化学中常用来描述比例关系或线性规律。
在化学实验中,当两个物质的反应遵循简单的比例关系时,函数图像往往是一条直线。
直线函数图像的特点是斜率恒定,代表了化学反应的恒定速率。
2.2 指数函数图像指数函数图像在化学中常用来描述指数衰减或指数增长的情况。
例如,放射性衰变反应的速率就遵循指数函数规律。
指数函数图像的特点是曲线逐渐上升或下降,且增长或衰减的速度逐渐加快。
2.3 对数函数图像对数函数图像在化学中常用来描述浓度和反应速率之间的关系。
当反应速率与浓度呈指数关系时,函数图像往往是一条对数曲线。
对数函数图像的特点是曲线呈现逐渐平缓的增长或衰减趋势。
2.4 正弦函数图像正弦函数图像在化学中常用来描述周期性变化的情况。
例如,电化学反应中的电势变化往往呈现正弦函数规律。
正弦函数图像的特点是周期性波动,曲线呈现出波峰和波谷的交替变化。
2.5 反比例函数图像反比例函数图像在化学中常用来描述浓度和反应速率之间的关系。
当反应速率与浓度呈反比关系时,函数图像往往是一条反比例曲线。
反比例函数图像的特点是曲线逐渐趋于水平轴,并且在某个点处存在间断。
3.总结掌握常见的化学函数图像有助于我们更好地理解和分析化学反应的规律和特性。
直线函数图像代表了恒定速率,指数函数图像代表了增长或衰减的速度逐渐加快,对数函数图像代表了增长或衰减的速度逐渐减慢,正弦函数图像代表了周期性变化,反比例函数图像代表了反比关系。
通过对这些函数图像的分析,我们可以更深入地理解和应用化学知识。
以上就是关于高中化学常见函数图像的介绍。
希望本文能帮助到你在学习中的理解和应用。
函数图像及其变换
1. f(x)=|x-1|的图象为如下图所示中的 ( )
【解析】 【答案】 B
2. (湖北卷)函数 y e |ln x| | x 1 |的图象大致是
D
( D
)
(D )
3.为了得到函数 y=2 -1 的图象,只需 把函数 y=2x 的图象上所有的点( ) A.向右平移 3 个单位长度,再向下平移 1 个单位长度 B.向左平移 3 个单位长度,再向下平移 1 个单位长度 C .向右平移 3 个单位长度,再向上平移 1 个单位长度 D.向左平移 3 个单位长度,再向上平移 1 个单位长度
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
图象变换法:常用变换方法有4种,即平移变换、 翻折变换、伸缩变换和对称变换
y f (2a x)
a 对称的解析式为
④函数 y f ( x) 的图象关于点 (a, 0) 对称的解析式为
y f (2a x)
1 ⑤函数 y f ( x) 和 y f ( x) 的图象关于直线 y=x 对称 .
【例1】 作出下列函数的大致图象
(1) y ( x 1) 1 (2) y log 2 ( x ) 1 (3) y 2
2.函数图象的画法 函数图象的画法有两种常见的方法:一是描点法; 二是图象变换法 描点法:描点法作函数图象是根据函数解析式, 列出函数中x,y的一些对应值表,在坐标系内描出 点,最后用平滑的曲线将这些点连接起来 .作图时, 要与研究函数的性质结合起来
函数图像及其变换课堂PPT
②上下平移: y=kk<>00时时―,,下―上移移→|kk个|个单单位位f(x) y=__f(_x_)+__k_.
(2)伸缩变换 ①y=Af(x)(A>0)的图象,可将y=f(x)的图象上所有点的 纵坐标变为原来的 A 倍,横坐标 不变 而得到; ②y=f(ax)(a>0)的图象,可将y=f(x)的图象上所有点的 横坐标变为原来的 倍,纵坐标 不变 而得到.
1.f(x)=|x-1|的图象为如下图所示中的 ( B)
2.为了得到函数 y=2x-3-1 的图象,只需 把函数 y=2x 的图象上所有的点( A ) A.向右平移 3 个单位长度,再向下平移 1 个单位长度 B.向左平移 3 个单位长度,再向下平移 1 个单位长度 C.向右平移 3 个单位长度,再向上平移 1 个单位长度 D.向左平移 3 个单位长度,再向上平移 1 个单位长度
探究提高 (1)若函数解析式中含绝对值,可先通过讨 论去绝对值,再分段作图. (2)利用图象变换作图.
1.作函数图象的一般步骤为:
(1)确定函数的定义域.
(2)化简函数解析式.
(3)讨论函数的性质(如函数的单调性、奇偶 性、周期性、最值、极限等)以及图象上的 特殊点(如最值点、与坐标轴的交点、间断 点等)、线(如对称轴、渐近线等). (4)选择描点法或图象变换法作出相应的函数 图象.
【解析】 由奇函数的图象关于原点对称, 画出x∈[-5,0]的图象,可知不等式f(x)<0的解 集是(-2,0)∪(2,5].
【答案】 (-2,0)∪(2,5]
作出下列函数的图像.
(1) y 1 (lg x | lg x |); 2
(2)y 2x 1 ; x 1
(3) y ( 1 )|x|. 2
高考中所有的函数图像大汇总
高考中所有的函数图像大汇总 专项二 高考用到的函数图像总结高考中用到的函数图像是指:一次函数图像、反比例函数图像、二次函数图像、幂函数图像(五种)、对勾(也称对号)函数图像、指数函数图像、对数函数图像、简单的三角函数图像、简单的三次函数图像一、一次函数图像(1)函数)0(≠+=k b kx y 叫做一次函数,它的定义域是R ,值域是R ; (2)一次函数的图象是直线,这条直线不能竖直,所以一次函数又叫线性函数;(3)一次函数)0(≠+=k b kx y 中,k 叫直线的斜率,b 叫直线在y 轴上的截距; 0>k 时,函数是增函数,0<k 时,函数是减函数;注意截距不是距离的意思,截距是一个可正可负可为零的常数 (4)0=b 时该函数是奇函数且为正比例函数,直线过原点;0≠b 时,它既不是奇函数,也不是偶函数; (5)作一次函数图像时,一般先找到在坐标轴上的两个点,然后连线即可 二、反比例函数图像 (一)反比例函数的概念1.()可写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可写成xy=k 的形式,用它可迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x 轴、y 轴无交点.(二)反比例函数及其图象的性质函数解析式:(),自变量的取值范围:越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图1 图2 三、二次函数图像(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减对称性函数的图象关于x=-b2a对称(2)我们在做题的时候,作比较详细的二次函数图像,需要作出开口方向、对称轴所在位置、与两个坐标轴的交点位置、顶点所在位置,而不能随手一条曲线,就当做二次函数的图像了。
函数及其图像(课堂PPT)
集合:A,B,C…表示;元素:a,b,c…表示
函数与极限
4
2.实数与数轴
实数R有理数Q分 整数 数(Z12负非, 整 负86 ,数 整)( 数(1,自2然,数集nN,:0),1,2, )
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故定义域是[-3, -1].
函数与极限
28
例3 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2. 函数中根式,要求负数不能开偶次方
3. 函数中有对数式,要求真数必须大于零
4. 函数中有对数式和反三角函数式,要求符合它们定义域
5. 若函数式是上述各式的混合式,则应取各部分定义域
的交集
函数与极限
20
例1 求下列函数的定义域
(1()1(y)1y)y44411x1x22x2 xxx222; ;
((22()2)y)yylglgxlxg11;x; 1 ; x x22x 2
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U 0
(t )
E
0
2
即U 2E (t )
函数与极限
29
当 t (,) 时, U 0.
U
( , E)
2
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;.当10<<a 时,a 值越大,xa y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m aa a +=⋅(2)nm nmaa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R 3 { (x ,y ,z )|x ,y ,z R }
A
4.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a ,b R ,且 a b .
{xaxb}称为开区间, 记作 (a, b)
oa
b
x
{xaxb} 称为闭区间,记作 [a, b]
oa
b
x
{xaxb} 称为半开区间, 记作[a, b)
2
E
o
2
(,0) t
单三角脉冲信号的电压
U 0
(t )
E
0
2
即 U2E(t)
当 t (,) 时 ,U0. U ( , E)
2
UU(t)是一个分段,函E 数
其表达式为
o
(,0) t
2
2Et,
t[0,] 2
U(t)2E0(t, ),
t(,] 2
t(,)
例4.
已知函数yf(x) 1 2x x,,
6.绝对值:
aaa
a0 a0
运算性质:
abab;
(a0)
a a; bb
a b a b a b .
绝对值不等式:
xa(a0)
a x a ;
xa(a0)
x a 或 x a ;
1.1.2 函数 常量 变量
在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母 a, b, c 等表示常量, 用字母 x, y, t 等表示变量.
第一章 函数、极限与连续
分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
第一章 函数与极限
1.1 函数及其图像 1.2 函数极限 1.3 无穷小量与无穷大量 1.4 数列的极限 1.5 两个重要极限 1.6无穷小的比较 1.7 连续函数及其性质
1.1 函数及其图像
• 一、集合 • 二、常量、变量、函数 • 三、函数的初等性质 • 四、函数的初等运算 • 五、基本初等函数与初等函数 • 六、函数关系的建立
1. 函数中有分式,要求分母不能为零 2. 函数中根式,要求负数不能开偶次方 3. 函数中有对数式,要求真数必须大于零 4. 函数中有对数式和反三角函数式,要求符合它们定义域 5. 若函数式是上述各式的混合式,则应取各部分定义域 6. 的交集
例1 求下列函数的定义域
111 (1()1(y)1y) y xxx 22 2 ;;
: 表示“存在一个”、“至少有一个”
“ x 使得 (x 1 )(x 1 )0 ”
: 表示“蕴含”,“可推出”
“x 1 x 1 0 ” “ ysinx |y| 1 ”
: 表示“当且仅当”、“充分必要”、“等价”
“ x{1,2} x满足方程 x23x20”
在逻辑推理过程中最常用的两个逻辑记号
记 为W , 显 然 W B ,
⑶ 若 x 0 D , 则 称 函 数 f ( x ) 在 x 0 处 有 定 义 , 函数 f(x)在 x0处 的 函 数 值 记 为f(x0) 或y|xx0 或f(x)|xx0;
⑷不同的对应法则表示不同的函数 , 如 y f ( x) 、
y g( x)、 y j( x)等等。
⑸ 函数有三种表示法:解析法 、图象法 、表格法.
⑹ 在解析法中 , 函数的解析式有两类:一类仅只有 一个解析式表示的函数 , 例如 : 圆的面积S 与半径R 的关
系是 SR2
另一类是由一个以上的解析式表示的函数,这种函数 在定义域内的不同范围用不同的解析式表示,这种函数称 为分段函数 。
例如 ,某市出租车的乘车费 y(元)与里程x(公里)之间 的关系是:
重点:函数的概念、初等函数 难点:复合函数
1.1.1 基础知识回顾
1.集合: 具有某种特定性质的对象(事物)的总体. 组成这个集合的对象称为该集合的元素.
aM, aM, A { a 1 ,a 2 , ,a n } 有限集(列举表示) M{xx所具有的}特 无限征集(命题式表示)
集合:A,B,C…表示;元素:a,b,c…表示
44 4 xx2 2 x2
((22()2)y)yylglgxlxg11;x; 1; xx22x2
(3 ()3 y ) yy a a ra rc c rs c sis in n in x x x 1 1 1 xx x 1 1 .. 3 3 3
解 ( 1 ) 因 为 4 - x 2 0 , 所 以 x 2 . 又 因 为 x 2 0 , 所 以 x 2 , 因 此 函 数 定 义 域 为 ( - 2 , 2 ) ( 2 , + ) .
x D 4 [ 2 ,4 ];
定义域是D D 1 D 2 D 3 D 4 (3 2, - 1) (1,4].
几个特殊的函数举例
y
(1) 绝对值函数
x, x0
O
x
yxx, x0
y
(2) 符号函数
1 当x0 ysgnx0 当x0
1 当x0
1
o
x
-1
xsgxn x
(3) 取整函数 y=[x]
y 4
定义 3 . 给定两个集合 A, B, 定义下列 运算:
并集 A B xxA或 xB
交集 A B xxA且 xB
AB
差集 A B xxA且 xB
余集 B A cA B (其 B 中 A )
B AB Ac
直积 A B (x ,y )xA, yB
RR记 R2 为平面上的全体点集 B AB
2.实数与数轴
实数 R有理Q数 分 整数 数 (Z12负 非 ,86整 负 ,)数 整 1,( 数 2, (n自 N , : 0) 然 ,1, 2, 数) 集
无理I( 数,e, 2,)
-1 O 1
x
实数系的连续性:实数的集合与数轴上的点的 集合一一对应
3.集合之间的关系
定义2 . 设有集合A,B,若 xA必有xB,则称
练 设 f ( x ) 2 5 x 2 1 a r c s i n x 1 ,
l g ( 2 x 3 )
3
求 f(x)的 定 义 域 .
解
25x20 2x30
2x31
x x D D1 2 [( 5 3 2,5 ,] ;); x D 3 { x |x 1 } ;
x1 1 3
f(x ) x 2 3 x
f(x 1 ) (x 1 )2 3 (x 1 ) x 2 5 x 4
例2 设 f(x ) 1 21 0 x x 2 1 ,求函 f(x 3 )的 数定 .
因为 f(x) 的定义域是[0, 2], 所以对f(x+3)的有0≤x+3≤2,
解 : f(x) 121 0 x x 2 1即域是-3[≤-x3≤, --11],故. f(x+3)的定义
y 6 6 (x 3 ) 1 .23 0 x x 3
注意:分段函数是一个函数 ,而不是几个函数。
函数的定义域
定 义 域 是 构 成 函 数 的 重 要 因 素 之 一 ,因 此 研 究 函 数 ,就 必 须 注 意 函 数 的 定 义 域 .在 考 虑 实 际 问 题 时 ,应 根 据 问 题 的 实 际 意 义 确 定 定 义 域 .例 如 ,匀 速 直 线 运 动 的 位 移 s=vt,t是 时 间 ,故 只 能 取 非 负 数 .对 于 用 数 学 表 示 的 函 数 ,其 定 义 域 由 函 数 表 达 式 本 身 来 确 定 , 即 使 运 算 有 意 义 .如 :
x0 x0
yx21
y2x1
例1 解下列各题
1 、 求 f(x)函 1数 x(3x)的 定 义
x1
x1
解: 3xx00或3xx00 0 x 1 x3,即 [0,1) (1,3]
2 、 设 f ( x 1 ) x 2 x 2 , 求 f ( x 1 )
解: tx令 1,则 xt1,
f(t)(t1)2(t1)2t23t
函数值全体组成的数集
W { y |y f(x ) ,x D } 称为函数的值域.
x D
f
f(x) W
函数的两要素: 定义域与对应法则.
约定: 如无特别指出,定义域是自变量所能取的 使算式有意义的一切实数值(自然定义域).
y
例 如y1x2 D :[1,1] y
例如 y 1 D :(1,1) 1x2
{xaxb} 称为半开区间, 记作 (a, b]
有限区间
[a,){x a x} (,b){x x b}
无限区间
oa
x (a,)
区间长度的定义:
ob
x (,b]
两端点间的距离(线段的长度)称为区间的长度.
5.邻域: 设a和 是两个实数,且 0.
数集 {x||xa|}称为点 a的 邻域.
点 a叫做这邻域的中心, 叫做这邻域的半径.
U(a,) {x||xa|}(a,a)
a
a
a
x
点 a的去心的 邻域,记作 U (a, )
U (a, ) { x|0 |x a |} (a ,a )(a ,a )
a
a
a x
几个逻辑符号
: 表示对“任意一个”、“对每一个”
“ x R ,1 x 2 0 ” “ , 0 ” .
( 2 ) 因 为 x - 1 > 0 , 所 以 x > 2 或 x < 1 , 所 以 函 数 定 义 域 为 ( - , 1 ) x - 2
( 2 , + ) ( 3 ) 因 为 - 1 x 3 + 1 1 , 所 以 - 3 x + 1 3 , 即 - 4 x 2 .
又 因 为 x + 1 0 , 所 以 x 1 , 因 此 函 数 的 定 义 域 为 1 , 2 .