人教版九年级数学上册《垂直于弦的直径》拓展练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《垂直于弦的直径》拓展练习
一、选择题(本大题共5小题,共25.0分)
1.(5分)一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB 是16dm,则截面水深CD是()
A.3 dm B.4 dm C.5 dm D.6 dm
2.(5分)如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB 的长为()
A.10 cm B.16 cm C.24 cm D.26 cm
3.(5分)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()
A.4B.5C.6D.6
4.(5分)乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()
A.4m B.5m C.6m D.8m
5.(5分)如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()
A.5米B.7米C.米D.米
二、填空题(本大题共5小题,共25.0分)
6.(5分)位于黄岩西城的五洞桥桥上老街目前正在修复,如图①是其中一处中式圆形门,图②是它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为.
7.(5分)如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB 为4.2米,则该隧道最高点距离地面米.
8.(5分)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于寸.
9.(5分)如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是mm.
10.(5分)王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB 为6m,则桥拱半径OC为m.
三、解答题(本大题共5小题,共50.0分)
11.(10分)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;
(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?
12.(10分)图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC
∥EF;从侧面看,它是扁平的,厚度为1.3cm.
(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.
(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.
13.(10分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,求此时排水管水面的宽CD.
14.(10分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?
15.(10分)在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.
①若油面宽AB=16dm,求油的最大深度.
②在①的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm?
《垂直于弦的直径》拓展练习
参考答案与试题解析
一、选择题(本大题共5小题,共25.0分)
1.(5分)一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB 是16dm,则截面水深CD是()
A.3 dm B.4 dm C.5 dm D.6 dm
【分析】由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC 中,根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.
【解答】解:由题意知OD⊥AB,交AB于点E,
∵AB=16,
∴BC=AB=×16=8,
在Rt△OBE中,
∵OB=10,BC=8,
∴OC==6,
∴CD=OD﹣OC=10﹣6=4.
故选:B.
【点评】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.
2.(5分)如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB 的长为()
A.10 cm B.16 cm C.24 cm D.26 cm
【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.
【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,
∵CD=8,OD=13,
∴OC=5,
又∵OB=13,
∴Rt△BCO中,BC==12,
∴AB=2BC=24.
故选:C.
【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.
3.(5分)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()
A.4B.5C.6D.6
【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.
【解答】解:∵OC⊥AB,OC过圆心O点,
∴BC=AC=AB=×16=8,
在Rt△OCB中,由勾股定理得:OC===6,
故选:D.
【点评】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC是解决问题的关键.
4.(5分)乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()
A.4m B.5m C.6m D.8m
【分析】连接OA,设OB=OC=x,则OD=8﹣x,根据垂径定理得出BD,然后根据勾股定理得出关于x的方程,解方程即可得出答案.
【解答】解:连接BO,
由题意可得:AD=BD=4m,设B半径OC=xm,
则DO=(8﹣x)m,
由勾股定理可得:x2=(8﹣x)2+42,
解得:x=5.
故选:B.
【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.
5.(5分)如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()
A.5米B.7米C.米D.米
【分析】根据垂径定理和勾股定理可得.
【解答】解:∵CD⊥AB,AB=10米,
由垂径定理得AD=5米,
设圆的半径为r,
由勾股定理得OD2+AD2=OA2,
即(7﹣r)2+52=r2,
解得r=米.
故选:D.
【点评】考查了垂径定理、勾股定理.特别注意此类题经常是构造一个由半径、半弦、弦心距组成的直角三角形进行计算.
二、填空题(本大题共5小题,共25.0分)
6.(5分)位于黄岩西城的五洞桥桥上老街目前正在修复,如图①是其中一处中式圆形门,图②是它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为1米.
【分析】根据垂径定理和勾股定理解答即可.
【解答】解:设该圆形门洞的半径为r,
∵AB过圆心O,且垂直CD于点B,
连接OC,在Rt△OCB中,可得:r2=(1.8﹣r)2+0.62,
解得:r=1,
故答案为:1米
【点评】此题考查垂径定理,关键是根据垂径定理和勾股定理解答.
7.(5分)如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB 为4.2米,则该隧道最高点距离地面 6.3米.
【分析】连接OA.由垂径定理可知AD=DB=2.1,利用勾股定理求出OD即可解决问题.【解答】解:连接OA.
∵OD⊥AB,
∴AD=DB=2.1米,
在Rt△AOD中,OD===2.8(米),
∴CD=OC+OD=6.3(米)
故答案为6.3.
【点评】解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.
8.(5分)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于26寸.
【分析】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD 的长求出DE的长,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB的长.
【解答】解:如图所示,连接OC.
∵弦CD⊥AB,AB为圆O的直径,
∴E为CD的中点,
又∵CD=10寸,
∴CE=DE=CD=5寸,
设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,
由勾股定理得:OE2+CE2=OC2,
即(x﹣1)2+52=x2,
解得:x=13,
∴AB=26寸,
即直径AB的长为26寸.
故答案为:26.
【点评】此题考查了垂径定理,勾股定理;解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.
9.(5分)如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是200mm.
【分析】先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.
【解答】解:∵⊙O的直径为1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC==300mm,
∴CD=OD﹣OC=500﹣300=200(mm).
答:水的最大深度为200mm.
故答案为:200.
【点评】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.10.(5分)王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB 为6m,则桥拱半径OC为5m.
【分析】连接OA,根据垂径定理求出AD,根据勾股定理列式计算即可.
【解答】解:连接OA,
∵OD⊥AB,
∴AD=AB=3,
在Rt△AOD中,OA2=OD2+AD2,即OC2=(9﹣OC)2+32,
故答案为:5.
【点评】本题考查的是勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键.
三、解答题(本大题共5小题,共50.0分)
11.(10分)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;
(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?
【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;
(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.
【解答】解:(1)连结OA,
由题意得:AD=AB=30,OD=(r﹣18)
在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,
解得,r=34;
(2)连结OA′,
∵OE=OP﹣PE=30,
∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,
∴A′B′=32.
∵A′B′=32>30,
∴不需要采取紧急措施.
【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
12.(10分)图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC ∥EF;从侧面看,它是扁平的,厚度为1.3cm.
(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.
(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.
【分析】(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.解直角三角形分别求出OG,OH即可解决问题;
(2)设盒子的高为xcm.根据S MNPQ=9,构建方程即可解决问题;
【解答】解:(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.
∵EF∥BC,
∴OH⊥EF,
∴BG=BC,EH=EF
∴GO==2.4;OH==2.08,
∴h=2.4+2.08+3.02=7.5cm.
(2)设盒子的高为xcm.
由题意:(22﹣2x)•=9
解得x=8或12.5(舍弃),
∴MQ=6,MN=1.5
∵2.6×2=5.2<6;1.3<1.5;7.5<8,
∴能装入盒子.
【点评】本题考查垂径定理,勾股定理,翻折变换,一元二次方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
13.(10分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,求此时排水管水面的宽CD.
【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:作OE⊥AB于E,交CD于F,
∵AB=1.2m,OE⊥AB,OA=1m,
∴OE=0.8m,
∵水管水面上升了0.2m,
∴OF=0.8﹣0.2=0.6m,
∴CF==0.8m,
∴CD=1.6m.
【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.
14.(10分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?
【分析】如图,作OM⊥AB于M,交AB于M,图中KN=3,作KF⊥CD于H,交⊙O 于F,连接OF.求出FK的值与4.9比较即可判断.
【解答】解:如图,作OM⊥AB于M,交AB于M,图中KN=3,作KF⊥CD于H,交⊙O于F,连接OF.
易知四边形OHKN是矩形,四边形ABCD是矩形,OH=KM=4,AB=CD=10,OF=
OD=5,
在Rt△OHF中,FH===3,
∵HK=BC=2.5,
∴FK=2.5+3=5.5,
∵5.5>4.9,
∴这辆卡车能安全通过这个隧道.
【点评】本题考查矩形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
15.(10分)在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.
①若油面宽AB=16dm,求油的最大深度.
②在①的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm?
【分析】①作OF⊥AB交AB于F,交圆于G,连接OA,根据垂径定理求出AF的长,根据勾股定理求出OF,计算即可;
②连接OC,根据垂径定理求出CE的长,根据勾股定理求出答案.
【解答】解:①作OF⊥AB交AB于F,交圆于G,连接OA,
∴AF=AB=8,
由勾股定理得,OF==15,
则GF=OG﹣OF=2dm;
②连接OC,
∵OE⊥CD,
∴CE=EF=15,
OE==8,
则EF=OG﹣OE﹣FG=7dm,
答:油的最大深度上升了7dm.
【点评】本题考查的是垂径定理和勾股定理的应用,平分弦垂直于弦的直径平分弦,并且平分弦所对的两条弧.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.。