大学物理基础教程第五章 恒定磁场

合集下载

大学物理恒定磁场总结

大学物理恒定磁场总结

大学物理恒定磁场总结引言:物理学是一门研究自然世界中各种现象的学科,而磁场作为物理学中的一个重要概念,扮演着至关重要的角色。

在大学物理学习过程中,学生们会接触到恒定磁场的相关内容。

本文将对恒定磁场进行总结,介绍其基本概念和性质,并对其应用进行一定的探讨。

一、恒定磁场的基本概念恒定磁场是指在空间中磁感应强度大小和方向都保持不变的磁场。

在磁场中,磁感应强度的方向标记着磁场线的方向,磁感应强度的大小代表着该点磁场线通过单位面积的数量。

磁场的起源主要是由带电粒子运动而产生的,如电流。

二、恒定磁场的性质1. 磁场线的性质:磁场线是一系列无穷多的曲线,其方向与该点磁感应强度的方向相同。

在磁场中,磁场线是闭合的,可以形成环状或者螺旋状的结构。

2. 磁场的强弱:磁场强弱的大小与其磁感应强度的大小有关。

磁感应强度越大,磁场越强。

3. 磁场的均匀性:在一个恒定磁场中,如果磁场的磁感应强度大小和方向在整个空间中保持不变,则称其为均匀磁场。

均匀磁场的一个特点是:同一磁场强度下,磁场线的间距是相等的。

三、恒定磁场的运动电荷粒子受力在恒定磁场中,运动电荷粒子受到的力为洛伦兹力。

洛伦兹力的方向垂直于运动电荷粒子的速度方向和磁感应强度的方向,大小为qvb,其中q为电荷大小,v为速度大小,b为磁感应强度大小。

根据洛伦兹力的方向和大小,可以分析出运动电荷粒子在恒定磁场中的运动轨迹。

四、恒定磁场的应用1. 安培力规律:安培力规律描述了电流元在外磁场中所受的力,通过该规律可以计算出电流元受力大小和方向,从而探讨电流在磁场中的作用。

2. 电流感应:当闭合电路中有变化的磁通量时,产生感应电动势从而产生电流。

根据法拉第电磁感应定律可以计算出感应电动势的大小。

五、恒定磁场的实际应用1. 磁共振成像:磁共振成像(MRI)是一种常用的医学影像技术,它利用了核磁共振现象,通过改变恒定磁场和加入额外磁场的方式来获得人体内部的影像。

2. 磁力传感器:磁力传感器利用恒定磁场中电流受力的原理,感测物体运动或距离,广泛应用于工业自动化、车辆导航等领域。

大学物理恒定磁场PPT

大学物理恒定磁场PPT

磁场对通电导线的作用力
总结词
运动电荷在磁场中会受到洛伦兹力的作用,该力的大小与电荷的速度、电荷量以及磁场强度成正比。
详细描述
当电荷在磁场中运动时,电荷受到洛伦兹力的作用。洛伦兹力的大小与电荷的速度、电荷量以及磁场强度成正比,其方向由洛伦兹力公式确定。洛伦兹力在电场和磁场同时存在的情况下,会对电荷的运动轨迹产生影响。
总结词
磁通计、磁强计、铁磁物质、测量仪器等。
实验材料
将铁磁物质置于磁场中,使用磁通计和磁强计测量磁场的磁感应强度和磁场线分布。
实验步骤
通过测量数据可以得出磁场的分布情况,验证磁场的基本性质,如磁场线的闭合性、磁场的矢量性等。
实验结果
磁场的测量与观察实验
THANKS
感谢您的观看。
磁场可能改变数据存储介质中的信息,造成数据丢失或损坏。
磁场防护技术
为保护电子设备免受磁场干扰,需要采取相应的磁场防护技术。
磁场对电子设备的影响
利用磁感应强度传感器、磁通量计等设备,测量磁场的大小、方向和分布情况。
磁场测量技术
通过改变磁场源的电流、电压等参数,实现对磁场的控制和调节。
磁场控制技术
利用磁场在工业、医疗、军事等领域中实现各种应用,如磁悬浮技术、核磁共振成像等。
磁场对运动电荷的作用力
磁体在磁场中会受到磁力的作用,该力的大小与磁体的磁感应强度、磁体之间的距离以及磁体的体积成正比。
总结词
当两个磁体之间存在磁场时,它们之间会相互作用,产生磁力。磁力的大小与磁体的磁感应强度、磁体之间的距离以及磁体的体积成正比,其方向由库仑定律确定。磁力在磁场中起着重要的物理作用,如电磁感应、磁悬浮等。
在磁感应强度为B的磁场中,放入一个长度为L、面积为S的导体,当导体垂直于磁场方向放置时,导体受到的安培力F与B、L、S之间的关系为F=BIL。

大学物理恒定磁场总结

大学物理恒定磁场总结

大学物理恒定磁场总结引言恒定磁场是大学物理中重要的概念之一,它广泛应用于电磁学、电动力学等领域。

本文将对恒定磁场的基本概念、性质以及应用进行总结,希望能够帮助读者更好地理解和掌握恒定磁场的知识。

恒定磁场的基本概念恒定磁场是指在空间中磁场强度大小和方向都不随时间变化的磁场。

磁场由磁场源产生,一般来说,磁体是最常见的磁场源。

恒定磁场的强度由磁感应强度或磁场强度来描述,用符号B表示。

恒定磁场的性质恒定磁场有许多特殊的性质,下面将对其中的若干性质进行讨论。

磁通量磁通量是描述恒定磁场穿过某个闭合曲面的总磁场量的物理量。

它由磁场强度和曲面的面积以及两者之间的夹角决定。

磁通量的单位是韦伯(Wb)。

高斯定律高斯定律是磁学的基本定律之一,它描述了恒定磁场中磁场线的性质。

根据高斯定律,恒定磁场的磁感应强度线是闭合的,不存在磁单极子。

洛伦兹力洛伦兹力是指带电粒子在恒定磁场中受到的力。

它是由粒子电荷、粒子速度和磁场强度之间的相互作用产生的。

洛伦兹力的方向垂直于磁场和粒子速度的平面,并且遵循右手定则。

磁场线磁场线是描述恒定磁场分布的曲线。

根据磁场线的性质,可以确定磁场强度的大小和方向。

磁场线的定义是:在任何点上,磁场强度的方向与通过该点的磁场线的切线方向相同。

恒定磁场的应用恒定磁场在生活中和科学研究中有许多重要的应用,下面将对其中的几个应用进行介绍。

电动机电动机是利用洛伦兹力的原理工作的设备。

它由一个电流线圈和一个恒定磁场构成。

当电流通过线圈时,产生的磁场与恒定磁场相互作用,从而产生力矩使电动机运转。

磁共振成像磁共振成像是一种医学成像技术,利用恒定磁场和射频脉冲来观察人体内部结构。

通过对人体各种组织的不同磁性质的分析,可以得出人体内部的详细结构信息。

磁存储技术磁存储技术是计算机存储中使用的关键技术之一。

它通过在磁性介质中记录信息,利用恒定磁场对信息进行存储和读取。

结论恒定磁场是大学物理中的重要概念,它有许多特性和应用。

本文对恒定磁场的基本概念、性质以及应用进行了总结,并且介绍了一些重要的应用领域。

大学物理稳恒磁场 ppt课件

大学物理稳恒磁场  ppt课件
2
NI R
B2

0 NI R2
2(R2 x2 )32
R
O1
O2
x
(1) 电流方向相同:
B B1 B2

0 NI
2R
[1
(R2
R3

x2
3
)2
]
8.51105 T
(2) 电流方向相反:
B B1 B2

0 NI
2R
[1 pp(t课R件2
R3

x
2
)
3 2
]
4.06 105 T
R 2 Indx R2 x2 3/2
B
dB 0nI
2
x2 x1
R2dx μ0nI ( R2 x2 3/2 2
x2 R2 x22
x1 ) R2 x12
B

0nI
2
cos2
ppt课件
cos1
27
讨论
B

0nI
2
cos2
cos1
I
在弧长为 dl 的线元内 流过的电流元为:
dI
dI I dl
真空的磁导率ppt课件
13
O
r P
Idl
dB

dB
Idl

P r
dB
I
电流元的磁感应线在垂直于电流元的平面内 是圆心在电流元轴线上的一系列同心圆。
磁感应线绕向与电流流向成右手螺旋关系

磁场叠加原理: B dB

oIdl rˆ
ppt课L件
L 4r 2
dB

μ0 4π

大学物理 恒定磁场

大学物理 恒定磁场
P型---- 正电空穴 N型---- 负电粒子
26
测载流子电性 — 半导体类型
8.5 载流导线在磁场中受力
一、一段载流导线上的力——安培力 I 2 1个电子 受力 f qv B 1 N个电子受力 d F Nq v B 电流元 I d l B
N n d V nS d l
不对 q 做功。

v
q
B
v

B
F qE qv B
15
二、带电粒子在均匀磁场中运动
1)运动方向与磁场方向平行
Fm qv B
Fm qvBsinθ
θ 0 F 0
q
v
B
带电粒子作匀速直线运动
16
二、带电粒子在均匀磁场中运动
3)运动方向沿任意方向
v // v cos v v sin
mv sin 半径: R qB 2R 周期:T v
v
q
+
v
v// h
B
匀速圆周运动与匀速直线运动的合成 运动轨迹为螺旋线
2 m qB
2 m 螺距: h Tv // v cos qB
18
(3)地磁场内 的范艾仑辐射带
22
23
四、霍耳效应
现象:导体中通电流 I ,磁 场B 垂直于I ,在既垂直于 I ,又垂直于B 的方向出现 电势差 U 霍耳电压UH
B

h
V
+ v - - -q- - -
F
I
b
原因: 载流子q,漂移速度 v
Fm qv B
25
霍耳系数
1 RH ne

大学物理稳恒磁场课件

大学物理稳恒磁场课件

流,也可引起空间电 荷从S面流入和流出时,则S面内
荷分布的变化
的电荷相应发生变化。
由电荷守恒定律,单位时间内由S 流出的净电量应等 于S 内电量的减少
电流连续性方程 恒定(稳恒)电流条件
SdS
dq内 dt
d q内 0 dt
SdS0
大学物理
5.欧姆定律的微分形式
dU—小柱体两端的电压 dI —小柱体中的电流强度
dq dt
方向:正电荷运动的方向 单位:安培(A)
大学物理
几种典型的电流分布
粗细均匀的 金属导体
粗细不均匀的 金属导线
半球形接地电极 附近的电流
电阻法勘探矿藏 时的电流
同轴电缆中的 漏电流
大学物理
电流强度对电流的描述比较粗糙: 如对横截面不等的导体,I 不能反映不同截面处 及同一截面不同位置处电流流动的情况。
静电场的电力线发自正电荷止于负电荷,
有头有尾,不闭合。
磁场的高斯定理 SBdS0
在恒定电流的磁场中,磁感应强
度 B 矢量沿任一闭合路径 L的线积
分(即环路积分),等于什么?
Bdl ?
L
大学物理
1. 长直电流的磁场
1.1 环路包围电流
B
在垂直于导线的平面内任作的环 路上取一点P,到电流的距离为r,
B0nI
若在长螺线管的端口处
B 0nI
2
本次课作业:
大学物理
1. 预习§14.5, §14.6 2. 思考题14.5-14.7 3. 习题14.5,14.7,14.8,14.9,14.10,14.11 作业提交日期: 10月12日
§3 安培环路定理
大学物理
静电场:
高斯定理: sD dSq

大学物理之恒定电流的磁场

大学物理之恒定电流的磁场

磁场能量传
磁场能量传输原理
利用磁场可以实现能量的无线传输。
磁场能量传输方式
包括磁耦合、磁感应等。
磁场能量传输特点
具有高效、安全、环保等优点,是未来能源传输的重要方向之一。
THANKS FOR WATCHING
感谢您的观看
磁场与电流的关系
总结词
磁场与电流之间存在相互作用,变化的磁场可以产生 电场,而变化的电场也可以产生磁场。
详细描述
磁场与电流之间的相互作用是电磁场理论的核心内容之 一。根据法拉第电磁感应定律,变化的磁场可以产生电 场;而根据麦克斯韦方程组,变化的电场也可以产生磁 场。这种相互作用导致电磁波的传播,形成了我们现在 所知的电磁波谱。在恒定电流的磁场中,虽然磁场不随 时间变化,但电流在空间中的分布可以是不均匀的,因 此磁场与电流之间仍然存在相互作用。这种相互作用表 现为电流在磁场中受到洛伦兹力,使得电荷在空间中移 动形成电流。
洛伦兹力
洛伦兹力是磁场对运动电荷的作 用力,其大小与电荷的电量、速
度以及磁场强度有关。
洛伦兹力的方向与电荷运动方向 和磁场方向有关,遵循右手定则。
洛伦兹力在粒子加速器、回旋加 速器等领域有广泛应用,是研究
带电粒子运动规律的基础。
磁场中的运动电荷
1
在磁场中运动的电荷会受到洛伦兹力的作用,这 个力会使电荷发生偏转,改变其运动轨迹。
磁场的描述
磁感应线
用磁感应线描述磁场,磁感应线的疏密程度表示磁场强度的 大小。
磁感应强度
描述磁场强弱的物理量,其方向与磁场中某点的磁感应线垂 直。
磁场的应用
电磁感应
当导体在磁场中运动时,会产生电动 势,进而产生电流。这一现象在发电 机、变压器等设备中有广泛应用。

大学物理恒定磁场教案

大学物理恒定磁场教案
2. 引出磁场的基本概念,如磁感应强度、磁通量等。
二、恒定磁场的基本概念和性质
1. 介绍磁感应强度的定义、单位及其物理意义。
2. 讲解磁通量的概念及其计算方法。
3. 分析磁场的性质,如磁感应线的分布、磁场的叠加等。
三、毕奥-萨伐尔定律
1. 介绍毕奥-萨伐尔定律的内容和公式。
2. 通过实例讲解如何应用毕奥-萨伐尔定律计算磁场强度。
2. 讲解磁偶极子在磁场中受力的情况。
三、磁介质中的磁场
1. 介绍磁介质的分类及其对磁场的影响。
2. 讲解磁介质中的磁场分布规律。
四、课堂练习
1. 学生分组,利用磁场的高斯定理和安培环路定理分析复杂磁场问题。
2. 学生展示计算过程和结果,教师点评。
五、总结
1. 回顾本节课所学内容,强调重点和难点。
2. 布置课后作业,巩固所学知识。
四、课堂练习
1. 学生分组,利用毕奥-萨伐尔定律计算长直导线周围的磁场强度。
2. 学生展示计算过程和结果,教师点评。
第二课时
一、磁场的高斯定理和安培环路定理
1. 介绍磁场的高斯定理和安培环路定理的内容和公式。
2. 通过实例讲解如何应用这两个定理分析磁场分布。
二、磁偶极子
1. 介绍磁偶极子的概念及其性质。
课程名称:大学物理(下)
授课对象:大学物理专业本科生
课时安排:2课时
教学目标:
1. 理解恒定磁场的基本概念和性质。
2. 掌握毕奥-萨伐尔定律、磁场的高斯定理和安培环路定理等基本公式。
3. 学会运用这些公式解决简单的磁场问题。
4. 培养学生的逻辑思维能力和科学探究精神。
教学内容:
1. 恒定磁场的基本概念和性质

第五-恒定磁场【共42张PPT】

第五-恒定磁场【共42张PPT】

B0 J
此式表明,真空中某点恒定磁场的磁感应强度的旋度等于该点的电流密度与真空 磁导率的乘积。
另外,由高斯定理获知
SBdSVBdV
那么,根据磁通连续性原理求得
VBdV0
由于此式处处成立,因此被积函数应为零,即
B0 此式表明,真空中恒定磁场的磁感应强度的散度处处为零。
综上所述,求得真空中恒定磁场方程的微分形式为
可见,无源区中磁感应强度B 是无旋的。

考虑到
,求得
关。为了计算方便起见,令所求的场 对于大多数媒质,磁化强度 M 与磁场强度 H 成正比,即
a 为物理无限小体积。
r - r' y 可见,矢量磁位 A 满足矢量泊松方程。
r' 当两者垂直时,受到的力矩最大。
e 点位于xz 平面,即 ' 在设小外电加流磁环场为四的根作长用度下为,l 的除电了流引元围起成电的子平进面方动框以,外电,流磁方' 向偶如极左子下的图示磁。矩方向朝着外加磁场方向转动。
例1 计算无限长的,电流为I 的线电流产生的磁感应强度。
z
dl
r′ r - r′
o
y
r e
x
I
解 取圆柱坐标系,如图示。令 z 轴沿电 流方向。 dl(rr)的方向为B 的方向。那 么,由图可见,这个叉积方向为圆柱坐标 中的 e 方向。因此,磁感应强度 B 的方 向为 e 方向,即
B Be
此式表明,磁场线是以 z 轴为圆心的一系列的同心圆。显然,此时磁场分布以 z 轴 对称,且与 无关。又因线电流为无限长,因此,场量一定与变量 z 无关,所 以,以线电流为圆心的磁场线上各点磁感应强度相等。因此,沿半径为r 的磁场线上 磁感应强度的环量为

大学物理学第五六章恒定磁场自学练习题

大学物理学第五六章恒定磁场自学练习题

07《大学物理学》第五六章恒定磁场自学练习题(共11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章 恒定磁场部分 自学练习题要掌握的典型习题: 1.载流直导线的磁场:已知:真空中I 、1α、2α、x建立坐标系Oxy ,任取电流元I dl ,这里,dl dy =P 点磁感应强度大小:02sin 4Idy dB r μαπ=;方向:垂直纸面向里⊗。

统一积分变量:cot()cot y x x παα=-=-;有:2csc dy x d αα=;sin()r x πα=-。

则: 2022sin sin 4sin x d B I x μαααπα=⎰210sin 4I d x ααμααπ=⎰012(cos cos )4I xμααπ-=。

①无限长载流直导线:παα==210,,02IB xμπ=;(也可用安培环路定理直接求出)②半无限长载流直导线:παπα==212,,04IB xμπ=。

2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。

建立坐标系Oxy :任取电流元Idl ,P 204rIdldB πμ=;方向如图。

分析对称性、写出分量式:0B dB ⊥⊥==⎰;⎰⎰==20sin 4r Idl dB B x x απμ。

统一积分变量:r R =αsin∴⎰⎰==20sin 4r Idl dB B x x απμ⎰=dl r IR 304πμR r IR ππμ2430⋅=232220)(2x R IR +=μ。

结论:大小为2022322032()24I R rIR B R x μμππ⋅⋅==+;方向满足右手螺旋法则。

①当x R >>时,220033224IRI R B x xμμππ==⋅⋅; ②当0x =时,(即电流环环心处的磁感应强度):00224IIB RRμμππ==⋅; B⊗RI dlIdlr αOB d RrB③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04IRB μθπ=。

恒定磁场

恒定磁场

三、恒定磁场电流或运动电荷在空间产生磁场。

不随时间变化的磁场称恒定磁场。

它是恒定电流周围空间中存在的一种特殊形态的物质。

磁场的基本特征是对置于其中的电流有力的作用。

永久磁铁的磁场也是恒定磁场。

1、磁通密度与毕奥-萨伐尔定律磁通密度是表示磁场的基本物理量之一,又称磁感应强度,符号为B。

电流元受到的安培力 B l d I f d⨯''=毕奥——萨伐尔定律 ⎰⨯=lrr l Id B 24πμ对于粗导线,可将导线划分为许多体积元dV 。

⎰⎰⎰⨯=VrrdV J B 2004 πμ2、磁通连续性定理磁场可以用磁力线描述。

若认为磁场是由电流产生的,按照毕奥-萨伐尔定律,磁力线都是闭合曲线。

磁场中的高斯定理 0d =⋅⎰⎰SS B式中,S 为任一闭合面,即穿出任一闭合面的磁通代数和为零。

应用高斯散度定理⎰⎰⎰⎰⎰⋅∇=⋅VSdV B S Bd0=⎰⎰⎰⋅∇VdV B由于V 是任意的,故 0=B⋅∇式中⋅∇为散度算符。

这是磁场的基本性质之一,称为无散性。

磁场是无源场。

3、磁场中的媒质磁场对其中的磁媒质产生磁化作用,即在磁场的作用下磁媒质中出现分子电流。

总的磁场由自由电流与分子电流共同产生。

永磁铁本身有自发的磁化,因而不需要外界自由电流也能产生磁场。

磁媒质的磁化程度用磁化强度M来表征,它是单位体积内的磁偶极矩。

磁偶极矩:环形电流所围面积与该电流的乘机为磁偶极矩,其方向与电流环绕方向符合右螺旋关系。

n IS P m=磁场强度 M BH-=μ 或 )(0M H B +=μ 本构方程 由m H M χ =可得 H Bμ=,该式称为磁媒质的成分方程或本构方程。

磁媒质的分类:r m μμχμμ00)1(=+=,顺磁质 1>r μ,抗磁质 1<r μ,铁磁质1>>r μ。

4、安培环路定律磁场强度H沿闭合回路的积分,等于穿过该回路所限定的面上的自由电流。

回路的方向与电流的正向按右螺旋规则选定。

大学物理-恒定磁场

大学物理-恒定磁场

二. 磁介质中的安培环路定理 磁场强度
以长直螺线管充满均匀介质为例 .
对矩形回路 ABCD
LB dl 0 ( I Is)
M dl L
M AB Isl
I s
........ ....
× × × × × × × × × × × × ×
两式合并
Bdl L
0 (

H
B
M
× × × ×B
(a)
I
F.
F
(b)
.....
.I. . . .
B
. .
.F .
..
.. .B .
(c)
[例3] 如图半径为0.20 m,电流为20 A ,可绕轴旋
转的圆形载流线圈放在均匀磁场中 , 磁感应强度的
大 样小 ?为线圈0.0所8 T受,的方磁向力沿矩x 又轴为正多向少. 问?线圈y受力情况怎B
(2) 磁化机理
B0
B
顺磁质
(m
0)
抗外外→磁场场磁质BB化00→中(m电附取流加向0)I磁s (矩表面m)→→B磁 化电B 流BI0s
B
→ B
B0
B
B0
(恒与
B B0
B0反向 ) m
m ,
m 为电子附加磁矩
Δi
Δi
3.磁化强度 M
磁介质中
M
m
V
(A m1)
可证明 M Is (磁化电流面密度)
但 H与各种因素均有关 d. 有磁介质 存在时 B的求 解(高 度对称)
LH dl I H B 0r H
[例] 有两个半径分别为 R 和 r 的“无限长”同
轴圆筒形导体,在它们之间充以相对磁导率为 r

大学物理 恒定磁场(DOC)

大学物理 恒定磁场(DOC)

11-1 恒定电流 电流密度磁现象:我国是世界上最早发现和应用磁现象的国家之一,早在公元前300年久发现了磁铁矿石吸引铁的现象。

在11世纪,我国已制造出航海用的指南。

在1820年之前,人们对磁现象的研究仅局限于铁磁极间的相吸和排斥,而对磁与电两种现象的研究彼此独立,毫无关联。

1820年7月丹麦物理学家奥斯特发表了《电流对磁针作用的实验》,公布了他观察到的电流对磁针的作用,从此开创了磁电统一的新时代。

奥斯特的发现立即引起了法国数学家和物理学家安培的注意,他在短短的几个星期内对电流的磁效应作出了系列研究,发现不仅电流对磁针有作用,而且两个电流之间彼此也有作用,如图所示;位于磁铁附近的载流线圈也会受到力或力矩的作用而运动。

此外,他还发现若用铜线制成一个线圈,通电时其行为类似于一块磁铁。

这使他得出这样一个结论:天然磁性的产生也是由于磁体内部有电流流动。

每个磁性物质分子内部,都自然地包含一环形电流,称为分子电流,每个分子电流相当于一个极小的磁体,称为分子磁矩。

一般物体未被磁化时,单个分子磁矩取向杂乱无章,因而对外不显磁性;而在磁性物体内部,分子磁矩的取向至少未被完全抵消,因而导致磁铁之间有“磁力”相互作用。

1820年是人们对电磁现象的研究取得重大成果的一年。

人们发现,电荷的运动是一切磁现象的根源。

一方面,运动电荷在其周围空间激发磁场;另一方面,运动电荷在空间除受电场力作用之外,还受磁场力作用。

电磁现象是一个统一的整体,电学和磁学不再是两个分立的学科。

11-1 恒定电流 电流密度如前所述,电荷的运动是一切磁现象的根源。

电荷的定向运动形成电流,称为传导电流;若电荷或宏观带电物体在空间作机械运动,形成的电流称为运流电流。

常见的电流是沿着一根导线流动的电流,其强弱用电流强度来描述,它等于单位时间通过某一截面的电量,方向与正电荷流动的方向相同,其数学表达式为dtdq I ,虽然我们规定了电流强度的方向,但电流强度I 是标量而不是矢量,因为电流的叠加服从代数加减法则,而不服从矢量叠加的平行四边形法则。

大学物理恒定磁场教案

大学物理恒定磁场教案

大学物理恒定磁场教案教案标题:大学物理恒定磁场教案教案目标:1. 了解和理解恒定磁场的基本概念和性质。

2. 掌握磁场中带电粒子的受力规律和运动轨迹。

3. 掌握磁场中的磁场强度、磁感应强度、磁场能量等相关概念和计算方法。

4. 能够应用所学知识解决与恒定磁场相关的物理问题。

教学时长:2个课时教学内容及安排:第一课时:1. 引入(5分钟)- 通过提问或展示实例引发学生对磁场的兴趣,激发学习的动机。

- 引导学生回顾前置知识,如电磁感应、电流产生磁场等,为后续学习做铺垫。

2. 理论讲解(30分钟)- 介绍恒定磁场的基本概念,包括磁感线、磁场强度、磁感应强度等。

- 解释磁场中带电粒子的受力规律,包括洛伦兹力和磁场中心力。

- 分析带电粒子在磁场中的运动轨迹,如圆周运动、螺旋运动等。

3. 实例分析(20分钟)- 提供一些具体的物理问题,引导学生应用所学知识解决。

- 鼓励学生积极参与讨论,思考问题的解决思路和方法。

4. 知识巩固(15分钟)- 给学生提供一些练习题,让他们巩固所学知识。

- 引导学生互相讨论,解答彼此的疑惑。

第二课时:1. 知识回顾(10分钟)- 复习上节课所学内容,强化学生对恒定磁场的理解。

2. 磁场能量(20分钟)- 介绍磁场能量的概念和计算方法。

- 解释磁场能量的转换和守恒原理。

3. 实验演示(25分钟)- 进行一个简单的实验演示,如利用霍尔效应测量磁场强度。

- 引导学生观察实验现象,分析实验结果,并与理论知识进行对比。

4. 拓展应用(15分钟)- 引导学生思考磁场在实际应用中的作用,如电动机、电磁铁等。

- 鼓励学生展开讨论,分享自己的观点和见解。

教学资源:1. 教材:提供相关章节的教材内容,供学生参考和复习。

2. 实验设备:提供进行实验演示所需的设备和材料。

3. 练习题:准备一些练习题,用于巩固学生的知识。

评估方式:1. 课堂参与:观察学生的积极性和主动性,评估他们在课堂上的表现和参与度。

2. 练习题:布置一些练习题,检验学生对所学知识的掌握情况。

大学物理 恒定磁场

大学物理 恒定磁场

11-1 恒定电流电流密度磁现象:我国是世界上最早发现和应用磁现象的国家之一,早在公元前300年久发现了磁铁矿石吸引铁的现象。

在11世纪,我国已制造出航海用的指南。

在1820年之前,人们对磁现象的研究仅局限于铁磁极间的相吸和排斥,而对磁与电两种现象的研究彼此独立,毫无关联。

1820年7月丹麦物理学家奥斯特发表了《电流对磁针作用的实验》,公布了他观察到的电流对磁针的作用,从此开创了磁电统一的新时代。

奥斯特的发现立即引起了法国数学家和物理学家安培的注意,他在短短的几个星期内对电流的磁效应作出了系列研究,发现不仅电流对磁针有作用,而且两个电流之间彼此也有作用,如图所示;位于磁铁附近的载流线圈也会受到力或力矩的作用而运动。

此外,他还发现若用铜线制成一个线圈,通电时其行为类似于一块磁铁。

这使他得出这样一个结论:天然磁性的产生也是由于磁体内部有电流流动。

每个磁性物质分子内部,都自然地包含一环形电流,称为分子电流,每个分子电流相当于一个极小的磁体,称为分子磁矩。

一般物体未被磁化时,单个分子磁矩取向杂乱无章,因而对外不显磁性;而在磁性物体内部,分子磁矩的取向至少未被完全抵消,因而导致磁铁之间有“磁力”相互作用。

1820年是人们对电磁现象的研究取得重大成果的一年。

人们发现,电荷的运动是一切磁现象的根源。

一方面,运动电荷在其周围空间激发磁场;另一方面,运动电荷在空间除受电场力作用之外,还受磁场力作用。

电磁现象是一个统一的整体,电学和磁学不再是两个分立的学科。

11-1 恒定电流电流密度如前所述,电荷的运动是一切磁现象的根源。

电荷的定向运动形成电流,称为传导电流;若电荷或宏观带电物体在空间作机械运动,形成的电流称为运流电流。

常见的电流是沿着一根导线流动的电流,其强弱用电流强度来描述,它等于单位时间通过某一截面的电量,方向与正电荷流动的方向相同,其数学表达式为dtdq I ,虽然我们规定了电流强度的方向,但电流强度I 是标量而不是矢量,因为电流的叠加服从代数加减法则,而不服从矢量叠加的平行四边形法则。

大学物理 恒定磁场

大学物理 恒定磁场

B
B~H
Br 剩磁 B
b
a
r ~ H
矫顽力 HC
co
fH
o
H
d
e
讨论
(1) 实验证明:各种铁磁质的磁化曲线都是“不可逆”的, 具有磁滞现象
(2) 不同材料,矫顽力不同
第29页/共36页
(3) 铁磁质温度高于某一温度TC 时, 铁磁质转化为顺磁质, 此 临界温度称为居里点。
(4) 铁磁材料的应用
B
B
E
q • v
B
磁场是电场的运动效应
第16页/共36页
第10章 磁介质
一. 磁介质及其分类
1.
电磁介介质质放—入—外任场何实E0物都是磁E 介 质E0
E'
E E0
磁介质放入外场 B0
B B0 r —— 相对磁导率
r 反映磁介质对原场的影响程度
2. 磁介质的分类
抗磁质 r 1
B B0 减弱原场
FCD
D(C)
B
n
M
pm
B
第5页/共36页
2. 磁场力的功
dA Md BIS sind 负号表示力矩作正功时 减小
Id(BS cos ) Idm
A
Id m 2
m1
m
I (m2 m1) Im
讨论
(1) (2)
线圈若有N 匝线圈
M 作用下,磁通 量增加
M
Npm 0
B
M
0
M 0 非稳定平衡
IB nqd
K 1 (霍量霍尔系数可以确定导电体中载流子浓度 它是研究半导体材料性质的有效方法(浓度随杂质、温 度等变化)
(2) 区分半导体材料类型 —— 霍尔系数的正负与载流子电荷性质有关

大学恒定磁场知识点总结

大学恒定磁场知识点总结

大学恒定磁场知识点总结引言磁场是物质世界中一种重要的物理现象,广泛存在于我们周围,相较于电场,磁场的研究和应用在很多领域都有着重要作用。

在大学物理教育中,学生需要学习关于恒定磁场的知识,包括磁场的产生、磁感应强度、洛伦兹力等。

本文将对大学恒定磁场的相关知识进行总结和阐述,涵盖的内容将包括磁场的概念、磁场的产生、磁场中的运动粒子、磁场中的能量、电磁感应、磁场对物质的影响等多个方面。

一、磁场的概念磁场是指物质中由磁性物质或电流所产生的一种力场,它是由磁性物质或电流产生的,并能够对周围物质产生作用。

磁场又分为静磁场和动态磁场,静磁场对应着恒定磁场,而动态磁场对应着变化的磁场。

二、磁场的产生1. 电流产生的磁场安培环路定律:通过电流产生的磁场对应安培环路定律,它指出沿闭合回路的线积分等于这个回路所围绕的电流之代数和的某个常数。

这一定律为电流产生的磁场提供了数学表述。

2. 磁性物质产生的磁场微观角度来看,磁性物质是由具有自旋磁矩的元素构成的,这些自旋磁矩的相互作用会形成磁性物质的磁场。

从宏观角度来看,磁性物质会在外加磁场的作用下,发生磁化,在周围形成磁场。

3. 磁单极子在自然界中,我们还没有观察到有磁单极子的存在,即磁荷,所有磁场都要由磁偶极子或电流所产生,这与电场不同,因为我们已经知道电场是由正负电荷所产生。

三、磁场中的运动粒子粒子在磁场中会受到洛伦兹力的作用,洛伦兹力可以将粒子偏转。

根据洛伦兹力的方向,可以确定正电荷、负电荷和正电流、负电流在磁场中的运动轨迹。

粒子在磁场中的运动轨迹受到洛伦兹力的影响,电荷为q,在磁感应强度为B的磁场中运动,其受力为F=qvBsinθ,其中v为粒子的速度,θ为速度与磁感应强度B的夹角。

磁场中运动的粒子所受洛伦兹力与其速度方向垂直,因此它的运动轨迹是圆周形的,这一特点在实际物理实验和应用中都有着重要的意义。

四、磁场中的能量1. 磁场能磁场能是指磁场中由于各种物体的相互作用而具有的能量,它来源于磁性物质的存在和磁场的作用。

基础物理学 第5章 稳恒磁场

基础物理学 第5章 稳恒磁场

n 是载流子浓度;e 是载流子电荷量。
5.1.2 稳恒电场 欧姆定律
1. 稳恒电场 导体的电荷分布不随时间变化所激发的电场。
2020年3月18日星期三
吉林大学 物理教学中心
2. 欧姆定律
通过一段导体的电流与导体两端电压成正比
I
U R
-1 )。
(1)电阻与材料长度l成正比、横截面积S成反比;
线等于穿出r磁感r 应线,即
Ñ S B dS 0 (5.18)
此式称为磁场高斯定理,说明
r
磁场是无源场。
B
2020年3月18日星期三
吉林大学 物理教学中心
例 5.1 在通有电流 I 的无限长直导线旁有一矩形回路,且两者共
面。试计算通过该回路所包围面积的磁通量。
解 取直电流处为坐标原点,
向右为x轴,在S面内任一 点的磁感应强度为
有相互作用。
基本磁现象 磁悬浮
2020年3月18日星期三
吉林大学 物理教学中心
5.2.2 磁 场
磁场是一种特殊形态的物质。 对外表现:
(1)磁场对引入磁场中的运动电荷或载流导体
有磁力的作用;
(2)载流导体在磁场中移动时,磁场的作用力
对载流导体做功,可见,磁场具有能量。
这表明了磁场的物质性。
对磁现象的解释:
2020年3月18日星期三
吉林大学 物理教学中心
对不同的磁介质,磁导率量值为:
顺磁质: m 0,r 1 抗铁磁 磁质质::mm、0r,值很r 大1,是Hr 的非单值函数 真空中:m 0,r 1, 0
5.5.3 铁磁质
铁磁质
具有以下主要性质:
1. 磁导率大 铁磁质具有很大的磁导率。
2. 磁饱和现象

大学物理基础教程第五章 恒定磁场

大学物理基础教程第五章 恒定磁场

5
5.2、磁感应强度 毕奥—萨伐尔定律
运动电荷 磁体
磁场
5.2.1、磁感强度 B
带电粒子在磁场中运动受到力的作用——
实验发现带电粒子在磁场中沿某 一特定直线方向运动时不受力;
带电粒子在磁场中沿其他方向
运动时, F 垂直于 v 与某特定方向
所组成的平面;
当带电粒子在磁场中垂直于此 特定方向运动时受力最大;
4 π r0
y
D 2
I
o r0
z
y

r
Idy
1 C
dB
*P x
B
D
dB
0 I
2 sin d
C
4 π r0 1
4π0rI0(cos1 cos2) B 的方向沿 z 轴的负方向。
讨论: (1)P点在载流长直导线的中垂线上
y
D 2
1 2 cos2 cos1
第五章 恒定磁场
5.1 恒定电流 5.2 磁感应强度 毕奥-萨格尔定律 5.3 恒定磁场的高斯定理和安培环路定理 5.4 磁场对运动电荷和载流导体的作用 5.5 磁介质
5.1 恒定电流
5.1.1 电流 电流密度
电流是导体中带电粒子(自由电子或 正 负离子,统称“载流子”)的定向流动。
I
电池
+-
规定:正电荷流动的方向为电流的方向。 S
ax
2π b
22
5.3.2 安培环路定理及其应用

静电场:电场强度 E 沿任 E dl 0
意闭合路径l 的环流
l
l
I
B
那么,稳恒磁场的 B dl ?
r
l
以无限长载流直导线的磁场为例讨论。

(优质)大学物理恒定磁场PPTPPT课件

(优质)大学物理恒定磁场PPTPPT课件

线方向为该点磁感应强度的方向,其大小为通过与B垂
直的单位面积上的磁感应线的条数。
B
I
I
I
I
S
N
磁感线的特点:
(1)任何两条磁感线不会相交; 电场线的特点: (2)磁感线是无头无尾的闭合曲线;(1)两条不会相交; (3)B 大的地方,磁感线较密。 (2)非闭合曲线;
二、磁通量 磁场的高斯定理
静电场
两端连线的夹角分别为1和2 。求P点的磁场。
z
D 2

dz r
z
I
x o r0
C 1
dB
*
P
y
dB方向均沿 x
轴的负方向
z
D 2
dz r
z
I
x o r0 C 1
dB
*P y
1、有限长载流长直导线的磁场
的方向沿 x 轴负方向
2、半无限长载流长直导线的磁场
BP
=
μ0 I 4 π r0
I
3、半无限长载流直导线的磁场:
I I/
o
I/
例2:一正方形载流线圈边长为 b,通有电流为 I,求正 方形中心的磁感应强度 B。
解:o 点的 B 是由四条载流边分别产 生的,它们大小、方向相同,
B= B1+ B2+ B3+B4 =4B1
1
4
,
2
3
4
I
B
4
0 I 4b / 2
cos
4
cos
3
4
2 20I b
例3:两个相同及共轴的圆线圈,半径为0.1m,每一线
例2、在真空中,有一半径为 的载流导线,通过的 电流为 ,试求通过圆心并垂直于圆形导线平面的轴 线上任意点 的磁感应强度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁体 运动电荷
F Fmax F
Fmax qv
Fmax qv 大小与q, v 无关。
磁感强度 B 的定义:当正电荷垂
直于特定方向运动时,受力 Fmax ,
将 Fmax v 方向定义为该点 B 的
方向。
磁感强度大小 B Fmax qv
单位:特斯拉(T) 1T 1N A-1 m-1
5
5.2、磁感应强度 毕奥—萨伐尔定律
运动电荷 磁体
磁场
5.2.1、磁感强度 B
带电粒子在磁场中运动受到力的作用——
实验发现带电粒子在磁场中沿某 一特定直线方向运动时不受力;
带电粒子在磁场中沿其他方向
运动时, F 垂直于 v 与某特定方向
所组成的平面;
当带电粒子在磁场中垂直于此 特定方向运动时受力最大;
通过一个有限截面 S的电流强度为 I S j dS
即:电流强度是电流密度矢量通过 S面的通量。
3
5.1.2、欧姆定律
欧姆从大量实验中总结出
欧姆定律:
I

U AB
R
VA
VB
S dS
dI
I
dl
l
一段长为l,横截面积
为S 的导体的电阻R:
R l
S
是电阻率,
电导率 1

设导体内的电场强度为E,则通过长为dl,横截面积
为dS 的细电流管的电流dI 可表示为:
dI

Edl
dl

EdS


jdS
dS
j 1 EE
4
电流密度 j 与电场强度 E 方向相同,则有:
j

1
E


E
欧姆定律的微分形式

也适用于非恒定电流情况下导体内各点的导电情况。
注意
一般金属或电解液,欧姆定律在相当大的电 压范围内是成立的, 但对于许多导体或半导体, 欧姆定律不成立,这种非欧姆导电特性有很大的 实际意义,在电子技术,电子计算机技术等现代 技术中有重要作用.
Fmax
运动电荷在磁场中受力:
q+
B
F qv B ——洛仑兹力
v
5.2.2 毕奥—萨伐尔定律 磁场叠加原理
Idl
dB
1、毕奥—萨伐尔定律
——电流元在空间产生的磁场
r
dB
I
dB

0

Idl r3
r
dB

0

Idl r0 r2
P * r Idl
电流元
dB
导体中形成电流的条件:
+
+
1. 有可以移动的电荷; 2. 有维持电荷作定向移动的电场。
+
+
+
+
I
电流强度
I dq
单位时间内通过某一截面的电量称 为通过该截面的电流强度,源自称电流。dt 单位:安培(A)
在SI中,规定电流强度为基本量,1s内通过导 体任一截面的电荷为1C的电流强度称为1A,即
1A 1C 1s
分(统一变量、确定上下积分限) 求出总磁感应强度大小、方向,对结果进行分析
例题7-1 载流长直导线的磁场.
一长度为L的载流直导线,电流强
2
度为I,导线两端到P点的连线与导线的 L I
夹角分别为1和2 。求距导线为a处P
点的磁感应强度。
*P
1
10
例题 载流长直导线的磁场.
z
解:在直电流上取电流元 Idl
sin d

0I
4πa
( cos1

cos2 )
11
B

0I
4πa
cos1

cos2

电流与磁感强度成右螺旋关系
讨论: (1) “无限长”载流导线
1= 0 , 2 =
B 0I
2πa
z
2
I
o
x 1
I
(2) “半无限长”载流导线
1= /2 , 2 =
B 0I
4 π r0
y
D 2
I
o r0
z
y

r
Idy
1 C
dB
*P x
B
D
dB
0 I
2 sin d
C
4 π r0 1
4π0rI0(cos1 cos2) B 的方向沿 z 轴的负方向。
讨论: (1)P点在载流长直导线的中垂线上
y
D 2
1 2 cos2 cos1
第五章 恒定磁场
5.1 恒定电流 5.2 磁感应强度 毕奥-萨格尔定律 5.3 恒定磁场的高斯定理和安培环路定理 5.4 磁场对运动电荷和载流导体的作用 5.5 磁介质
5.1 恒定电流
5.1.1 电流 电流密度
电流是导体中带电粒子(自由电子或 正 负离子,统称“载流子”)的定向流动。
I
电池
+-
规定:正电荷流动的方向为电流的方向。 S
2
电流密度
电流强度不能反映出导体
dS
中各点的电荷运动情况,需引 入“电流密度矢量” 的概念来 进一步描写电流的分布。

j

E
I
j
电流密度
dS
方向规定: j 该点正电荷运动方向
大小规定:等于在单位时间内过该点附近垂 j dI
直于正电荷运动方向的单位面积的电荷
dS
dI jdS jdS cos j dS
4πa
(3) P点在导线的延长线上
a B
B=0

B

P
y
12
例 求有限长载流直导线外的磁场。
解:
dB

0

Idl r0 r2
dB方向均沿 z 轴的负方向
dB 0 Idy sin
4π r2
r r0 / sin y r0 ct g
dy r0d / sin2
dB 0I sin d
0

Idl sin
r2
0 4π 107 N A2 ——真空磁导率
r dl
任意载流导线在点 P 处的磁感强度:
B
dB 0I
L

dl r0 L r2
毕奥—萨伐尔定律
dB

0
4

Idl r3
r
任意载流导线在点 P 处的磁感强度
2.叠加原理
2
大小
dB

0Idl sin 4πr2
各电流元在P点dB 同向
B
dB

L
0 Idl

sin
r2
统一变量:
Idz r
x
I
z
o
1
dB
a dB方向*P均沿y
l acot
dl

ad sin 2
r a
sin
x 轴的负方向
B 0I
4πa
2 1
B

0

Ir0(cos1

cos

2

0 I
2 π r0
B dB 0 Idl r
l
4 l r3
与点电荷电场公式比较:
相同之处: 都是元场源产生场的公式
场强都与 r 2 成反比
不同之处: 公式的来源不同 方向不同
9
稳恒磁场的计算: 选取电流元或某些典型电流分布为积分元 由 毕-萨定律写出积分元的磁场dB 建立坐标系,将dB分解为分量式,对每个分量积
相关文档
最新文档