等差数列求和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
选讲1 等差数列求和
一、知识要点
若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项;数列中,项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】有一个数列:4,10,16,22…,52.这个数列共有多少项?
练习1:
1.等差数列中,首项=1.末项=39,公差=
2.这个等差数列共有多少项?
2.有一个等差数列:2, 5,8,11…,101.这个等差数列共有多少项?
3.已知等差数列11, 16,21, 26,…,1001.这个等差数列共有多少项?
【例题2】有一等差数列:3, 7,11, 15,……,这个等差数列的第100项是多少?
练习2:
1.一等差数列,首项=3.公差=
2.项数=10,它的末项是多少?
2.求1.4,7,10……这个等差数列的第30项。
3.求等差数列2.6,10,14……的第100项。
【例题3】有这样一个数列:1, 2, 3, 4,…,99,100。请求出这个数列所有项的和。
练习3:
计算下面各题。
(1)1+2+3+…+49+50 (2)6+7+8+…+74+75
(3)100+99+98+…+61+60
【例题4】求等差数列2,4,6,…,48,50的和。
练习4:计算下面各题。
(1)2+6+10+14+18+22 (2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270
【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)
练习5:
用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)
(3)(1+3+5+...+1999)-(2+4+6+ (1998)
三、课后作业
1、张师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,做了30天刚好做完,则这批零件一共有多少个?
2、在一次同学聚会中,一共到了45位同学和2位老师,每位同学或老师都要和其他所有人握一次手,那么一共握手了几次?
3、新星幼儿园304个小朋友围成若干个圆圈(一圈套一圈)做游戏,已知最里面的圈有24人,最外面的圈有52人,如果相邻两圈相差的人数相等,那么相邻两圈相差多少人?