全等三角形全章测试(供参考)
八年级上册第11章全等三角形全章测试卷
八年级上册第11章全等三角形全章测试卷时间:120分钟 满分:150分 姓名: 得分:一、选择题(每小题5分,共25分):1、如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( )A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点第1题 第2题2、如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC3、如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°, ∠ADB =30°,则∠BCF = ( ) A .150° B .40° C .80° D .90°第3题 第4题4、如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( )A .25°B .27°C .30°D .45°5、如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .SSSB .SASC .AASD .ASA二、填空题(每题5分,共50分): 1、已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.BACBAED第1题图第2题图A DA CE B D ACB O DC BA2、如图,△ABC ≌△ADE ,则,AB =,∠E =∠.若∠BAE =120°,∠BAD =40°,则∠BAC = .3、如图,已知AC =BD ,21∠=∠,那么△ABC ≌ , 其判定根据是__________.4、如图,ABC ∆中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需加条件___ = ___.5、如图,已知AC =BD ,D A ∠=∠,请你添一个直接条件, = ,使△AFC ≌△DEB .6、如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 ..A D第3题图 第4题图 第5题图○1 ○2 ○3 A BA ′C ′9、如图,AB =CD ,AD =BC ,O 为BD 中点,过O 点作直线与DA 、BC 延长线交于E 、F ,若∠ADB =60°,EO =10,则∠DBC = ,FO = .10、如图,DO 垂直AC ,且AO=OC 交AB 于点D ,若AB=7cm ,BC=5cm ,则△BDC 的周长是三、解答题(共75分):11、(8分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.12、(9分)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .13、(10分)如图,∠DCE =90o ,CD =CE ,AD ⊥AC ,BE ⊥AC ,垂足分别为A 、B , 试说明AD +AB =BE .14、(10分)要将如图中的∠MON 平分,小梅设计了如下方案:在射线OM ,ON 上分别取OA =OB ,过A 作DA ⊥OM 于A ,交ON 于D ,过B 作EB ⊥ON 于B 交OM 于E ,AD ,EB 交于点C ,过O ,C 作射线OC 即为MON 的平分线,试说明这样做的理由.CA15、(12分)如图所示,A ,E ,F ,C 在一条直线上,AE =CF ,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,若AB =CD ,可以得到BD 平分EF ,为什么?若将△DEC 的边EC 沿AC 方向移动,变为图时,其余条件不变,上述结论是否成立?请说明理由.16、(14分)如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF . (2)请你判断BE +CF 与EF 的大小关系,并说明理由.17、(12分)如图,在 △ABC 中,点D 是BC 的中点, DE ⊥AB , DF ⊥AC ,E 、F 为垂足,DE =DF ,求证: AB=AC .(第3题)G DF A C BE G DFA CB E F EDC B A G。
全等三角形单元测试题(含答案)
全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
人教版八年级数学上册《第十二章 全等三角形》测试卷-带参考答案
人教版八年级数学上册《第十二章全等三角形》测试卷-带参考答案一、选择题1.如图,已知△ABC≌△CDE,下列结论中不正确的()A.AC=CE B.∠BAC=∠DCE C.∠ACB=∠ECD D.∠B=∠D2.下列命题属于假命题的是()A.全等三角形的对应边相等B.全等三角形的对应角相等C.三个角分别相等的两个三角形全等D.三条边分别相等的两个三角形全等3.如图,在△ABE和△ACD中,点D,E分别在AB,AC边上,且CD与BE相交于点O,AB=AC若要判定△ABE≌△ACD,则添加的条件不可能是()A.∠ABE=∠ACD B.AD=AE C.∠ADC=∠AEB D.BE=CD4.老师上课用磁力小棒设计了一个平分角的仪器,用它可以平分一个已知角.其中AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD沿着这个角的两边放下,利用全等三角形的性质就能说明射线AC是这个角的平分线.这里判定△ABC和△ADC是全等三角形的依据是()A.SSS B.ASA C.SAS D.AAS5.已知,如图所示,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形A.1 B.2 C.3 D.46.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=10,则点D到AB的距离是()A.8 B.9 C.10 D.117.如图,EB交AC于点M,交CF于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF.下列结论:①∠1=∠2②CD=BD③△AFN≌△BDN④AM=AN.其中所以正确结论的序号是()A.①②③B.①②④C.①③④D.②③④8.如图,在△ABC中,AB=3,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC 于M、N,则△AMN的周长为()A.4 B.6 C.7 D.8二、填空题9.已知图中的两个三角形全等,则∠1等于度.10.如图,已知∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足点分别是D,E,AD=5,BE=2,则DE的长为.11.如图,在△ACB中∠ACB=90°,AC=BC点C的坐标为(−2,0),点A的坐标为(−8,3),点B的坐标是.12.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=5,DC=6,则△ABD的面积为.13.如图,在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点M、N分别在AC、CB的延长线上,且MD⊥DN,连MN.若∠DMC=15°,BN=1,则MN的长是.三、解答题14.如图,∠1=∠2,AB=AE,AC=AD.求证:BC=ED.15.如图,AD是∠BAC的平分线,DE⊥AE,DF⊥AC,垂足为F,且BD=CD,求证:AB+CF=AE。
全等三角形单元测试(含答案)
全等三角形单元测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列作图属于尺规作图的是A.用量角器画出∠AOB,使∠AOB等于已知角αB.用圆规和直尺作线段AB,使AB等于已知线段αC.用刻度尺作出线段AB等于2倍的已知线段mD.用三角板作45°的角2.如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是A.带①和②去B.只带②去C.只带③去D.都带去3.山脚下有A、B两点,要测出A、B两点间的距离.在地上取一个可以直接到达A、B点的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB,连接DE.可以证△ABC≌△DEC,得DE=AB,因此,测得DE的长就是AB的长,判定△ABC≌△DEC的理由是A.SSS B.ASA C.SAS D.AAS4.下列条件中,能判定△ABC≌△DEF的是A.AB=DE,BC=EF,∠A=∠E B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.∠A=∠D,∠B=∠E,AC=DF5.如图,AB=CD,AD=CB,那么下列结论中错误的是A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD6.如图,AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,若PA=PB,则∠1与∠2的大小是A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定7.如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形共有对A.5 B.3 C.6 D.48.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF ≌△CDE;③点D在∠BAC的平分线上.正确的是A.①B.②C.①②D.①②③9.如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则∠1+∠2的度数是A.45°B.55°C.60°D.75°10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①DA平分∠CDE;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE +AC =AB ,其中正确的有A .4个B .3个C .2个D .1个二、填空题(本大题共10小题,每小题3分,共30分)11.若△ABC ≌△A ′B ′C ′,AB =3,∠A ′=30°,则A ′B ′=__________,∠A =__________°.12.如图,OC 为AOB ∠的平分线,CM OB ⊥,3CM =,则点C 到射线OA 的距离为__________.13.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5,则△DEF 的周长为__________.14.如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是__________.15.如图,在Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F .若EF =8 cm ,则AE =__________cm .16.如图,△ABC 中,D 是AB 的中点,DE ⊥AB ,∠ACE +∠BCE =180°,EF ⊥AC 交AC 于F ,AC =12,BC =8,则AF =________.17.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC 交边AC 于点D ,CD =4,△ABD 的面积为10,则AB 的长是__________.18.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=__________.19.如图,五边形ABCDE 中,∠B =∠E =90°,AB =CD =AE =BC +DE =2,则这个五边形ABCDE 的面积是__________.20.如图,Rt △ABC 中,9083C AC BC ∠=︒==,,,AE AC P Q ⊥,,分别是AC AE ,上的动点,且PQ AB =,当AP =__________时,才能使ABC △和PQA △全等.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.如图,已知∠1=∠2,∠B =∠D ,求证:CB =CD .22.如图,点E ,F 在AB 上,CE 与DF 交于点G ,AD =BC ,∠A =∠B ,AE =BF .求证:GE =GF .23.如图,12AC AE AB AD =∠=∠=,,.求证:BC DE =.24.如图,在Rt △ABC 中,∠C =90°.作∠BAC 的平分线AP 交边BC 于点D .(保留作图痕迹,不写作法).若∠BAC =28°,求∠ADB 的度数.25.如图,AD 是BAC ∠的平分线,点E 在AB 上,且AE AC =,EF BC ∥交AC 于点F .试说明:EC平分DEF ∠.26.如图,在△BCE 中,AC ⊥BE ,AB =AC ,点A 、点F 分别在BE 、CE 上,BE 、CF 相交于点D ,BD =CE .求证:AD =AE .27.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BA C.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.28.如图,△ABC是边长为5 cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿射线AB,BC运动,且它们的速度都为2 cm/s.设点P的运动时间为t(s).(1)当t为何值时,△ABQ≌△CBP;(2)连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.3.【答案】C【解析】因为CD=CA,CE=CB,ACB DCE∠=∠,所以△ABC≌△DEC(SAS).故选C.4.【答案】D【解析】A.AB=DE,BC=EF,∠A=∠E,SSA不能确定全等;B.∠A=∠E,AB=EF,∠B=∠D,AB和EF不是对应边,不能确定全等;C.∠A=∠D,∠B=∠E,∠C=∠F,AAA不能确定全等;D.∠A=∠D,∠B=∠E,AC=DF,根据AAS,能判断△ABC≌△DEF.故选D.5.【答案】B【解析】∵在△ABD和△CDB中,AB CD AD CB BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C,∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.6.【答案】A【解析】∵AD⊥OB,BC⊥OA,垂足分别为D、C,AD与BC相交于点P,PA=PB,∠CPA=∠DPB,∴△CPA≌△∠DPB(AAS),∴PC=PD,∴∠1=∠2,故选A.7.【答案】B【解析】根据AB=CD,AE=CF,∠BAE=∠DCF可得:△ABE≌△CDF;根据CE=AF,∠DAF=∠BCE,∠DFA=∠BEC可得:△ADF≌△CBE;根据∠DAC=∠BCA,∠BAC=∠DCA,AC=CA可得:△ACD≌△CAB,共有3对全等三角形,故选B.8.【答案】D∵△ABE≌△ACF,∴AE=AF,∵△BDF≌△CDE,∴DF=DE,∵在△AFD和△AED中,AF AE AD AD DF DE=⎧⎪=⎨⎪=⎩,∴△AFD≌△AED(SSS),∴∠FAD=∠EAD,∴AD平分∠BAC,即点D在∠BAC的平分线上.综上所述,在本题给出的结论中,正确的是①②③.故选D.9.【答案】C【解析】∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠1,而∠CBE+∠2=60°,∴∠1+∠2=60°.故选C.10.【答案】B【解析】根据题中条件,结合图形及角平分线的性质得到:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE,∴∠CDA=∠EDA,∴①AD 平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∴BE+AC=AB,∴④BE+AC=AB正确;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.【答案】3;30【解析】由对应角相等,对应边相等,A′B′=AB ,∠A =30°.故答案为:3;30. 12.【答案】3【解析】如图,过C 作CF ⊥AO .∵OC 为∠AOB 的平分线,CM ⊥OB ,∴CM =CF .∵CM =3,∴CF =3.故答案为:3.角的余角相等),在△FCE 和△ABC 中,90ECF BEC BC ACB FEC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABC ≌△FCE (ASA ),∴AC =EF ,∵AE =AC -CE ,BC =2 cm ,EF =8 cm ,∴AE =8-2=6 cm ,故答案为:6. 16.【答案】10【解析】如图,连接AE ,BE ,过E 作EG ⊥BC 于G ,∵D是AB的中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,∴∠ACE=∠ECG,又∵EF⊥AC,EG⊥BC,∴EF=EG,∠FEC=∠GEC,∵CF⊥EF,CG⊥EG,∴CF=CG,在Rt△AEF和Rt△BEG中,AE BEEF EG=⎧⎨=⎩,∴Rt△AEF≌Rt△BEG(HL),∴AF=BG,设CF=CG=x,则AF=AC-CF=12-x,BG=BC+CG=8+x,∴12-x=8+x,解得x=2,∴AF=12-2=10.故答案为:10.17.【答案】5【解析】如图,过点D作DE⊥AB于点E.∵BD平分∠ABC.又∵DE⊥AB,DC⊥BC,∴DE=DC=4.∵△ABD的面积=12·AB·DE=12×AB×4=10,∴AB=5.故答案为:5.20.【答案】3或8【解析】分为两种情况:①当AP=3时,∵BC=3,∴AP=BC,∵∠C=90°,AE⊥AC,∴∠C=∠QAP=90°,∴在Rt △ABC 和Rt △QAP 中,AB PQ BC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △PQA (HL ); ②当AP =8时,∵AC =8,∴AP =AC ,∵∠C =90°,AE ⊥AC ,∴∠C =∠QAP =90°,∴在Rt △ABC 和Rt △QAP中,AB PQ AC AP =⎧⎨=⎩,∴Rt △ABC ≌Rt △QAP (HL ),故答案为:3或8.22.【解析】∵AE =BF ,∴AE +EF =BF +EF ,∴AF =BE ,在△ADF 与△BCE 中,=AD BC A B AF BE =⎧⎪⎨⎪=⎩∠∠,∴△ADF ≌△BCE (SAS ),∴∠CEB =∠DFA ,∴GE =GF .23.【解析】∵12∠=∠,∴12BAE BAE ∠+∠=∠+∠,即BAC DAE ∠=∠,在BAC △和DAE △中,AC AE BAC DAE AB AD =⎧⎪∠=∠⎨⎪=⎩,∴BAC △≌DAE △(SAS ),∴BC DE =.24.【解析】(1)如下图所示,AD 为所求的角平分线:(2)∵∠BAC 的平分线AP ,∠BAC =28°, ∴∠CAD =BAD =14°,又∵∠C =90°,∠ADB =∠C +∠CAD ,∴∠ADB =90°+14°=104°.26.【解析】∵AC ⊥BE ,∴∠BAD =∠CAE =90°,在Rt △ABD 和Rt △ACE 中,BD CE AB AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACE (HL ),∴AD =AE .27.【解析】(1)∵∠BAC =∠EAD ,∴∠BAC -∠EAC =∠EAD -∠EAC ,即:∠BAE=∠CAD,在△ABE和△ACD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,28.【解析】(1)∵△ABQ≌△CBP,∴BQ=BP,∴2t=5-2t,∴t=54,∴t=54s时,△ABQ≌△CBP,(2)结论:∠CMQ=60°不变,理由:∵△ABC是等边三角形,∴∠ABQ=∠CAP,AB=CA,又∵点P,Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,AB CAABQ CAP AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠CMQ=∠BAQ+∠MAC=∠BAC=60°.。
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案
人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版八年级数学上册第十二章《全等三角形》测试带答案解析
人教版八年级数学上册第十二章《全等三角形》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD △的面积是( )A .12B .10C .8D .62.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,他发现OCD 与'''O C D 全等,请你说明小华得到全等的依据是( )A .SSSB .SASC .ASAD .AAS 3.如图,OB 平分∠AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使DOE ≅FOE ,你认为要添加的那个条件是( )A .OD =OEB .OE =OFC .∠ODE =∠OED D .∠ODE =∠OFE 4D E BC,,12110,60AD AE BE CD BAE ==∠=∠∠=︒=︒,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°5.如图,在Rt ABC 中,90ACB ∠=︒,按以下步骤作图:①以B 为圆心,任意长为半径作弧,分别交BA 、BC 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线BP ,交边AC 于D 点,若5,3AB BC ==,则线段CD 的长为( )A .32B .53C .43D .856.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.如图,在△ABC 中,∠A =90°,BE 是△ABC 的角平分线,ED ⊥BC 于点D ,CD =4,△CDE 周长为12,则AC 的长是( )8.如图,点E 是△ABC 内一点,∠AEB =90°,AE 平分∠BAC ,D 是边AB 的中点,延长线段DE 交边BC 于点F ,若AB =6,EF =1,则线段AC 的长为( )A .7B .8C .9D .109.如图,AI 、BI 、CI 分别平分BAC ∠、ABC ∠、ACB ∠,ID BC ⊥,ABC 的周长为18,3ID =,则ABC 的面积为( )A .18B .30C .24D .2710.数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是( )A .边角边B .三角形中位线定理C .边边边D .全等三角形的对应角相等11.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②2180ABC APC ∠+∠=︒;③2BAC BPC ∠=∠;④PAC MAP NCP S S S ∆∆∆=+.其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图,在四边形ABCD 中,AD ∥BC .若∠DAB 的角平分线AE 交CD 于E ,连接BE ,且BE 边平分∠ABC ,得到如下结论:①∠AEB =90°;②BC +AD =AB ;③BE =12CD ;④BC =CE ;⑤若AB =x ,则BE 的取值范围为0<BE <x ,那么以上结论正确的是( )A .①②③B .②③④C .①④⑤D .①②⑤二、填空题13.如图,ABC DCB △≌△,若AB =4cm ,BC =6cm ,AC =5cm ,则DC =________cm .14.嘉淇为了测量建筑物墙壁AB 的高度,采用了如图所示的方法:①把一根足够长的竹竿AC 的顶端对齐建筑物顶端A ,末端落在地面C 处;②把竹竿顶端沿AB 下滑至点D ,使DB =_____,此时竹竿末端落在地面E 处;③测得EB 的长度,就是AB 的高度.以上测量方法直接利用了全等三角形的判定方法 _____(用字母表示).15.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长是_____.16.如图,任意画一个60BAC ∠=︒的ABC ,再分别作ABC 的两条角平分线BE 和CD ,BE 和CD 交于点P ,连结AP .有以下结论:①AP 平分BAC ∠;②PD PE =;③BD CE BC =+;④PBD PCE PBC S S S +=.其中正确的序号是_____.三、解答题17.如图,点E 、F 在线段BC 上,//AB CD ,A D ∠=∠,BE CF =,证明:AE DF =.18.如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .19.如图,点E ,F 在线段AD 上,AB ∥CD ,B C ∠=∠,BE CF =.求证:AF DE =.20.如图,ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE CF ∥.(1)求证:BDE △≌CDF ;(2)若15AE =,8AF =,试求DE 的长.21.如图,已知ABC 中,2C B ∠=∠.(1)请用基本尺规作图:作∠BAC 的角平分线交BC 于点D ,在AB 上取一点E ,使AE =AC ,连接DE .(不写作法,不下结论,保留作图痕迹);(2)在(1)所作的图形中,求证:AB AC CD =+.请完成下面的证明过程:证明:∵AD 平分BAC ∠,∴DAC ∠=______,在EAD 与CAD 中AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS EAD CAD ≌△△,∴______C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+______,且2C B ∠=∠,∴B BDE=,∠=∠,∴BE DE∴BE=______,=+.∵AB AE BE=+,∴AB AC CD22.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.(1)AB=DC;(2)△ABC≌△DCB.23.如图,已知△ABC≌△DEF,AF=5cm.(1)求CD的长.(2)AB与DE平行吗?为什么?解:(1)∵△ABC≌△DEF(已知),∴AC=DF(),∴AC﹣FC=DF﹣FC(等式性质)即=∵AF=5cm∴=5cm(2)∵△ABC≌△DEF(已知)∴∠A=()∴AB()24.在△ABC中,AB=BC,∠ABC=90°,点D为BC上一点,BF⊥AD于点E,交AC于点F,连接DF.(1)如图①,当AD平分∠BAC时,①AB与AF相等吗?为什么?②判断DF与AC的位置关系,并说明理由;(2)如图②,当点D为BC的中点时,试说明:∠FDC=∠ADB.25.如图1,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD⊥DE,且CD =DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;②如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.参考答案:1.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式求解即可.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵AD 是∠BAC 的角平分线,90C ∠=︒,CD =3,∴DE =CD =3,∵AB =8,∴△ABD 的面积118312.22AB DE =⋅=⨯⨯= 故选A.【点睛】本题主要考查角了平分线的性质,掌握角平分线上的点到角两边的距离相等是解答本题的关键.2.A【分析】利用全等三角形的判定定理即可求解.【详解】解:在OCD ∆和O C D '''∆中, OD O D OC O C DC D C '''''=⎧'⎪=⎨⎪=⎩,()OCD O C D SSS '''∴∆≅∆.故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.3.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB 平分∠AOC∴∠AOB =∠BOC当△DOE ≌△FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是△DOE ≌△FOE 的对应边,A 不正确;B 答案中OE 与OF 不是△DOE ≌△FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是△DOE ≌△FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在△DOE 和△FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△DOE ≌△FOE (AAS )∴D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.4.B【分析】先证明BD =CE ,然后证明△ADB ≌△AEC ,∠ADE =∠AED =70°,得到∠BAD =∠CAE ,根据三角形内角和定理求出∠DAE =40°,从而求出∠BAD 的度数即可得到答案.【详解】解:∵BE =CD ,∴BE -DE =CD -DE ,即BD =CE ,∵∠1=∠2=110°,AD =AE ,∴△ADB ≌△AEC (SAS ),∠ADE =∠AED =70°,∴∠BAD =∠CAE ,∠DAE =180°-∠ADE -∠AED =40°,∵∠BAE =60°,∴∠BAD =∠CAE =20°,∴∠BAC =80°,故选B .【点睛】本题主要考查了全等三角形的性质与判定,邻补角互补,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.5.A【分析】利用基本作图得BD平分∠ABC,过D点作DE⊥AB于E,如图,根据角平分线的性质得到则DE=DC,再利用勾股定理计算出AC=4,然后利用面积法得到12•DE×5+12•CD×3=12×3×4,最后解方程即可.【详解】解:由作法得BD平分∠ABC,过D点作DE⊥AB于E,如图,则DE=DC,在Rt△ABC中,AC BC222253=4,∵S△ABD+S△BCD=S△ABC,∴12•DE×5+12•CD×3=12×3×4,即5CD+3CD=12,∴CD=32,故选:A.【点睛】本题考查了基本作图:作解平分线,角平分线的性质,勾股定理,熟练掌握基本作图(作已知角的角平分线),角平分线的性质是解题的关键.6.C【分析】利用基本作图可对图1和图2进行判断;利用基本作图和全等三角形的判定与性质、角平分线性质定理的逆定理对图3进行判断.【详解】在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,根据作法可知:AE =AF ,AM =AN ,在△AMF 和△ANE 中,AF AE MAF NAE AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMF ≌△ANE (SAS ),∴∠AMD =∠AND ,∵AE =AF ,AM =AN ,∴ME =NF ,在△MDE 和△NDF 中,MDE NDF AMD AND ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NDF (AAS ),MDE NDF S S ∴=△△所以D 点到AM 和AN 的距离相等,∴AD 平分∠BAC .综上,能判断射线AD 平分∠BAC 的是图1和图3.故选:C .【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,角平分线的判定,解决本题的关键是掌握角平分线的作法.7.B【分析】根据角平分线的性质得到AE =DE ,根据三角形的周长公式计算,得到答案.【详解】解:∵BE 是△ABC 的角平分线,ED ⊥BC ,∠A =90°,∴AE =DE ,∵△CDE 的周长为12,CD =4,∴DE +EC =8,∴AC =AE +EC =8,故选:B .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.B【分析】延长BE 交AC 于H ,证明HAE BAE ∆≅∆,根据全等三角形的性质求出AH ,根据三角形中位线定理解答即可.【详解】解:延长BE 交AC 于H , AE 平分BAC ∠,HAE BAE ∴∠=∠,在HAE ∆和BAE ∆中,HAE BAE AE AEAEH AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()HAE BAE ASA ∴∆≅∆,6AH AB ∴==,HE BE =,HE BE =,AD DB =,//DF AC ∴,HE BE =,22HC EF ∴==,8AC AH HC ∴=+=,故选:B .【点睛】本题考查的是全等三角形的判定和性质、三角形中位线定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.D【分析】过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,利用角平分线的性质得到IE =IF =ID =3,然后根据三角形面积公式得到ABC IAB IBC IAC S S S S =++△△△△,据此即可求得.【详解】解:过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,∵AI ,BI ,CI 分别平分∠BAC ,∠ABC ,∠ACB ,∴IE =IF =ID =3,∴ABC IAB IBC IAC S S S S =++△△△△111333222AB BC AC =⨯⨯+⨯⨯+⨯⨯ 3()2AB BC AC =++ 3182=⨯ 27=故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积.10.A【分析】根据O 是AD 与BC 的中点,得到OA =OD ,OB =OC ,根据∠AOB =∠DOC ,推出△AOB ≌△DOC ,是SAS .【详解】∵O 是AD 与BC 的中点,∴OA =OD ,OB =OC ,∵∠AOB =∠DOC ,∴△AOB ≌△DOC (SAS).故选A .【点睛】本题考查了测量原理,解决此类问题的关键是根据测量方法和工具推导测量原理.11.D【分析】过点P 作PD ⊥AC 于D ,根据角平分线的判定定理和性质定理判断①;证明Rt △P AM ≌Rt △P AD ,根据全等三角形的性质得出∠APM =∠APD ,同理得出∠CPD =∠CPN ,可判断②;根据三角形的外角性质判断③;根据全等三角形的性质判断④.【详解】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PN =PD ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △P AM 和Rt △P AD 中,PM PD PA PA=⎧⎨=⎩, ∴Rt △P AM ≌Rt △P AD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵PC 平分∠FCA ,BP 平分∠ABC ,∴∠ACF =∠ABC +∠BAC =2∠PCN ,∠PCN =12∠ABC +∠BPC , ∴()1122PCN ABC BPC ABC BAC ∠=∠+∠=∠+∠ ∴∠BAC =2∠BPC ,③正确;④由②可知Rt △P AM ≌Rt △P AD (HL ),Rt △PCD ≌Rt △PCN (HL )∴S △APD =S △APM ,S △CPD =S △CPN ,∴S △APM +S △CPN =S △APC ,故④正确,故选:D【点睛】本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12.D【分析】根据两直线平行,同旁内角互补可得∠ABC +∠BAD =180°,又BE 、AE 都是角平分线,可以推出∠ABE +∠BAE =90°,从而得到∠AEB =90°,然后延长AE 交BC 的延长线于点F ,先证明△ABE 与△FBE 全等,再根据全等三角形对应边相等得到AE =EF ,然后证明△AED 与△FEC 全等,从而可以证明①②⑤正确,AB 与CD 不一定相等,所以③④不正确.【详解】解:∵AD ∥BC ,∴∠ABC +∠BAD =180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线,∴∠BAE =12∠BAD ,∠ABE =12∠ABC ,∴∠BAE +∠ABE =12(∠BAD +∠ABC )=90°,∴∠AEB =180°﹣(∠BAE +∠ABE )=180°﹣90°=90°,故①小题正确;如图,延长AE 交BC 延长线于F ,∵∠AEB =90°,∴BE ⊥AF ,∵BE 平分∠ABC ,∴∠ABE =∠FBE ,在△ABE 与△FBE 中,90ABE FBE BE BEAEB FEB ∠∠⎧⎪⎨⎪∠∠︒⎩==== , ∴△ABE ≌△FBE (ASA ),∴AB =BF ,AE =FE ,∵AD ∥BC ,∴∠EAD =∠F ,在△ADE 与△FCE 中,EAD F AE FE AED FEC ∠∠⎧⎪⎨⎪∠∠⎩=== ,∴△ADE ≌△FCE (ASA ),∴AD =CF ,∴AB =BF =BC +CF =BC +AD ,故②小题正确;∵△ADE ≌△FCE ,∴CE =DE ,即点E 为CD 的中点,∵BE 与CE 不一定相等∴BE 与12CD 不一定相等,故③小题错误;若AD =BC ,则CE 是Rt △BEF 斜边上的中线,则BC =CE ,∵AD 与BC 不一定相等,∴BC 与CE 不一定相等,故④小题错误;∵BF =AB =x ,BE ⊥EF ,∴BE 的取值范围为0<BE <x ,故⑤小题正确.综上所述,正确的有①②⑤.故选:D .【点睛】本题主要考查了全等三角形的判定及性质,平行线的性质,角平分线的定义,证明BE ⊥AF 并作出辅助线是解题的关键,本题难度较大,对同学们的能力要求较高. 13.4【分析】由ABC DCB △≌△,可得AB =DC ,已知AB =4cm ,即可得DC 的长度,做题时要找准对应边.【详解】解:∵ABC DCB △≌△,∴AB =DC =4cm .故答案为4.【点睛】本题考查了全等三角形的性质,题中条件虽多但找到相应关系即可得解,不需要用到所有条件,关键是找准对应边.14. CB ##BC HL【分析】根据题意,将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌即可求解.【详解】解:由③可得将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌,故把竹竿顶端沿AB 下滑至点D ,使DB =CB ,证明90,,ABC EBD AC ED DB CB ∠=∠=︒==,∴Rt Rt ABC EBD ≌(HL )故答案为:CB ,HL .【点睛】本题考查了HL 证明三角形全等,全等三角形的性质,掌握HL 的性质与判定是解题的关键.15.3【分析】根据角平分线上的点到角的两边距离相等可得DE =DF ,再根据三角形的面积公式列式计算即可得解.【详解】解:过D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12AB ×DE +12AC ×DF =12×4×2+12AC ×2=7,解得AC =3.故答案为:3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键. 16.①②③④【分析】首先由三角形内角和定理和角平分线得出PBC PCB ∠+∠的度数,再由三角形内角和定理可求出120BPC ∠=︒可知120DPE ∠=︒,过点P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,由角平分线的性质可知AP 是BAC ∠的平分线,由此判断①;由全等三角形的判定定理可得出PFD PGE ≌,由此判断②;由三角形全等的判定定理可得出BHP BFP ≌,CHP CGP ≌,然后根据全等三角形推出BC BD CE =+,由此判断③,根据全等可得PBD S 、PCE S 和PBC S 的关系,由此判断④,由此即可解答本题.【详解】∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,60BAC ∠=︒, ∴11(180)(18060)6022BA B C PBC PC ︒-∠=︒+∠-︒=∠=︒, ∴()180********BPC PBC PCB ∠=︒-∠+∠=︒-︒=︒,∴120DPE ∠=︒,过点P 作PF AB ⊥于F 点,PG ⊥AC 于G 点,PH ⊥BC 于H 点,∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,PF AB ⊥,PG AC ⊥,PH BC ⊥, ∴PF PH PG ==,∴AP 平分BAC ∠,故①正确;由①可知:PF PH PG ==,∵60BAC ∠=︒,90AFP AGP ∠=∠=︒,∴120FPG ∠=︒,∵120DPE ∠=︒,∴DPF DPE EPF FPG EPF EPG ∠=∠-∠=∠-∠=∠,∴PFD PGE ASA ≌(), ∴PD PE =,故②正确;又∵BP BP =,PF PH =,∴()Rt BHP Rt BFP HL ≌,同理:Rt CHP Rt CGP ≌,∴BH BD DF =+,CH CE GE =-,两式相加得:+=++BH CH BD DF CE GE -,∵PFD PGE ASA ≌(), ∴DF GE =,∴BD CE BC =+,故③正确;∵PF PH PG ==,∴PBD △,PCE ,PBC △,的高相等,∵BD CE BC =+,∴PBD PCE PBC S S S +=,故④正确;故答案是:①②③④.【点睛】本题主要考查全等三角形的判定和性质定理,角平分线的性质定理以及四边形内角为360°等知识,添加辅助线,构造全等三角形,是解题的关键.17.见解析【分析】利用AAS 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B =∠C ,∵A D ∠=∠,BE CF =,∴△ABE ≌△DCF (AAS ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.18.证明见解析【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB ,∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A ,∴△CDE ≌△ABC (ASA).∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.19.见详解【分析】由题意易得A D ∠=∠,然后可证ABE DCF △≌△,进而问题可求证.【详解】证明:∵AB ∥CD ,∴A D ∠=∠,∵B C ∠=∠,BE CF =,∴ABE DCF △≌△(AAS ),∴AE DF =,∵,AF AE EF DE DF EF =-=-,∴AF DE =.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.20.(1)见解析; (2)72;【分析】(1)根据两直线平行内错角相等;全等三角形的判定(角角边);即可证明;(2)由(1)结论计算线段差即可解答;(1)证明:∵BE ∥CF ,∴∠BED =∠CFD ,∵∠BDE =∠CDF ,BD =CD ,∴△BDE ≌△CDF (AAS );(2)解:由(1)结论可得DE =DF ,∵EF =AE -AF =15-8=7,∴DE =72; 【点睛】本题考查了平行线的性质,全等三角形的判定(AAS )和性质;掌握全等三角形的判定和性质是解题关键.21.(1)见详解(2)∠DAE ,∠AED ,∠B ,CD【分析】(1)利用尺规作出角平分线及相等的线段,然后连接即可;(2)先证明()EAD CAD SAS ≌,再结合AED BDE ∠=∠+∠B ,且2C B ∠=∠,即可得到结论.【详解】(1)解:如图所示即为所求;(2)证明:∵AD 平分BAC ∠,∴DAC ∠=∠DAE ,在EAD 与CAD 中,AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()EAD CAD SAS ≌,∴∠AED C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+∠B ,且2C B ∠=∠,∴B BDE ∠=∠,∴BE DE =,∴BE =CD ,∵AB AE BE =+,∴AB AC CD =+.故答案是:∠DAE ,∠AED ,∠B ,CD .【点睛】本题主要考查尺规作图—基本作图,全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质,是解题的关键.22.(1)证明见解析;(2)证明见解析【分析】(1)证明△ABO ≌△DCO (ASA ),即可得到结论;(2)由△ABO ≌△DCO ,得到OB =OC ,又OA =OD ,得到BD =AC ,又由∠A =∠D ,即可证得结论.【详解】(1)证明:在△ABO 与△DCO 中,A D OA ODAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA )∴AB =DC ;(2)证明:∵△ABO ≌△DCO ,∴OB =OC ,∵OA =OD ,∴OB +OD =OC +OA ,∴BD =AC ,在△ABC 与△DCB 中,AC BD A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ).【点睛】此题考查了全等三角形的判定和性质,熟练掌握并灵活选择全等三角形的判定方法是解题的关键.23.(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ≌△DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ≌△DEF ,可以得到∠A =∠D ,从而可以得到AB 与DE 平行.【详解】解:(1)∵△ABC ≌△DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∵AF =5cm∴CD =5cm ;(2)∵△ABC ≌△DEF (已知)∴∠A =∠D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点睛】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)①AB AF =,理由见解析;②DF AC ⊥,理由见解析;(2)见解析【分析】(1)①SAS 证明AEF AEB △≌△,即可推出AB AF =;②根据AD 垂直平分BF 可得BD DF =,进而SSS 证明ADF ADB ≌,可得90DFA DBA ∠=∠=︒,即可求解.(2)过点C 作CG BC ⊥,交BF 的延长线于点G ,ASA 证明ABD BCG △≌△,可得DB CG =,进而证明△FCG ≌FCD ()SAS ,得出FDC FGC ∠=∠,根据同角的余角相等,可得G ADB ∠=∠,等量代换可得∠FDC =∠ADB .(1)①AB AF=,理由如下,AD平分∠BAC,FAD BAE∴∠=∠,BF⊥AD,AEB AEF∠=∠∴,又AE AE=,∴AEF AEB△≌△,∴AB AF=;②DF AC⊥,理由如下,AEF AEB△≌△,EF EB∴=,又AD FB⊥,DF DB∴=,在ADF△与ADB中AD ADAF ABDF DB=⎧⎪=⎨⎪=⎩,∴ADF△≌ADB()SSS,90ABC∠=︒,∴90DFA DBA∠=∠=︒,即DF AC⊥;(2)过点C作CG BC⊥,交BF的延长线于点G,如图,90GCB DBA∴∠=∠=︒,BF AD⊥,90ABC∠=︒,∴90,90 GBD ADB ADB DAB∠+∠=︒∠+∠=︒,GBD DAB∴∠=∠,又AB BC=,∴ABD BCG △≌△()ASA ,DB CG ∴=,点D 为BC 的中点,BD CD ∴=12BC =, CG CD ∴=, ,90AB AC ABC =∠=︒,45ACB ∴∠=︒,45FCB FCG ∴∠=∠=︒,在△FCG 与FCD 中,CG CD GCF DCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△FCG ≌FCD ()SAS ,FDC FGC ∴∠=∠,,CG CB AD BF ⊥⊥,FBD ADB FBD G ∴∠+∠=∠+∠,G ADB ∴∠=∠,∴∠FDC =∠ADB .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 25.(1)∠ADF =45°,ADDF ;(2)①成立,理由见解析;②1≤S △ADF ≤4.【分析】(1)延长DF 交AB 于H ,连接AF ,先证明△DEF ≌△HBF ,得BH =CD ,再证明△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;(2)①过B 作DE 的平行线交DF 延长线于H ,连接AH 、AF ,先证明△DEF ≌△HBF ,延长ED 交BC 于M ,再证明∠ACD =∠ABH ,得△ACD ≌△ABH ,得AD =AH ,等量代换可得∠DAH =90°,即△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;②先确定D 点的轨迹,求出AD 的最大值和最小值,代入S △ADF =214AD 求解即可.【详解】(1)解:∠ADF =45°,AD ,理由如下:延长DF 交AB 于H ,连接AF ,∵∠EDC =∠BAC =90°,∴DE ∥AB ,∴∠ABF =∠FED ,∵F 是BE 中点,∴BF =EF ,又∠BFH =∠DFE ,∴△DEF ≌△HBF ,∴BH =DE ,HF =FD ,∵DE =CD ,AB =AC ,∴BH =CD ,AH =AD ,∴△ADH 为等腰直角三角形,∴∠ADF =45°,又HF =FD ,∴AF ⊥DH ,∴∠F AD =∠ADF =45°,即△ADF 为等腰直角三角形,(2)解:①结论仍然成立,∠ADF=45°,AD DF,理由如下:过B作DE的平行线交DF延长线于H,连接AH、AF,如图所示,则∠FED=∠FBH,∠FHB=∠EFD,∵F是BE中点,∴BF=EF,∴△DEF≌△HBF,∴BH=DE,HF=FD,∵DE=CD,∴BH=CD,延长ED交BC于M,∵BH∥EM,∠EDC=90°,∴∠HBC+∠DCB=∠DMC+∠DCB=90°,又∵AB=AC,∠BAC=90°,∴∠ABC=45°,∴∠HBA+∠DCB=45°,∵∠ACD+∠DCB=45°,∴∠HBA=∠ACD,∴△ACD≌△ABH,∴AD=AH,∠BAH=∠CAD,∴∠CAD+∠DAB=∠BAH+∠DAB=90°,即∠HAD=90°,∴∠ADH=45°,∵HF=DF,∴AF⊥DF,即△ADF为等腰直角三角形,②由①知,S△ADF=12DF2=14AD2,由旋转知,当A、C、D共线时,且D在A、C之间时,AD取最小值为3-1=2,当A、C、D共线时,且C在A、D之间时,AD取最大值为3+1=4,∴1≤S△ADF≤4.【点睛】本题考查了等腰直角三角形性质及判定、全等三角形判定及性质、勾股定理等知识点.构造全等三角形及将面积的最值转化为线段的最值是解题关键.遇到题干中有“中点”时,采用平行线构造出对顶三角形全等是常用辅助线.。
人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)
故答案为:70°.
【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.
12.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】7
【解析】
分析】
先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据 ,可得 ,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得 = =7.
【详解】如图,
过点P作PF⊥AB于G,
因为∠ABC和∠ACB的外角平分线BP,CP交于P,
【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.
2.如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )
A. 3B. -3C. 2D. -2
【答案】A
【解析】
【分析】
过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得:DE=OD=3,即点D到AB的距离是3.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当 时,四边形FBCD周长最小为5+6+5=16
三、解答题(共52分)
17.如图,已知 ,用尺规过点 作直线 ,使得 .(保留作图痕迹,不写做法)
【答案】见解析
2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)
第十二章全等三角形考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A.B.C.D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cm B.2.5cm C.3cm D.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是( )A.SSS B.ASA C.SAS D.HL5.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在()处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC 的长是( )A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()m2B.2m2C.5m2D.4m2A.52二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A′B′C′D′.若∠B=90°,∠C=60°,∠D′=105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒(t>0),则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°(0<x<180),∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x…304050607080β130y757065α555040θ这里α= ,β= ,θ= .猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,…,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB=50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE 的面积.【深入探究】(3)如图3,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC 、DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .①求证DG =GE ;②若BC =21,AF =12,求△ADG 的面积.参考答案:1.B2.B3.C4.B5.B6.C7.B8.A9.A10.A11.130°12.10513.∠BAD=∠CAE14.1215.52°16.3或7或1017.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,{∠C=∠D∠BAC=∠EAD,AB=AE∴△ABC≌△AED(AAS),∴BC=ED.18.(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,{AB=CD∠BAC=∠ACD,AC=CA∴△ABC≌△CDA(SAS);(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO(ASA),∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF(SAS),∴AE=CF,∵OE=OF,OM=ON,∴OE−OM=OF−ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF(SSS),∴∠MAE=∠NCF.20.(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE (AAS).(2)解:∵ ∠A =55°,∵△ABC≌△CDE ,∴∠A =∠ECD =55°,∴ ∠BCD =180°−∠ECD =180°−55°=125°.21.(1)解:∵∠ACB =106°,∴∠ACD =180°−106°=74°,∵EH ⊥BD ,∴∠CHE =90°,∵∠CEH =53°,∴∠ECH =90°−53°=37°,∴∠ACE =∠ACD−∠ECH =74°−37°=37°.(2)证明:如图:过E 点分别作EM ⊥BF 于M ,EN ⊥AC 与N ,∵BE 平分∠ABC ,∴EM =EH ,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴ S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD)⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴ S △ABE =12AB ⋅EM =15.22.(1)观察表格发现:x每增加10,y减小5,∴α=65−5=60,β=80+2×10=100,θ=40−3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90−12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,x.y=90−12(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,x,∵x+y=135,y=90−12∴x +90−12x =135,解得x =90,y =45,∴∠EAC =90°,∠AEC =∠ACE =45°,∴AE =AC =10,∴S △AEC =12×10×10=50,∴S 四边形ABCD =50.23.(1)解:∵OC 平分∠AOB , 点 F 在OC 上,且FE ⊥OB , FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°−∠FDO−∠FEO−∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,{∠FDM =∠FEN FD =FE ∠DFM =∠EFN,∴△DFM≌△EFN(ASA),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB ,∴FD =EB ,S △CFD =S △CEB ,∴S 四边形ABCD =S 四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB−BE,AF=AD+DF,∴AB−BE=AD+DF,∴50−BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.24.解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P 分别作PM ⊥OA 于M ,PN ⊥OB 于N ,∵OP 是∠AOB 的平分线,∴PM =PN ,∠PMC =∠PND =90°,当PC =PD 1时,在Rt △PMC 和Rt △PND 1中,{PC =PD 1PM =PN ,∴Rt △PMC≌Rt △PND 1(HL),∴∠PCO =∠PD 1O ;当PC =PD 2时,同理得Rt △PMC≌Rt △PND 2(HL),∴∠PCM =∠PD 2N ;∵∠PD 2N +∠PD 2O =180°,∴∠PCO +∠PD 2O =180°,综上所述,∠PCO 与∠PDO 的数量关系为∠PCO =∠PDO 或∠PCO +∠PDO =180°;25.解:(1)证明:∵∠BAD =90°,∴∠BAC +∠DAE =90°,∵BC ⊥CA ,DE ⊥AE ,∴∠ACB =∠DEA =90°,∴∠BAC +∠ABC =90°,∴∠ABC =∠DAE ,在△ABC 和△DAE 中,{∠ACB =∠DEA ∠ABC =∠DAE BA =AD∴△ABC≌△DAE (AAS),∴BC =AE .(2)由模型呈现可知,△AEP≌△BAG ,△CBG≌△DCH ,∴AP =BG =3,AG =EP =6,CG =DH =4,CH =BG =3,则S 实线围成的图形=12×(4+6)×(3+6+4+3)−12×3×6−12×3×6−12×3×4−12×3×4=50.(3)①过点D 作DP ⊥AG 于P ,过点E 作EQ ⊥AG 交AG 的延长线于Q .图3由【模型呈现】可知,△AFB≌△DPA ,△AFC≌△EQA ,∴DP =AF ,EQ =AF∴DP =EQ ,∵DP ⊥AG ,EQ ⊥AG∴∠DPG =∠EQG =90°,在△DPG 和△EQG 中,{∠DPG =∠EQG ∠DGP =∠EGQ DP =EQ∴△DPG≌△EQG (AAS),∴DG =GE .②由①可知,BF =AP ,FC =AQ ,∴BC =BF +FC =AP +AQ ,∵BC =21,∴AP +AQ =21,∴AP +AP +PG +GQ =21,由①△DPG≌△EQG 得∴PG =GQ ,∴AP +AP +PG +PG =21,∴AP+PG=10.5,∴AG=10.5,×10.5×12=63.∴S△ADG=12。
全等三角形单元测试(含答案)
全等三角形单元测试一.填空题:(每题3分,共30分)1.如图1,AD⊥BC,D 为BC 的中点,则△ABD≌_________.,则图中共有 对全等三角形6.如图6,四边形ABCD 的对角线相交于O 点,且有AB∥DC,AD∥BC,则图中有___对全等三角形.7.“全等三角形对应角相等”的条件是 .8.如图8,AE =AF ,AB =AC ,∠A=60°,∠B=24°,则∠BOC=__________.、图5图6…9.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.10.在Rt△ABC中,∠C=90°,∠A.∠B的平分线相交于O,则∠AOB=_________.二.选择题:(每题3分,共24分)11.如图9,△ABC≌△BAD,A和和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A.4cmB.5cmC.6cmD.以上都不对12.下列说法正确的是()A.周长相等的两个三角形全等、B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等13.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C14.下列条件中,能判定△ABC≌△DEF的是()=DE,BC=ED,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE{是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是()>1 <5 C.1<AD<5 <AD<1016.下列命题正确的是()A.两条直角边对应相等的两个直角三角形全等;B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等17.如图10.△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为()、对对对对18.如图11,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点三.解答题(共46分)19. (8分)如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角..20. (7分)如图, ∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C的射线OC便是∠AOB的平分线,为什么:(AB CE DO图10图 11BDOCA21. (7分)如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.22. (8分)如图,已知AC⊥AB,D B⊥AB,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.【23. (8分)已知如图,在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.24. (8分)如图,∠ABC=90°,AB =BC ,D 为AC 上一点,分别过作BD 的垂线,垂足分别为,求证:EF =CF -AE.ABE/CDA BEO FD…CAC$DB参考答案1.△ADC2. ∠B=∠C或AF=DC ° 7.两个三角形全等° ° 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直 23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD 24.证△ABF≌△BCF。
全等三角形章节测试题
全等三角形章节测试题一、 基础达标训练:1. 已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定 △ABM ≌ △CDN 的是( )A. ∠M =∠NB. AB =CDC. AM =CND. AM//CN 2. 如图,若△OAD ≌ △OBC ,且∠O = 65°, ∠C = 20°,则∠OAD = 。
3. 如图所示,AB = AD ,∠1 = ∠2,添加一个适当的条件, 使△ABC ≌ △ADE ,则需要添加的条件是______.4. 如图,在△ABC 和△DCB 中,AC =DB ,若不增加任何字母与辅助线, 要使△ABC ≌ △DCB ,则还需要增加一个条件是 。
5. 如图,平行四边形ABCD 中,BD 是对角线,E 、F 是BD 上的点,且BE = DF ,请写出图中一对 全等的三角形 。
6. 如图,已知在△ABE 和△ACD 中,AB = AC ,要使△ABE ≌ △ACD ,还需添加一个条件,这个条件可以是 __。
7.三角形中到三边的距离相等的点是( )A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点8.如图,在Rt △ABC 中,∠C=90°AD 的平分∠BAC, ∠BAD=20°,则∠B 的度数为( )A. 40°B. 30°C. 60°D. 50°DCB AABC9.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm, 则点D 到AB 的距离为( )A. 5cmB. 3cmC. 2cmD. 不能确定10.如图,AB ∥CD,PB 平分∠ABC,PC 平分∠DCB,则 ∠P=11.角平分线上的点到 相等.12.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE ⊥AB 于E,且AB=5cm,则△DEB 的周长为13. 如图,在矩形ABCD 中,E 、F 分别是BC 、AD 上的点,且BE = DF.求证:△ABE ≌ △CDF. 证明:14. 已知:如图,在平行四边形ABCD 中,BD 是对角线,AE ⊥BD 于E ,CF ⊥BD 于F 。
人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)
第十二章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=( C )A.3 B.4 C.7 D.8,第1题图),第2题图),第3题图)2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于( B ) A.120°B.125°C.130°D.135°3.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( B )A.SAS B.ASA C.AAS D.SSS4.(2015·六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是( D )A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD,第4题图),第5题图),第6题图)5.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( C )A.AB=ED B.AC=EF C.AC∥EF D.BF=DC6.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为( D )A.60°B.62°C.64°D.66°7.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( A )A.4个B.3个C.2个D.1个,第7题图),第8题图),第9题图) ,第10题图)8.如图,△ABC 的三边AB ,BC ,CA 的长分别为20,30,40,O 是△ABC 三条角平分线的交点,则S △ABO ∶S △BCO ∶S △CAO 等于( C )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶59.如图,在平面直角坐标系中,以点O 为圆心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =110.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =AB.其中正确的有( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.已知△ABC ≌△DEF ,且△ABC 的周长为12 cm ,面积为6 cm 2,则△DEF 的周长为__12__cm ,面积为__6__cm 2.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:__AE =AF 或∠EDA =∠FDA 或∠AED =∠AFD __.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B ,D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__13__.14.如图,Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =5 cm ,则AE =__3__cm .15.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,CE ,BD 相交于O ,则图中全等的直角三角形有__4__对.16.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__135__度.,第16题图) ,第17题图),第18题图)17.如图,已知相交直线AB和CD及另一直线MN,如果要在MN上找出与AB,CD 距离相等的点,则这样的点至少有__1__个,最多有__2__个.18.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC =BC,若∠BAC=80°,则∠BOD的度数为__100°__.三、解答题(共66分)19.(7分)(2015·昆明)如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.解:由AAS证△ABC≌△DEF可得20.(8分)如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD =CF;③量出DE的长为a m,FG的长为b m.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?解:合理.理由:由SSS可证△BED≌△CGF,∴∠B=∠C21.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC,求证:BD=DF.解:先由角平分线的性质得CD=DE,再由SAS证△CDF≌△EDB,得BD=DF22.(10分)如图,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,BE=CF.求证:(1)∠1=∠2;(2)CM=BN.解:(1)由ASA 证△AEB ≌△AFC ,∴∠BAE =∠CAF ,∴∠1+∠3=∠2+∠3,∴∠1=∠2(2)∵△AEB ≌△AFC ,∴AE =AF ,AB =AC.由ASA 可证△AEM ≌△AFN ,∴AM =AN ,∴AC -AM =AB -AN ,即CM =BN23.(10分)如图①,点A ,E ,F ,C 在一条直线上,AE =CF ,过点E ,F 分别作ED ⊥AC ,FB ⊥AC ,AB =CD.(1)若BD 与EF 交于点G ,试证明BD 平分EF ; (2)若将△DEC 沿AC 方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.解:(1)先由HL 证Rt △ABF ≌Rt △CDE ,∴BF =DE ,再由AAS 证△GFB ≌△GED ,∴EG =FG ,即BD 平分EF(2)仍然成立,证法同(1)24.(11分)如图,在△ABC 中,∠B =∠C ,AB =10 cm ,BC =8 cm ,D 为AB 的中点,点P 在线段上以3 cm /s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上以相同速度由点C 向点A 运动,一个点到达终点后另一个点也停止运动.当△BPD 与△CQP 全等时,求点P 运动的时间.解:∵D 为AB 的中点,AB =10 cm ,∴BD =AD =5 cm.设点P 运动的时间是x s ,若BD 与CQ 是对应边,则BD =CQ ,∴5=3x ,解得x =53,此时BP =3×53=5 (cm ),CP =8-5=3 (cm ),BP ≠CP ,故舍去;若BD 与CP 是对应边,则BD =CP ,∴5=8-3x ,解得x =1,符合题意.综上,点P 运动的时间是1 s25.(12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.解:(1)BD=CE,BD⊥CE.证明:延长BD交CE于M,易证△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠BME=∠MBC+∠BCM=∠MBC+∠ACB+∠ACE=∠MBC+∠ABD+∠ACB=∠ABC+∠ACB=90°,∴BD⊥CE(2)仍有BD=CE,BD⊥CE,证法同(1)。
全等三角形单元测试及答案
全等三角形单元测试一、选择题:1.两个直角三角形全等的条件是( )A .两条边对应相等B .两锐角对应相等C .一条边对应相等D .一锐角对应相等2.下列条件中,不能判定两个三角形全等的是( )A.三边对应相等B.两条边和夹角对应相等C.两条边和其中一边的对角对应相等 D.两角和它们的夹边对应相等3.如图,已知MB=ND ,∠MBA=∠NDC ,下列添加的条件中,哪一个不能用于判定△ABM ≌△CDN 的是( )A .∠M=∠NB .AB=CDC .AM=CND .AM ∥CN4.如图在ΔABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,若AB=6cm ,则ΔDBE 的周长是( )A.6cmB.7cmC.8cmD.9cm5.如图,MP ⊥NP ,MQ 是∠NMP 的角平分线,MT=MP ,连结TQ ,则下列结论中不正确的是( )A.TQ=PQB.∠MQT=∠MQPC.∠QTM=90°D.∠NQT=∠MQT6.如图在△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的根据是( )A. SSSB. SASC. ASAD. AAS7.如图,AB ∥CD ,AD ∥BC ,OE=OF ,则图中全等三角形的组数是( )A. 3B. 4C. 5D. 68.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( )A.4个 B.3个 C.2个 D.1个二、填空题:(3×8=24)1.如图, 点 P 到∠AOB 两边的距离相等,若∠POB=30°,则 ∠AOB=___度.2.如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D , 写出图中一对A B D CE 第4题图AB C D M N 第3题图相等的线段(只需写出一对即可) .3.如图,∠BAC=∠ABD ,请你添加一个条件: ,使OC=OD (只添一个即可).4. 有两边和 对应相等的两个三角形全等.5. 如图,若△OAD≌△OBC,且∠0=65°,∠C=20°,则∠OAD= .6. 如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: (写一个即可).7. 如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,如果BD+CE=9cm ,那么DE 的长度是 .8. 如图,将正方形纸片沿AM 折叠,使点D 恰好落在边BC 上的N 处,若AD=7cm ,CM=3cm , ∠DAM=30°,那么AN= cm ,MN= cm ,∠NAM= ,∠DMN= .三、解答题:(本大题共52分)1.(10分)如图,三条公路两两相交于A、B 、C 三点,现计划建一座综合供应中心,要求到三条公路的距离相等,则你能找出符合条件的地点吗?画出来。
全等三角形测试题含答案
《全等三角形》整章水平测试题一、认认真真选,沉着应战! 1.下列命题中正确的是(.下列命题中正确的是( ) A .全等三角形的高相等.全等三角形的高相等 B .全等三角形的中线相等.全等三角形的中线相等 C .全等三角形的角平分线相等.全等三角形的角平分线相等 D .全等三角形对应角的平分线相等.全等三角形对应角的平分线相等 2. 下列各条件中,不能作出惟一三角形的是(下列各条件中,不能作出惟一三角形的是( ) A .已知两边和夹角.已知两边和夹角 B .已知两角和夹边.已知两角和夹边 C .已知两边和其中一边的对角.已知两边和其中一边的对角 D .已知三边.已知三边 4.下列各组条件中,能判定△ABC ≌△DEF 的是( ) A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于(等于( )A .1:2 B .1:3C .2:3 D .1:4 6.如图,.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P 到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是()的依据是( ) A .平行线之间的距离处处相等平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上到线段的两个端点距离相等的点在线段的垂直平分线上7. 如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条,其三条 角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于(等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是(余下的一个为结论,则最多可以构成正确的结论的个数是( )A .1个B .2个C .3个D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同在同 一条直线上,如图,可以得到EDC ABC @,所以ED =AB ,因,因 此测得ED 的长就是AB 的长,判定EDC ABC @的理由是(的理由是( ) A .SAS B .ASA C .SSS D .HLA CB DFENAMCBFCEABD10.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度的度 数为(数为( ) A .80° B .100° C .60° D .45°.二、仔仔细细填,记录自信!11.如图,在△ABC 中,AD=DE ,AB=BE ,∠A=80°, 则∠CED=_____.12.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 =4 cm cm ,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.AB C D E15. 如图,AD AD ¢¢,分别是角锐角三三角形ABC 和锐角三角形A B C ¢¢¢中,BC B C ¢¢边上的高,且AB A B AD A D ¢¢¢¢==,.若使ABC A B C ¢¢¢△≌△,请你补充条件___________.(填写一个你认为适当的条件即可) 17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19. 如右图,已知在ABC 中,90,,A AB AC CD Ð=°=平分ACB Ð,DE BC ^于E ,若15cm BC =,则DEB △的周长为的周长为 cm .BCA DEAB C D'A'B 'D 'CABCDE20.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是BC 的中点,DE 平分∠ADC ,∠CED =350,如图,则∠EAB 是多少是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、平心静气做,展示智慧!21.如图,公园有一条“Z ”字形道路ABCD ,其中,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =,M 为BC 的中点,请问三个小石凳是否在一条直线上?的中点,请问三个小石凳是否在一条直线上? 说出你推断的理由.22.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C Ð=Ð ⑤DAB CBA Ð=Ð.请你以其中两个为条件,另三个中的一个为结论,推出一个正确.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.,并加以证明.已知:已知: 求证:求证:证明:证明:23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE , DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上. 四、发散思维,游刃有余!24. (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石 铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和平方米,内圈的所有三角形的面积之和 是b 平方米,这条小路一共占地多少平方米?平方米,这条小路一共占地多少平方米?ABDCEOM ND ACBEMF DCBAEA BC ED A G FC BD E (图1)(图1)90四边形90180AB ,180EAG BAC Ð+\Ð=FA GCEMNACM AGN \△≌△ 1122ABC AEG CM GNS AB CM S AE GN\===△△, ABC AEG S S \=△△(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和 \这条小路的面积为(2)a b +平方米.平方米.。
实验中学雒振峰《全等三角形》全章测试
《全等三角形》全章测试班级__________学号__________姓名__________成绩__________一、选择题 (每小题6分,共30分) 1.下列命题中是真命题的为( ).A.形状相同的两个三角形是全等形;B.在两个三角形中,相等的角是对应角,相等的边是对应边;C.全等三角形对应边上的高、中线及对应角平分线分别相等;D.面积相等的两个三角形全等.2.如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( ).A .甲和乙 B.乙和丙 C.只有乙 D.只有丙3.在△ABC 和△A ′B ′C ′中,AB=A ′B ′,∠A=∠A ′,若证△ABC ≌△A ′B ′C ′还要从下列条件中补选一个,错误的选法是( ).A. ∠B=∠B ′B. ∠C=∠C ′C. BC=B ′C ′D. AC=A ′C ′4.如右图,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于C 、D ,则( ). A .CD 小于P 点到∠AOB 两边距离之和B .CD 大于P 点到∠AOB 两边距离之和 C .CD 等于P 点到∠AOB 两边距离之和D .不能确定5.如下图,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( ). A.PE PF = B. AE AF = C. △APE ≌△APF D. AP PE PF =+ADCBE F PA二、填空题 (每小题5分,共25分)6.四边形ABCD 中,AB =CD ,AD =BC .若∠B=32°,则∠A=_____°.7.如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD ,,要使ABE ACD △≌△,需添加一个条件是____________________(只要写一个条件).8.如图,把△ABC 绕C 点顺时针旋转38°,得到△A ’B ’C , A ’B ’交AC 于点D ,若 ∠A ’DC=90°,则∠A=_____°.9.如图,AB ∥CD ,AD ∥BC ,OE=OF ,图中全等三角形共有_____对.(7题) (8题) (9题) 10.如图,点A 的坐标为(0,1),点B 的坐标为(3,1),点C 的坐标为(4,3),如果要使△ABD 与△ABC 全等,且C 、D 不重合,那么点D 的坐标是_________________________ _______________________________________________. 三、作图题 (本题5分)11.如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图2中标出蓝方指挥部C 的位置.图1 图2OCEADB四、解答题(每小题10分,共40分)12.已知:如图,C、D在AB上,且AC=BD,AE∥FB,DE∥FC.13.已知:如图,AD 是△ABC的角平分线,BD=CD,DE⊥AB 于E,DF⊥AC于F.求证:EB=FC.FBD14.如图,已知四边形ABCD 中,AD ∥BC ,若∠DAB 的平分线AE 交CD 于E ,连结BE ,且BE恰好平分∠ABC ,求证:AB=AD +BC.15.如图,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并证明你的结论.参考答案:1.C2.B3.C4.B5.D6.148°7.AB=AC等8.52°9.610.(-1,3)(-1,-1)(4,-1)11.略12.证明:∵AE∥BF∴∠A=∠B∵DE∥CF∴∠EDA=∠FCB∵AC=BD∴AC+CD=BD+CD∴AD=BC△ADE≌△BCF∴AE=BF13.证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.14.证明:法1:在AB上截取AF=AD,连接EF(如图)易证AE⊥BE,△ADE≌△AFE,所以∠1=∠2,又∠2+∠4=90°,∠1+∠3=90°,所以∠3=∠4,所以可证△BCE≌△BFE,所以BC=BF,所以AB=AF+BF=AD+BC;法2:如图,延长AE 交BC 延长线于F , ∵AD ∥CB ,∴∠CBA+∠BAD=180°,∵BE 平分∠CBA ,AE 平分∠BAD , ∴∠EBA+∠BAE=90°, ∴∠BEA=180°-90°=90°, ∴BE ⊥AF ,由△ABE ≌△FBE , 可得BA=BF ,AE=FE , 于是可证△ADE ≌△FCE , 所以AD=CF ,所以AB=BC+CF=BC+AD .15.答:ABC △与AEG △面积相等证明:过点C 作CM AB ⊥于M ,过点G 作GN EA ⊥交EA 延长线于N ,则AMC ∠=90ANG ∠=四边形ABDE 和四边形ACFG 都是正方形90180BAE CAG AB AE AC AG BAC EAG ∴∠=∠===∴∠+∠=,,180EAG GAN BAC GAN∠+∠=∴∠=∠ACM AGN ∴△≌△1122ABC AEG CM GNS AB CM S AE GN∴===△△, ABC AEG S S ∴=△△BD。
八年级数学全等三角形证明题(供参考)
第十三章 全等三角形测试卷(测试时间:90分钟 总分:100分)班级 姓名 得分一、选择题(本大题共10题;每小题2分,共20分)1. 对于△ABC 与△DEF ,已知∠A =∠D ,∠B =∠E ,则下列条件①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④2. 下列说法正确的是( )A .面积相等的两个三角形全等B .周长相等的两个三角形全等C .三个角对应相等的两个三角形全等D .能够完全重合的两个三角形全等3. 下列数据能确定形状和大小的是( )A .AB =4,BC =5,∠C =60° B .AB =6,∠C =60°,∠B =70°C .AB =4,BC =5,CA =10D .∠C =60°,∠B =70°,∠A =50°4. 在△ABC 和△DEF 中,∠A=∠D ,AB = DE ,添加下列哪一个条件,依然不能证明△ABC ≌△DEF ( )A .AC = DFB .BC = EF C .∠B=∠ED .∠C=∠F5. OP 是∠AOB 的平分线,则下列说法正确的是( )A .射线OP 上的点与OA ,OB 上任意一点的距离相等B .射线OP 上的点与边OA ,OB 的距离相等C .射线OP 上的点与OA 上各点的距离相等D .射线OP 上的点与OB 上各点的距离相等 6. 如图,∠1=∠2,∠E=∠A ,EC=DA ,则△ABD ≌△EBC时,运用的判定定理是( ) A .SSSB .ASAC .AASD .SAS7. 如图,若线段AB ,CD 交于点O ,且AB 、CD 互相平分,则下列结论错误的是( ) A .AD=BCB .∠C=∠DC .AD ∥BCD .OB=OC8. 如图,AE ⊥BD 于E ,CF ⊥BD 于F ,AB = CD ,AE = CF , 则图中全等三角形共有( )A .1对B .2对C .3对D .4对 9. 如图,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.以上结论正确的( ) A .只有①(第8题) A D C B E FC EO A D CB (第7题) B AC ED (第6题) 2 1B .只有②C .只有③D .有①和②和③10.如图,DE ⊥BC ,BE=EC ,且AB =5,AC =8, 则△ABD 的周长为( ) A .21B .18C .13D .9 二、填空题(本大题共6小题;每小题2分,共12分)11.如图,除公共边AB 外,根据下列括号内三角形全等的条件,在横线上添加适当的条件,使△ABC 与△ABD 全等:(1) , (ASA);(2) ,∠3=∠4 (AAS).12.如图,AD 是△ABC 的中线,延长AD 到E ,使DE =AD ,连结BE ,则有△ACD ≌△ 。
第一章 全等三角形 (含解析)
第一章全等三角形一.选择题(共26小题)1.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形经过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等2.下列说法中,正确的个数为()①用一张像底片冲出来的10 张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A .1 个B .2 个C .3 个D .4 个3.对于两个图形给出下列结论,其中能得到这两个图形全等的结论有()①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长相等且面积相等;④两个图形的形状相同且面积相等.A.1个B.2个C.3个D.4个4.下列每组中的两个图形,是全等图形的为()A.B.C .D .5.下列判断正确的是( )A . 形状相同的图形叫全等形B . 图形的面积相等的图形叫全等形C . 部分重合的两个图形全等D . 两个能完全重合的图形是全等形 6.下列说法正确的是( ) A .两个周长相等的长方形全等 B .两个周长相等的三角形全等C .两个面积相等的长方形全等D .两个周长相等的圆全等7.如图,在ABC ∆中,50A ∠=︒,点D ,E 分别在边AC ,AB 上,连接BD ,CE ,39ABD ∠=︒,且CBD BCE ∠=∠,若AEC ADB ∆≅∆,点E 和点D 是对应顶点,则CBD ∠的度数是( )A .24︒B .25︒C .26︒D .27︒8.如图,ABC AEF ∆≅∆,AB AE =,B E ∠=∠,则对于结论:其中正确的是( ) ①AC AF =, ②FAB EAB ∠=∠, ③EF BC =, ④EAB FAC ∠=∠,A .①②B .①③④C .①②③④D .①③9.若ABC DEF ∆≅∆,则根据图中提供的信息,可得出x 的值为( )A .30B .27C .35D .4010.下列说法中错误的是( )A .有两个角及它们的夹边对应相等的两个三角形全等B .有两个角及其中一个角的对边对应相等的两个三角形全等C .有两条边及它们的夹角对应相等的两个三角形全等D .有两条边及其中一条边的对角对应相等的两个三角形全等11.如图,已知:在AFD ∆和CEB ∆,点A 、E 、F 、C 在同一直线上,在给出的下列条件中,①AE CF =,②D B ∠=∠,③AD CB =,④//DF BE ,选出三个条件可以证明AFD CEB ∆≅∆的有( )组.A .4B .3C .2D .112.如图,以ABC ∆的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连结AD 、CD .由作法可得:ABC CDA ∆≅∆的根据是( )A .SASB .ASAC .AASD .SSS13.如图,已知14∠=∠,添加以下条件,不能判定ABC CDA ∆≅∆的是( )A .23∠=∠B .B D ∠=∠C .BC DA =D .AB DC =14.如图,//AE FD ,AE DF =,要使EAB FDC ∆≅∆,需要添加的条件可以是( )A .AB BC =B .EB FC =C .A F ∠=∠D .AB CD =15.如图,点B ,E ,C ,F 在同一条直线上,已知AB DE =,AC DF =,添加下列条件还不能判定ABC DEF ∆≅∆的是( )A .ABC DEF ∠=∠B .A D ∠=∠C .BE CF =D .BC EF =16.在ABC ∆与△A B C '''中,已知A A ∠=∠',AB A B ='',增加下列条件,能够判定ABC ∆与△A B C '''全等的是( ) A .BC B C =''B .BC A C =''C .B B ∠=∠'D .B C ∠=∠'17.下列判定直角三角形全等的方法,不正确的是( ) A .两条直角边对应相等 B .两个锐角对应相等C .斜边和一直角边对应相等D .斜边和一锐角对应相等18.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还要添加一个条件是( )A .AB DC =B .A D ∠=∠C .B C ∠=∠D .AE BF =19.如图,AC BC =,AC OA ⊥,CB OB ⊥,则Rt AOC Rt BOC ∆≅∆的理由是( )A .SSSB .ASAC .SASD .HL20.如图,CD AB ⊥,BE AC ⊥,垂足分别为D 、E ,BE 、CD 相交于点O .如果AB AC =,那么图中全等的直角三角形的对数是( )A .1B .2C .3D .421.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还需要添加一个条件是( )A .AE DF =B .A D ∠=∠C .B C ∠=∠D .AB DC =22.如图,若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件( )A .BAC BAD ∠=∠B .AC AD =或BC BD = C .AC AD =且BC BD =D .以上都不正确23.如图,在ABC ∆中,AB AC =,112A ∠=︒,E ,F ,D 分别是AB ,AC ,BC 上的点,且BE CD =,BD CF =,则EDF ∠的度数为( )A .30︒B .34︒C .40︒D .56︒24.如图,AB CD ⊥,且AB CD =,CE AD ⊥,BF AD ⊥,分别交AD 于E 、F 两点,若BF a =,EF b =,CE c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +- 25.如图,在等腰ABC ∆中,AB AC =,AB BC >,点D 在边BC 上,且14BD BC =,点E 、F 在线段AD 上,满足BED CFD BAC ∠=∠=∠,若20ABC S ∆=,则ABE CDF S S ∆+是多少?( )A .9B .12C .15D .1826.如图,在Rt ABC ∆中,90ACB ∠=︒,5BC cm =,在AC 上取一点E ,使EC BC =,过点E 作EF AC ⊥,连接CF ,使CF AB =,若12EF cm =,则下列结论不正确的是( )A .F BCF ∠=∠B .7AE cm =C .EF 平分ABD .AB CF ⊥二.解答题(共14小题)27.已知:如图,点A 、E 、F 、C 在同一条直线上,//AD CB ,12∠=∠,AE CF =.求证:ADF CBE ∆≅∆.28.已知:点A 、F 、E 、C 在同一条直线上,AF CE =,//BE DF ,BE DF =. (1)如图1,求证:ABE CDF ∆≅∆.(2)如图2,连接AD 、BC 、BF 、DE ,在不添加任何辅助线的情况下,请直接写出图2中所有全等的三角形(除ABE ∆全等于CDF ∆外).29.如图,在ABC ∆中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF AC =,延长CE 至点G 使CG AB =,连接AF ,AG . (1)如图1,求证:AG AF =;(2)如图2,若BD 恰好平分ABC ∠,过点G 作GH AC ⊥交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.30.如图,AB AC =,BE CD =. (1)求证:B C ∠=∠;(2)连接AO ,若12∠=∠,不添加任何辅助线,直接写出图中所有的全等三角形.31.如图,ABC ∆和DEF ∆的顶点B ,F ,C ,D 在同一条直线上,BF CD =,边AC 与EF 相交于点G ,CG FG =,A E ∠=∠.求证:ABC EDF ∆≅∆.32.已知:如图,点E 、F 在CD 上,且A B ∠=∠,//AC BD ,CF DE =. 求证:AEC BFD ∆≅∆.33.如图,BD ,CE 分别是ABC ∆的高,且BE CD =,求证:Rt BEC Rt CDB ∆≅∆.34.如图(1),AB AD ⊥,ED AD ⊥,AB CD =,AC DE =,试说明BC CE ⊥的理由; 如图(2),若ABC ∆向右平移,使得点C 移到点D ,AB AD ⊥,ED AD ⊥,AB CD =,AD DE =,探索BD CE ⊥的结论是否成立,并说明理由.35.如图所示,在ABC ∆中,AB CB =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =. 求证:Rt ABE Rt CBF ∆≅∆.36.如图,在ABC ∆中,AB AC =,DE 是过点A 的直线,BD DE ⊥于D ,CE DE ⊥于点E ; (1)若B 、C 在DE 的同侧(如图所示)且AD CE =.求证:AB AC ⊥;(2)若B 、C 在DE 的两侧(如图所示),且AD CE =,其他条件不变,AB 与AC 仍垂直吗?若是请给出证明;若不是,请说明理由.37.如图,AB AC =,90BAC ∠=︒,BD AE ⊥于D ,CE AE ⊥于E ,且BD CE >. 求证:BD EC ED =+.38.已知:如图,ABC=,BD与CE交于点F.⊥,BD CE⊥,CE AB∆,BD AC(1)说明AB AC=的理由;(2)联结AF并延长交BC于G,说明AG BC⊥的理由.39.如图,在ABE∆中,C,D是边BE上的两点,有下面四个关系式:(1)AB AE=,(2)∠=∠.请用其中两个作为已知条件,余下两个=,(4)BAC EAD=,(3)AC ADBC DE作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:40.如图,在四边形ABCD中,//CD=,点F是AC的中点,连接DF,AB CD,17AB=,12并延长交AB于点E.(1)求BE的长;(2)若AE AD=,13∆的形状,并说明理由.BC=,判断ADF第一章全等三角形参考答案与试题解析一.选择题(共26小题)1.下列说法不正确的是()A.两个三角形全等,形状一定相同B.两个三角形全等,面积一定相等C.一个图形经过平移、旋转、翻折后,前后两个图形一定全等D.所有的正方形都全等解:A、两个三角形全等,形状一定相同,正确,故本选项错误;B、两个三角形全等,面积一定相等,正确,故本选项错误;C、一个图形经过平移、旋转、翻折后,前后两个图形一定全等,正确,故本选项错误;D、只有边长相等的正方形才全等,所以所有的正方形都全等错误,故本选项正确.故选:D.2.下列说法中,正确的个数为()①用一张像底片冲出来的10 张五寸照片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的正六边形是全等形④面积相等的两个直角三角形是全等形.A .1 个B .2 个C .3 个D .4 个解:①用一张像底片冲出来的10 张五寸照片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的正六边形是全等形,错误,正六边形的边长不一定相等;④面积相等的两个直角三角形是全等形,错误.综上所述,说法正确的是①②共2 个.故选:B.3.对于两个图形给出下列结论,其中能得到这两个图形全等的结论有()①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长相等且面积相等;④两个图形的形状相同且面积相等.A.1个B.2个C.3个D.4个解:①周长相等的两个图形不一定重合,所以不一定全等;②如果面积相同而形状不同也不全等;③如果周长相同面积相同而形状不同,则不全等,④两个图形的形状相同,大小也相等,则二者一定重合,正确.所以只有1个正确,故选:A.4.下列每组中的两个图形,是全等图形的为()A.B.C.D.解:A选项两图形能够重合,为全等形,正确;B选项的大小不同,不重合,故错误;C选项的大小也不一样,不重合,错误;D选项形状不一样,不重合,错误;故选:A.5.下列判断正确的是()A .形状相同的图形叫全等形B .图形的面积相等的图形叫全等形C .部分重合的两个图形全等D .两个能完全重合的图形是全等形解:A、如果形状相同而面积不同,则不是全等形,错;B、如果面积相等,而形状不同,则不是全等形,错;C、根据全等形概念,强调是完全重合,错.D、正确.故选:D.6.下列说法正确的是()A.两个周长相等的长方形全等B.两个周长相等的三角形全等C.两个面积相等的长方形全等D.两个周长相等的圆全等解:A、长方形周长相等,但面积、长、宽不一定相等,错;B、三角形周长相等,但不一定对应边完全相等,错;C、长方形面积相等,但长、宽不一定相等,错;D、圆的周长相等,就可知道半径相等,两圆可完全重合,正确.故选:D.7.如图,在ABCABD∠=︒,A∠=︒,点D,E分别在边AC,AB上,连接BD,CE,39∆中,50且CBD BCE∠的度数是()∆≅∆,点E和点D是对应顶点,则CBD ∠=∠,若AEC ADBA.24︒B.25︒C.26︒D.27︒解:AEC ADB∆≅∆,∴=,AC ABABC ACB∴∠=∠,∠=︒,A50∴∠=∠=︒,65ABC ACB又39ABD ∠=︒, 653926CBD ∴∠=︒-︒=︒,故选:C .8.如图,ABC AEF ∆≅∆,AB AE =,B E ∠=∠,则对于结论:其中正确的是( ) ①AC AF =, ②FAB EAB ∠=∠, ③EF BC =, ④EAB FAC ∠=∠,A .①②B .①③④C .①②③④D .①③解:ABC AEF ∆≅∆,AC AF ∴=,EF CB =,EAF BAC ∠=∠, EAF BAF BAC BAF ∴∠-∠=∠-∠, EAB FAC ∴∠=∠,正确的是①③④, 故选:B .9.若ABC DEF ∆≅∆,则根据图中提供的信息,可得出x 的值为( )A .30B .27C .35D .40解:ABC DEF ∆≅∆, 30BC EF ∴==,故选:A .10.下列说法中错误的是( )A .有两个角及它们的夹边对应相等的两个三角形全等B .有两个角及其中一个角的对边对应相等的两个三角形全等C .有两条边及它们的夹角对应相等的两个三角形全等D .有两条边及其中一条边的对角对应相等的两个三角形全等解:A 、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA ”,说法正确; B 、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS ”,说法正确; C 、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS ”,说法正确; D 、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D .11.如图,已知:在AFD ∆和CEB ∆,点A 、E 、F 、C 在同一直线上,在给出的下列条件中,①AE CF =,②D B ∠=∠,③AD CB =,④//DF BE ,选出三个条件可以证明AFD CEB ∆≅∆的有( )组.A .4B .3C .2D .1解:AE CF =,AE EF CF EF ∴+=+, AF CE ∴=, //DF BE , DFA BEC ∴∠=∠,∴若①②③为条件,不能证明AFD CEB ∆≅∆,若①②④为条件,能证明()AFD CEB AAS ∆≅∆, 若①③④为条件,不能证明AFD CEB ∆≅∆, 若②③④为条件,能证明()AFD CEB AAS ∆≅∆, 故选:C .12.如图,以ABC ∆的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连结AD 、CD .由作法可得:ABC CDA ∆≅∆的根据是( )A .SASB .ASAC .AASD .SSS解:由题意可得, AD BC =,AB CD =,在ADC ∆和CBA ∆中, AD CB DC BA AC CA =⎧⎪=⎨⎪=⎩, ()ADC CBA SSS ∴∆≅∆,故选:D .13.如图,已知14∠=∠,添加以下条件,不能判定ABC CDA ∆≅∆的是( )A .23∠=∠B .B D ∠=∠C .BC DA =D .AB DC =解:A 、在ABC ∆和CDA ∆中 1432AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC CDA ASA ∴∆≅∆,故本选项不符合题意;B 、在ABC ∆和CDA ∆中 14BD AC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC CDA AAS ∴∆≅∆,故本选项不符合题意; C 、在ABC ∆和CDA ∆中14BC DA AC CA =⎧⎪∠=∠⎨⎪=⎩, ()ABC CDA SAS ∴∆≅∆,故本选项不符合题意;D 、根据AB AC =,AC AC =和14∠=∠不能推出ABC CDA ∆≅∆,故本选项符合题意;故选:D .14.如图,//AE FD ,AE DF =,要使EAB FDC ∆≅∆,需要添加的条件可以是( )A .AB BC = B .EB FC = C .A F ∠=∠D .AB CD =解://AE DF ,A D ∴∠=∠,A 、根据AB BC =,AE DF =和AD ∠=∠不能推出EAB FDC ∆≅∆,故本选项不符合题意; B 、根据EB FC =,AE DF =和A D ∠=∠不能推出EAB FDC ∆≅∆,故本选项不符合题意; C 、根据AE DF =和A F ∠=∠不能推出EAB FDC ∆≅∆,故本选项不符合题意;D 、在EAB ∆和FDC ∆中 AE DFA D AB DC =⎧⎪∠=∠⎨⎪=⎩, ()EAB FDC SAS ∴∆≅∆,故本选项符合题意;故选:D .15.如图,点B ,E ,C ,F 在同一条直线上,已知AB DE =,AC DF =,添加下列条件还不能判定ABC DEF ∆≅∆的是( )A .ABC DEF ∠=∠B .A D ∠=∠C .BE CF =D .BC EF =解:已知AB DE =,AC DF =,添加的一个条件是ABC DEF ∠=∠,根据条件不可以证明ABC DEF ∆≅∆,故选项A 符合题意;已知AB DE =,AC DF =,添加的一个条件是A D ∠=∠,根据SAS 可以证明ABC DEF ∆≅∆,故选项B 不符合题意;已知AB DE =,AC DF =,添加的一个条件是EB CF =,可得得到BC EF =,根据SSS 可以证明ABC DEF ∆≅∆,故选项C 不符合题意;已知AB DE =,AC DF =,添加的一个条件是BC EF =,根据SSS 可以证明ABC DEF ∆≅∆,故选项D 不符合题意; 故选:A .16.在ABC ∆与△A B C '''中,已知A A ∠=∠',AB A B ='',增加下列条件,能够判定ABC ∆与△A B C '''全等的是( ) A .BC B C =''B .BC A C =''C .B B ∠=∠'D .B C ∠=∠'解:A 、若添加条件BC B C ='',不能判定ABC ∆≅△A B C ''',故此选项不合题意; B 、若添加条件BC A C ='',不能判定ABC ∆≅△A B C ''',故此选项不合题意; C 、若添加条件B B ∠=∠',可利用ASA 判定ABC ∆≅△A B C ''',故此选项题意;D 、若添加条件B C ∠=∠',不能判定ABC ∆≅△A B C ''',故此选项不合题意.故选:C .17.下列判定直角三角形全等的方法,不正确的是( ) A .两条直角边对应相等 B .两个锐角对应相等C .斜边和一直角边对应相等D .斜边和一锐角对应相等解:A 、根据SAS 可以判定三角形全等,本选项不符合题意. B 、AA 不能判定三角形全等,本选项符合题意. C 、根据HL 可以判定三角形全等,本选项不符合题意.D 、根据AAS 可以判定三角形全等,本选项不符合题意.故选:B .18.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还要添加一个条件是( )A .AB DC = B .AD ∠=∠ C .B C ∠=∠ D .AE BF =解:条件是AB CD =, 理由是:AE BC ⊥,DF BC ⊥,90CFD AEB ∴∠=∠=︒,在Rt ABE ∆和Rt DCF ∆中, AB CDBE CF =⎧⎨=⎩, Rt ABE Rt DCF(HL)∴∆≅∆,故选:A .19.如图,AC BC =,AC OA ⊥,CB OB ⊥,则Rt AOC Rt BOC ∆≅∆的理由是( )A .SSSB .ASAC .SASD .HL解:AC OA ⊥,BC OB ⊥,90A B ∴∠=∠=︒,在Rt AOC ∆和Rt BOC ∆中AC BC CO CO =⎧⎨=⎩,Rt AOC Rt BOC(HL)∴∆≅∆,故选:D .20.如图,CD AB ⊥,BE AC ⊥,垂足分别为D 、E ,BE 、CD 相交于点O .如果AB AC =,那么图中全等的直角三角形的对数是( )A .1B .2C .3D .4解:CD AB ⊥,BE AC ⊥, 90ADC AEE ∴∠=∠=︒,在ADC ∆和AEB ∆中,ADC AEB DAC EAB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADC AEB AAS ∴∆≅∆;AD AE ∴=,C B ∠=∠, AB AC =, BD CE ∴=,在BOD ∆和COE ∆中,B C BOD COE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOD COE AAS ∴∆≅∆; OB OC ∴=,OD OE =,在Rt ADO ∆和Rt AEO ∆中,OA OAOD OE =⎧⎨=⎩,Rt ADO Rt AEO(HL)∴∆≅∆; ∴共有3对全等三角形,故选:C .21.如图,BE CF =,AE BC ⊥,DF BC ⊥,要根据“HL ”证明Rt ABE Rt DCF ∆≅∆,则还需要添加一个条件是( )A .AE DF =B .A D ∠=∠C .B C ∠=∠D .AB DC =解:条件是AB CD =,理由是:AE BC ⊥,DF BC ⊥, 90CFD AEB ∴∠=∠=︒,在Rt ABE ∆和Rt DCF ∆中,AB CD BE CF =⎧⎨=⎩, Rt ABE Rt DCF(HL)∴∆≅∆,故选:D .22.如图,若要用“HL ”证明Rt ABC Rt ABD ∆≅∆,则还需补充条件( )A .BAC BAD ∠=∠B .AC AD =或BC BD =C .AC AD =且BC BD = D .以上都不正确解:从图中可知AB 为Rt ABC ∆和Rt ABD ∆的斜边,也是公共边.很据“HL ”定理,证明Rt ABC Rt ABD ∆≅∆,还需补充一对直角边相等,即AC AD =或BC BD =,故选:B .23.如图,在ABC ∆中,AB AC =,112A ∠=︒,E ,F ,D 分别是AB ,AC ,BC 上的点,且BE CD =,BD CF =,则EDF ∠的度数为( )A .30︒B .34︒C .40︒D .56︒ 解:AB AC =,112A ∠=︒,34B C ∴∠=∠=︒,在BDE ∆和CFD ∆中,BE CD B C BD CF =⎧⎪∠=∠⎨⎪=⎩,()BDE CFD SAS ∴∆≅∆,BED CDF ∴∠=∠,BDE CFD ∠=∠,BED BDE CDF CFD ∴∠+∠=∠+∠,BED B CDE EDF CDF ∠+∠=∠=∠+∠,34B EDF ∴∠=∠=︒,故选:B .24.如图,AB CD ⊥,且AB CD =,CE AD ⊥,BF AD ⊥,分别交AD 于E 、F 两点,若BF a =,EF b =,CE c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +- 解:AB CD ⊥,CE AD ⊥,BF AD ⊥,90AFB CED ∴∠=∠=︒,90A D ∠+∠=︒,90C D ∠+∠=︒,A C ∴∠=∠,AB CD =,A C ∠=∠,90CED AFB ∠=∠=︒()ABF CDE AAS ∴∆≅∆AF CE c ∴==,BF DE a ==,EF b =,()AD AF DF c a b a b c ∴=+=+-=-+,故选:C .25.如图,在等腰ABC ∆中,AB AC =,AB BC >,点D 在边BC 上,且14BD BC =,点E 、F 在线段AD 上,满足BED CFD BAC ∠=∠=∠,若20ABC S ∆=,则ABE CDF S S ∆+是多少?( )A .9B .12C .15D .18 解:BED CFD BAC ∠=∠=∠,BED BAE ABE ∠=∠+∠,BAC BAE CAF ∠=∠+∠,CFD FCA CAF ∠=∠+∠,ABE CAF ∴∠=∠,BAE FCA ∠=∠,在ABE ∆和CAF ∆中,ABE CAF AB ACBAE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE CAF ASA ∴∆≅∆,ABE ACF S S ∆∆∴=,ABE CDF ACD S S S ∆∆∴+=20ABC S ∆=,14BD BC =, 15ACD S ∆∴=, 故选:C .26.如图,在Rt ABC ∆中,90ACB ∠=︒,5BC cm =,在AC 上取一点E ,使EC BC =,过点E 作EF AC ⊥,连接CF ,使CF AB =,若12EF cm =,则下列结论不正确的是( )A.F BCF∠=∠B.7AE cm=C.EF平分AB D.AB CF⊥解:EF AC⊥,90ACB∠=︒,90FEC ACB∴∠=∠=︒,90F FCE FCE BCF∴∠+∠=∠+∠=︒,F BCF∴∠=∠;故A选项正确;在Rt ACB∆与Rt FEC∆中,BC EC AB CF=⎧⎨=⎩,Rt ACB Rt FEC(HL)∴∆≅∆,12AC EF∴==,5CE BC cm==,7AE AC CE cm∴=-=,故B选项正确;Rt ACB Rt FEC∆≅∆,A F∴∠=∠,ADE EDF∠=∠,90FED AEF∴∠=∠=︒,AB CF∴⊥,故D选项正确;AED ACB∠=∠,//DE BC∴,∴75 AD AEDB CE==,AD DB∴≠,EF∴不平分AB,故C选项错误,故选:C.二.解答题(共14小题)27.已知:如图,点A 、E 、F 、C 在同一条直线上,//AD CB ,12∠=∠,AE CF =.求证:ADF CBE ∆≅∆.【解答】证明://AD CB ,A C ∴∠=∠,AE CF =,AE EF CF EF ∴+=+, 即AF CE =,在ADF ∆和CBE ∆中12A C AF CE ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADF CBE ASA ∴∆≅∆.28.已知:点A 、F 、E 、C 在同一条直线上,AF CE =,//BE DF ,BE DF =.(1)如图1,求证:ABE CDF ∆≅∆.(2)如图2,连接AD 、BC 、BF 、DE ,在不添加任何辅助线的情况下,请直接写出图2中所有全等的三角形(除ABE ∆全等于CDF ∆外).【解答】(1)证明:AF CE =,AF EF CE EF ∴+=+,即AE CF =,//BE DF ,AEB CFD ∴∠=∠,在ABE ∆和CDF ∆中BE DFAEB CFD AE CF=⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴∆≅∆;(2)图2中的全等三角形有ABC CDA ∆≅∆,AFB CED ∆≅∆,ADE CBF ∆≅∆,ADF CBE ∆≅∆,理由是:ABE CDF ∆≅∆,AB CD ∴=,BAC DCA ∠=∠,在ABCHE CDA ∆∆中AB CDBAC DCA AC CA=⎧⎪∠=∠⎨⎪=⎩,()ABC CDA SAS ∴∆≅∆,AD BC ∴=,DAC BCA ∠=∠,在AFB ∆和CED ∆中AB CDBAF DCE AF CE=⎧⎪∠=∠⎨⎪=⎩,()AFB CED SAS ∴∆≅∆,在ADE ∆和CBF ∆中AD CBDAE BCF AE CF=⎧⎪∠=∠⎨⎪=⎩,()ADE CBF SAS ∴∆≅∆,在ADF ∆和CBE ∆中AD CB DAF BCE AF CE =⎧⎪∠=∠⎨⎪=⎩,()ADF CBE SAS ∴∆≅∆.29.如图,在ABC ∆中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF AC =,延长CE 至点G 使CG AB =,连接AF ,AG .(1)如图1,求证:AG AF =;(2)如图2,若BD 恰好平分ABC ∠,过点G 作GH AC ⊥交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.【解答】证明:(1)BD 、CE 分别是AC 、AB 两条边上的高, 90AEC ADB ∴∠=∠=︒,90ABD BAD ACE CAE ∴∠+∠=∠+∠=︒,ABD ACG ∴∠=∠,在AGC ∆与FAB ∆中,BF CA ABF GCA AB GC =⎧⎪∠=∠⎨⎪=⎩,()AGC FAB SAS ∴∆≅∆,AG AF ∴=;(2)图中全等三角形有AGC FAB ∆≅∆,由90CG AB H BDA GCH ABD =⎧⎪∠=∠=︒⎨⎪∠=∠⎩得出CGH BAD ∆≅∆,由AF AG GH AD =⎧⎨=⎩得出Rt AGH Rt AFD ∆≅∆. 30.如图,AB AC =,BE CD =.(1)求证:B C ∠=∠;(2)连接AO ,若12∠=∠,不添加任何辅助线,直接写出图中所有的全等三角形.【解答】(1)证明:AB AC =,BE CD =,AB BE AC CD ∴-=-,即AE AD =,在ABD ∆和ACE ∆中,AD AEA A AB AC=⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆,B C ∴∠=∠;(2)解:图中的全等三角形有ABD ACE ∆≅∆,AEO ADO ∆≅∆,BEO CDO ∆≅∆,ABO ACO ∆≅∆, 理由是:在ABO ∆和ACO ∆中,12B CAO AO∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABO ACO AAS ∴∆≅∆;由(1)知:ABD ACE ∆≅∆;在AEO ∆和ADO ∆中,12AE ADAO AO=⎧⎪∠=∠⎨⎪=⎩,()AEO ADO SAS ∴∆≅∆;在BEO ∆和CDO ∆中,EOB DOC B CBE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()BEO CDO AAS ∴∆≅∆.31.如图,ABC ∆和DEF ∆的顶点B ,F ,C ,D 在同一条直线上,BF CD =,边AC 与EF 相交于点G ,CG FG =,A E ∠=∠.求证:ABC EDF ∆≅∆.【解答】证明:FG CG =,ACB DFE ∴∠=∠,BF CD =,FC FC =,BF FC CD FC ∴+=+,即BC DF =,在ABC ∆与EDF ∆中A E ACB DFE BC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC EDF AAS ∴∆≅∆.32.已知:如图,点E 、F 在CD 上,且A B ∠=∠,//AC BD ,CF DE =. 求证:AEC BFD ∆≅∆.【解答】证明://AC BD ,C D ∴∠=∠,CF DE =,CF EF DE EF ∴+=+, 即CE DF =,在AEC ∆和BFD ∆中A B C D CE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AEC BFD AAS ∴∆≅∆.33.如图,BD ,CE 分别是ABC ∆的高,且BE CD =,求证:Rt BEC Rt CDB ∆≅∆.【解答】证明:BD ,CE 分别是ABC ∆的高,90BEC CDB ∴∠=∠=︒,在Rt BEC ∆和Rt CDB ∆中,BC BC BE CD =⎧⎨=⎩, Rt BEC Rt CDB(HL)∴∆≅∆.34.如图(1),AB AD ⊥,ED AD ⊥,AB CD =,AC DE =,试说明BC CE ⊥的理由; 如图(2),若ABC ∆向右平移,使得点C 移到点D ,AB AD ⊥,ED AD ⊥,AB CD =,AD DE =,探索BD CE ⊥的结论是否成立,并说明理由.解:(1)AB AD ⊥,ED AD ⊥,90A D ∴∠=∠=︒.又AB CD =,AC DE =,ABC DCE ∴∆≅∆.B DCE ∴∠=∠.90B ACB ∠+∠=︒,90ACB DCE ∴∠+∠=︒.90BCE ∴∠=︒,即BC CE ⊥;(2)AB AD ⊥,ED AD ⊥,90A CDE ∴∠=∠=︒.又AB CD =,AD DE =,ABD DCE ∴∆≅∆.B DCE ∴∠=∠.90B ADB ∠+∠=︒,90ADB DCE ∴∠+∠=︒.BD CE ⊥.35.如图所示,在ABC ∆中,AB CB =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =.求证:Rt ABE Rt CBF ∆≅∆.【解答】证明:在Rt ABE ∆和Rt CBF ∆中,AE CFAB CB =⎧⎨=⎩, Rt ABE Rt CBF(HL)∴∆≅∆.36.如图,在ABC ∆中,AB AC =,DE 是过点A 的直线,BD DE ⊥于D ,CE DE ⊥于点E ;(1)若B 、C 在DE 的同侧(如图所示)且AD CE =.求证:AB AC ⊥;(2)若B 、C 在DE 的两侧(如图所示),且AD CE =,其他条件不变,AB 与AC 仍垂直吗?若是请给出证明;若不是,请说明理由.【解答】(1)证明:BD DE ⊥,CE DE ⊥,90ADB AEC ∴∠=∠=︒,在Rt ABD ∆和Rt ACE ∆中,AB ACAD CE =⎧⎨=⎩, Rt ABD Rt CAE ∴∆≅∆.DAB ECA ∴∠=∠,DBA EAC ∠=∠.90DAB DBA ∠+∠=︒,90EAC ACE ∠+∠=︒,90BAD CAE ∴∠+∠=︒.180()90BAC BAD CAE ∠=︒-∠+∠=︒.AB AC ∴⊥.(2)AB AC ⊥.理由如下:同(1)一样可证得Rt ABD Rt ACE ∆≅∆.DAB ECA ∴∠=∠,DBA EAC ∠=∠,90CAE ECA ∠+∠=︒,90CAE BAD ∴∠+∠=︒,即90BAC ∠=︒,AB AC ∴⊥.37.如图,AB AC =,90BAC ∠=︒,BD AE ⊥于D ,CE AE ⊥于E ,且BD CE >. 求证:BD EC ED =+.【解答】证明:90BAC ∠=︒,CE AE ⊥,BD AE ⊥,90ABD BAD ∴∠+∠=︒,90BAD DAC ∠+∠=︒,90ADB AEC ∠=∠=︒.ABD DAC ∴∠=∠.在ABD ∆和CAE ∆中ABD EAC BDA EAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆.BD AE ∴=,EC AD =.AE AD DE =+,BD EC ED ∴=+.38.已知:如图,ABC ∆,BD AC ⊥,CE AB ⊥,BD CE =,BD 与CE 交于点F .(1)说明AB AC =的理由;(2)联结AF 并延长交BC 于G ,说明AG BC ⊥的理由.解:(1)BD AC ⊥,CE AB ⊥,90ADB AEC ∴∠=∠=︒,BD CE =,A A ∠=∠,()ABD ACE AAS ∴∆≅∆AB AC ∴=;(2)AB AC =,ABC ACB ∴∠=∠,ABD ACE ∆≅∆,ABD ACE ∴∠=∠,FBC FCB ∴∠=∠,FB FC ∴=,在ABF ∆和ACF ∆中,AB AC FB FC AF AF =⎧⎪=⎨⎪=⎩,()ABF ACF SSS ∴∆≅∆BAF CAF ∴∠=∠,AB AC =,AG BC ∴⊥.39.如图,在ABE ∆中,C ,D 是边BE 上的两点,有下面四个关系式:(1)AB AE =,(2)BC DE =,(3)AC AD =,(4)BAC EAD ∠=∠.请用其中两个作为已知条件,余下两个作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:解:已知:AB AE=,BC DE=,求证:AC AD∠=∠,=,BAC EAD证明:AB AE=,B E∴∠=∠,∠=∠,BC DE=,B EAB AE=,∴∆≅∆,()ABC AED SAS∠=∠;AC AD∴=,BAC EAD也可以(1)(3)⇒(2)(4)或(2)(3)⇒(1)(4)或(1)(4)⇒(2)(3)或(3)(4)⇒(1)(2).证明方法类似.40.如图,在四边形ABCD中,//CD=,点F是AC的中点,连接DF,AB=,12AB CD,17并延长交AB于点E.(1)求BE的长;(2)若AE AD∆的形状,并说明理由.=,13BC=,判断ADF解:(1)F是AC的中点,∴=,AF CFAB CD,//∠=∠,∴∠=∠,AEF CDFEAF DCFAEF CDF ASA∴∆≅∆,()AE CD∴==,12∴=-=-=;17125BE AB AE(2)AFD∆是等腰直角三角形,理由如下:连接CE,由(1)得AE CD=,//AB CD,∴四边形AECD是平行四边形,=,AE AD∴平行四边形AECD是菱形,CE CD∴==,12222213169BC==,+=+=,22125169CE BE222CE BE BC∴+=,AEC∠=︒,∴∆是直角三角形,90BCE∴菱形AECD是正方形,⊥,∴=,AC DEAC DE∴=,AF DF∴∆是等腰直角三角形.AFD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1文档来源为:从网络收集整理.word 版本可编辑.
《全等三角形》全章测试
一、选择题(3×10=30分) 1.下列说法正确的是( )
A .形状相同的两个三角形是全等三角形
B .面积相等的两个三角形是全等三角形
C .三个角对应相等的两个三角形是全等三角形
D .三条边对应相等的两个三角形是全等三角形
2.如图,点C 落在AOB ∠边上,用尺规作OA CN //,其中弧FG 的( ) A .圆心是C ,半径是OD B .圆心是C ,半径是DM C .圆心是E ,半径是OD D .圆心是E ,半径是DM
3.如右图,已知AC AB =,AE AD =,若要得 到“ACE ABD ∆∆≌”,必须添加一个条件,则下 列所添条件不恰当...
的是( ) A .CE BD = B .ACE ABD ∠=∠ C .CAE BAD ∠=∠ D .DAE BAC ∠=∠ 4.如图,DEF ABC ∆∆≌,点A 与D ,B 与E 分别 是对应顶点,且测得cm BC 5=,cm BF 7=,则EC 长为( )
A. cm 1
B. cm 2
C. cm 3
D. cm 4
5.在第4题的图中,若测得o
D A 90=∠=∠,3=AB ,1=DG ,2=AG ,则梯形CFDG 的面积是( )
A. 5
B. 6
C. 7
D. 8
6.如图,ABC ∆中,o
C 90=∠,A
D 平分BAC ∠, 过点D 作AB D
E ⊥于E ,测得9=BC ,3=BE , 则BDE ∆的周长是( )
A .15
B .12
C .9
D .6
7.根据下列各图中所作的“边相等、角相等”标记,其中不能..
使该图中两个三角形全等的是( ) A . B . C . D .
A
B
C
E A
D
G
α
2文档来源为:从网络收集整理.word
8. 如图,ABC ∆中,AC AB =,AD 平分CAB ∠, 则下列结论中:①BC AD ⊥;②BC AD =; ③C B ∠=∠;④CD BD =。
正确的有( ) A .①②③ B .②③④ C .①②④ D .①③④ 9.如图, AC AB =,AE AD =,BE 、CD 交于点O , 则图中全等三角形共有( )
A .四对
B .三对
C .二对
D .一对
10.如图,ABC ∆中,BM 、CM 分别平分ABC ∠和ACB ∠, 连接AM ,已知o
MBC 25=∠,o
MCA 30=∠,则MAB ∠ 的度数为( )
A. o
25 B. o
30 C. o
35 D. o
40 二、填空题(2×12=24分)
11.如图,某同学将三角形玻璃打碎,现要到玻璃店 配一块完全相同的玻璃,应带 去。
12. 如图,ACD ABE ∆∆≌,点B 、C 是对应顶点,
ABE ∆的周长为32,14=AB ,11=BE ,则AD
13. 如图,ACD ABE ∆∆≌,点B 、C 是对应顶点,
o A 40=∠,o B 30=∠,则∠ADC 14. 如图,要测量池塘的宽度AB ,在池塘外选取 一点P ,连接AP 、BP 并各自延长,使PA PC =,
PB PD =,连接CD ,测得CD 长为m 25,则池塘
宽AB 为 m ,15.如图,CD AB //,CD AB =,请你添加一个条 件 使CDE ABF ∆∆≌16. 如图,=∠ADC °.
17. 如图ABC ∆中,AD 平分BAC ∠,4=AB ,2=AC , 且ABD ∆的面积为3,则ACD ∆18. 如图,OP 平分MON ∠,ON PA ⊥于点A ,
A M
B
C
A D E A B
C
D E F A α
a c a c
o 58o
50o
72o
50A
B
C
D
B C
A D
E O
3文档来源为:从网络收集整理
点Q 在射线OM 上运动。
若2=PA ,则PQ 长度
19.如图,ABC Rt ∆中,o
ACB 90=∠,cm BC 2=,
AB CD ⊥,在AC 上取一点E 使BC EC =,过点E
作AC EF ⊥交CD 延长线于点F ,若cm EF 5=, 则=AE cm .
20.如图,ABC ∆的顶点分别为)3,0(A ,)0,4(-B ,
)0,2(C ,且BCD ∆与ABC ∆全等,则点D 坐标
三.解答题(6+7+7+8+8+10=46分)
21.(6分)如图,铁路和公路都经过P 地,曲线MN
Q ,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q 的位置。
(注意:①保留作图痕迹;②在图中标出点Q )
22.(7分)如图,E 、A 、C 三点共线,CD AB //,D B ∠=∠,CD AC =。
求证:ED BC =.
23.(7分)如图,ABC ∆中,BC AD ⊥于D ,若AD BD =,(1)(4分)求证:CAD FBD ∠=∠; (2)(3分)求证:AC BE ⊥。
24.(8分)如图,AB DE ⊥于E ,AC DF ⊥于, (1)(6分)求证:AD 平分BAC ∠;
(2)(2分)直接写出AC AB +与AE 之间的等量25.(8分)如图,ABC ∆中,点D 是BC 中点,连接。
(1)(2分)若要使EBD ACD ∆∆≌(2)(4分)证明上题;
(3)(2分)在ABC ∆中,若5=AB ,3=AC ,
可以求得BC 边上的中线AD 的取值范围是4<AD .请看解题过程:
由EBD ACD ∆∆≌得:ED AD =,3==AC BE , 因此BE AB AE +<,即8<AE ,
F
4文档来源为:从网络收集整理.word 版本可编辑.
而AE AD 2
1
=
,则4<AD 。
请参考上述解题方法,求>AD .
26.(10分)四边形ABCD 是正方形(提示:正方形四边相等,四个角都是o
90)
(1)(4分)如图1,点G 是BC 边上任意一点(不与点B 、C 重合),连接AG ,作AG BF ⊥于点
F ,A
G DE ⊥于点E .
求证:DAE ABF ∆∆≌;
图1
(2)直接写出(1)中,线段EF 与AF 、BF 的等量关系 ;
(3)①如图2,若点G 是CD 边上任意一点(不与点C 、D 重合),连接AG ,作AG BF ⊥于点F ,
AG DE ⊥于点E ,则图中全等三角形是 ,线段EF 与AF 、BF 的等量关系
是 ;
②如图3,若点G 是CD 延长线上任意一点,连接AG ,作AG BF ⊥于点F ,AG DE ⊥于点E ,线段EF 与AF 、BF 的等量关系是 ;
(4)(2分)若点G 是BC 延长线上任意一点,连接AG ,作AG BF ⊥于点F ,AG DE ⊥于点E ,请画图、探究线段EF 与AF 、BF 的等量关系.
图2 图3
附加题:
1.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .
求证:(1)EC =BF ;(2)EC ⊥BF.
2.如图,已知:△ABC 中,AB =AC ,∠BAC =90°,分别过B ,C 向经过点A 的直线EF 作垂线,垂足为E ,F .
(1)当EF 与斜边BC 不相交时,请证明EF =BE +CF (如图1) (2)如图2,当EF 与斜边BC 这样相交时,其他条件不变,证明:EF =BE -CF .
(3)如图3,当EF 与斜边BC 这样相交时,猜想EF 、BE 、CF 之间的关系,不必证明.。