北师大版八年级上册数学第六章测试题(附答案)
北师大版八年级上册数学第六章 数据的分析含答案
北师大版八年级上册数学第六章数据的分析含答案一、单选题(共15题,共计45分)1、5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33℃B.众数是33℃C.平均数是℃D.4日至5日最高气温下降幅度较大2、某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时) 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间的中位数是()A.6B.6.5C.7D.83、为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6B.众数是7C.中位数是8D.平均数是104、抽样调查某班10名同学身高(单位:厘米)如下:165,152,165,152,165,160,170,160,165,159.则这组数据的众数是()A.152B.160C.165D.1705、甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如图所示.则下列对甲、乙数据描述正确的是()A.甲的方差比乙的方差大B.甲的方差比乙的方差小C.甲的平均数比乙的平均数小D.甲的平均数比乙的平均数大6、已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个的2倍,则A,B两个样本的方差关系是()A.B是A的倍B.B是A的2倍C.B是A的4倍D.一样大7、下列统计量中,不能反映某学生在九年级第一学期的数学成绩稳定程度的是()A.中位数B.方差C.标准差D.极差8、已知样本数据x1, x2, x3,…,xn的方差为4,则数据2x1+3,2x2+3,2x3+3,…,2xn+3的方差为()A.11B.9C.16D.49、如果一组数据,,...,的方差是4 ,则另一组数据,...,的方差是()A.4B.7C. 8D.1910、如果一组数据a1, a2, a3,⋯,an,方差是2,那么一组新数据2a1, 2a2,⋯,2an的方差是()A.2B.4C.8D.1611、去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:kg)及方差(单位:kg²)如下表所示:甲乙丙丁24 24 23 202.1 1.9 2 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁12、数据1,2,3,4,4,5的众数和中位数的差是()A.1B.﹣0.5C.0.5D.﹣113、某校要从四名学生中选拔一名参加市“风华小主播”大赛,选拔赛中每名学生的平均成绩及其方差如表所示.如果要选择一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8 9 9 81 1 1.2 1.314、要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A.平均数B.中位数C.方差D.众数15、在一次射击测试中,甲、乙、丙、丁四名运动员射击的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁二、填空题(共10题,共计30分)16、某车间7名工人日加工零件数分别为4,5,10,5,5,4,10则这组数据的众数是________.17、小青在八年级上学期的数学成绩如下表所示.测评类型平时测验期中考试期末考试成绩 86 90 81如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是________分.18、小明某学期数学平时成绩70分,期中考成绩80分,期末考成绩90分,计算学期总评成绩方法如下:平时成绩占30%,期中成绩占30%,期末成绩占40%,那么小明这学期的数学总评成绩是________分.19、数据2,3,4,4,5的众数为________.20、我县某初中举行“中学生与社会”作文大赛,七年级、八年级根据初赛成绩,各选出5名选手组成七年级代表队和八年级代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)七年级83 85 ________八年级________ ________ 95(2)结合两队成绩的平均数和中位数,分析________队的决赛成绩较好;21、数字2018、 2019 、2020 、2021 、2022的方差是________;22、数据-1,-2,0,3,5的方差是________。
北师大版八年级上册数学第六章数据的分析综合素质评价试题(含答案)
八年级上册数学第六章综合素质评价一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.小铭某周每天的睡眠时间(单位:小时)为8,9,9,7,7,8,8.则小铭该周每天的平均睡眠时间是()A.7小时B.7.5小时C.8小时D.9小时2.一次演讲比赛中,评委从演讲内容、演讲能力、演讲效果三个方面为选手打分,已知某位选手三项得分依次为88,72,50,若将演讲内容、演讲能力、演讲效果三项得分按1:4:3的比例确定各人的最终成绩,则这位选手的最终成绩为()A.68.24 B.64.56 C.65.75 D.67.32 3.某校举办“体育艺术节”比赛,有16名学生参加,规定前8名的学生进入决赛,某选手知道自己的成绩,他想知道自己能否进入决赛,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数4.在对一组数据进行分析时,小华列出了方差的计算公式:s2=15[(5-͞x)2+(4-͞x)2+(4-͞x)2+(3-͞x)2+(3-͞x)2],对于这组数据,下列说法错误的是()A.方差是0.56 B.中位数是4C.平均数是3.8 D.众数是45.已知甲样本的平均数͞x甲=50,方差s2甲=0.06,乙样本的平均数͞x乙=50,方差s2乙=0.1,那么()A.甲、乙两个样本的波动一样大B.甲样本的波动比乙样本大C.乙样本的波动比甲样本大D.无法比较甲、乙两个样本波动的大小6.某校八年级的8个班级向“希望工程”捐献图书的本数如下表:班级一班二班三班四班五班六班七班八班本数50 96 100 90 90 120 500 90这组数据的中位数和众数分别是()A.93,90 B.93,500 C.90,90 D.90,500 7.某年广州5月8日~14日的气温折线统计图如图所示,这一周中温差最大的是()A.5月9日B.5月11日C.5月12日D.5月14日(第7题)(第12题)(第13题)8.某篮球队5名场上队员的身高(单位:cm)为183,185,188,190,194.现用一名身高为190 cm的队员换下场上身高为185 cm的队员,与换人前相比,场上队员身高的()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大9.某制鞋厂准备生产一批成人男鞋,随机调查了120名成年男子,得到所需鞋号和人数如下表:鞋号/ cm 24 24.5 25 25.5 26 26.5 27人数8 15 20 25 30 20 2,下列说法正确的是()A.因为所需鞋号为27 cm的人数太少,所以27 cm的鞋可以不生产B.因为平均数约是25.5 cm,所以这批男鞋可以一律按25.5 cm的鞋号生产C.因为中位数是25.5 cm,所以25.5 cm的鞋的生产量应占首位D.因为众数是26 cm,所以26 cm的鞋的生产量应占首位10.小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中三天的个数被墨汁覆盖了,但小强已经分析出这组数据的唯一众数是13,平均数是12,那么这组数据的方差是()A.107B.97C.87D.111.在一次歌咏比赛中,五位评委给参赛的A班打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.z>y>x B.x>z>y C.y>x>z D.y>z>x 12.10个人围成一圈做游戏,游戏的规则如下:每个人心里都想一个数,并把自己想的数告诉相邻的两个人,然后每个人将与自己相邻的两个人告诉自己的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.-2 C.4 D.-4二、填空题:本大题共6小题,每小题4分,共24分.13.某广场便民服务站统计了某月1至6日每天的用水量,并绘制了如图所示的统计图,那么这6天用水量的中位数是__________.14.某校运动会入场式的得分是由各班入场时,评委从服装、动作和口号三个方面分别给分,三项得分按3:3:4的比例计算得到的.若8(1)班服装、动作、口号三项得分分别是90分,92分,86分,则该班的入场式的得分是________分.15.甲、乙、丙三个旅游团的游客的年龄的方差分别是s2甲=1.4,s2乙=18.8,s2丙=2.5,导游小爽最喜欢带游客年龄相近的旅游团,若在这三个旅游团中选择一个,则他会选________旅游团.16.某校组织了一分钟跳绳比赛活动,体育老师随机抽取了10名参赛学生的成绩,将这组数据整理后制成如下统计表:一分钟跳绳个数(个) 172 175 178 182学生人数(名) 2 5 2 1则这10名参赛学生的成绩的众数是________.17.对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数.现抽取8个排球,通过检测所得数据如下(单位:g):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__________.18.已知一组数据x1,x2,x3,x4,x5的平均数是3,方差是4,那么另一组数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数和方差的和为________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.某区教育局为了了解初三男生引体向上的成绩情况,随机抽测了该区部分学校的初三男生,并将测试成绩绘制成了如下两幅不完整的统计图.请你根据图中的信息,解答下列问题:(1)扇形统计图中a=________,并补全条形统计图.(2)在这次抽测中,测试成绩的众数和中位数分别是多少?20.2021年9月17日,神舟十二号载人飞船返回舱在东风着陆场成功着陆,中国空间站阶段首次载人飞行任务取得圆满成功.某校组织了“中国梦·航天情”系列活动.下面是八年级创新、实验两个班各项目的成绩(单位:分):知识竞赛演讲比赛版面创作创新班85 91 88实验班90 84 87(1)如果将各个班三个项目成绩的平均数作为其最后成绩,那么哪个班将获胜?(2)如果将知识竞赛、演讲比赛、版面创作三个项目的成绩按532的比例确定各个班的最后成绩,那么哪个班将获胜?四、解答题(二):本大题共2小题,每小题10分,共20分.21.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,两人的射击成绩如图所示.(1)甲的射击成绩的平均数是________环,乙的射击成绩的中位数是__________环;(2)请分别计算甲、乙两名射击运动员射击成绩的方差,并根据计算结果判断谁的射击成绩更稳定.22.某数学小组对当地甲、乙两家网约车公司司机的月收入进行了抽样调查.从甲、乙两家公司各随机抽取10名司机,他们的月收入情况如图所示.根据以上信息,整理分析数据如下表:平均数/千元中位数/千元众数/千元方差甲公司a7 c d乙公司7 b 5 7.6(1)(2)某人打算从甲、乙两家公司中选择一家做网约车司机,你建议他选哪家公司?说明理由.五、解答题(三):本大题共2小题,每小题12分,共24分.23.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩如图所示.(1)请根据图中信息填写下表.平均数/环中位数/环命中9环及以上的次数甲____ 7 ____乙7 ____ ____(2)②从平均数和命中9环及以上的次数看,谁的成绩好一些?③从折线图上两人成绩的走势看,谁更有潜力?24.某企业对每个员工在当月生产某种产品的件数统计如图,设产品件数为x,该企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25时为称职;当x≥25时为优秀.根据统计图解答下列问题:(1)试求出优秀员工人数所占百分比;(2)求优秀和称职的员工的月产品件数的中位数和众数;(3)为了调动员工的工作积极性,该企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将得到奖励.要使优秀和称职的员工中至少有一半得到奖励,你认为月产品件数奖励标准应定为多少?请简述理由.答案一、1.C2.C3.A4.D5.C6.A7.D8.C 9.D10.C11.D12.B二、13.31.5 L14.8915.甲16.175个17.2.5点拨:这组数据的平均数=1-2+1+0+2-3+0+18=0(g),则方差=18[(1-0)2+(-2-0)2+(1-0)2+…+(1-0)2]=2.5.18.41点拨:因为数据x1,x2,x3,x4,x5的平均数是3,方差是4,所以数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数是3×3-4=5,方差是4×32=36.所以数据3x1-4,3x2-4,3x3-4,3x4-4,3x5-4的平均数和方差的和为5+36=41.三、19.解:(1)25补全条形统计图如图:(2)测试成绩的众数是5个,中位数是5个.20.解:(1)创新班的最后成绩是13×(85+91+88)=88(分),实验班的最后成绩是13×(90+84+87)=87(分),因为87<88,所以创新班将获胜.(2)创新班的最后成绩是85×5+91×3+88×25+3+2=87.4(分),实验班的最后成绩是90×5+84×3+87×25+3+2=87.6(分),因为87.6>87.4,所以实验班将获胜.四、21.解:(1)8;7.5(2)s2甲=110×[(6-8)2+3×(7-8)2+3×(8-8)2+(9-8)2+2×(10-8)2]=1.6.x乙=110×(7×5+3×9+8+10)=8(环),s2乙=110×[5×(7-8)2+(8-8)2+3×(9-8)2+(10-8)2]=1.2,因为s2甲>s2乙,所以乙的射击成绩更稳定.22.解:(1)7.3;5.5;7;1.41(2)选甲公司.理由如下:因为甲公司司机的月收入的平均数、中位数、众数均大于乙公司,且甲公司司机的月收入的方差小于乙公司,更稳定.(理由合理即可)五、23.解:(1)(从上到下,从左到右)7;1;7.5;3(2)①从平均数和中位数看,乙的成绩好一些,因为甲、乙两人成绩的平均数相同,乙的成绩的中位数比甲大.②从平均数和命中9环及以上的次数看,乙的成绩好一些,因为甲、乙两人成绩的平均数相同,乙命中9环及以上的次数比甲多.③由折线图可知,乙的成绩呈上升趋势,而甲的成绩在平均数的上下波动,所以乙更有潜力.24.解:(1)根据条形统计图可知,优秀员工人数为3,总人数为30,则优秀员工人数所占百分比为330×100%=10%.(2)优秀和称职的员工的月产品件数的中位数为22,众数为20.(3)月产品件数奖励标准应定为22.由(2)知,优秀和称职的员工的月产品件数的中位数为22,即优秀和称职的员工中至少有一半的月产品件数大于或等于22,所以月产品件数奖励标准应定为22.。
第六章数据的分析单元测试 2024—2025学年北师大版数学八年级上册
第六章数据的分析单元测试北师大版2024—2025学年八年级上册秋季考生注意:本试卷共三道大题,23道小题,满分100分,时量90分钟第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.数据10,10,x,8的众数与平均数相同,那么这组数的中位数是()A.10B.8C.12D.42.对已知数据﹣4,1,2,﹣1,2,下面结论错误的是()A.中位数为1B.极差为5C.众数为2D.平均数为0 3.为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定4.某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为6(分2),两位女生的成绩分别为17分,15分.则这个学习小组5位同学考试分数的标准差为()A.B.2C.D.65.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)12251则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25B.24.5,25C.25,24.5D.24.5,24.5 6.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)180185180185方差8.17.4 3.6 3.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁7.某市一周七天每一天最高气温变化如折线图所示,下面描述正确的是()A.最小值是32℃B.众数是33℃C.中位数是34℃D.平均数是34℃8.在第60届国际数学奥林匹克比赛中,中国队荣获团体总分第一名.我国参赛选手比赛成绩的方差计算公式为:S2=,下列说法错误的是()A.我国一共派出了6名选手B.我国参赛选手的平均成绩为38分C.我国选手比赛成绩的中位数为38D.我国选手比赛成绩的团体总分为228分9.在数学史演讲比赛中,小明对七位评委老师给自己打出的分数进行了分析,并制作了如下表格:平均数众数中位数方差9.19.39.20.1如果每个评委打分都高0.1,那么表格中数据一定不会发生变化的是()A.中位数B.众数C.平均数D.方差10.某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人D.甲地区的人数比丙地区的人数少180人二.填空题(6小题,每题3分,共18分)11.学校团委会为了举办活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有人.12.某中学有270名学生,为了了解学生们的上学方式,抽取部分学生做调查后绘制了如图所示的条形图,那么此次调查的样本容量为.13.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2S乙2(填“>”“<”或“=”).14.如图是根据某班40名同学一周的体育锻炼情况绘制的统计图,该班40名同学一周参加体育锻炼时间的中位数是.15.某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=.16.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.第II卷第六章数据的分析单元测试北师大版2024—2025学年八年级上册秋季姓名:____________ 学号:____________准考证号:___________ 123456789101112题号答案13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,共计52分,解答题要有必要的文字说明)17.为了增加校园体育文化氛围,初一年级举行师生踢毽子比赛,七年级1班有42人参赛,预赛成绩统计如下(踢毽子标准数量为20个):踢毽子个数与标准数量的差值﹣11﹣6081015人数41010m84(1)表中m的值为.(2)求七年级1班参赛选手平均每人踢多少个毽子?18.交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况如表.车速4050607080车辆数23721(1)计算这些车的平均速度;(2)车速的众数是;(3)车速的中位数是.19.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?20.某市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)扇形统计图中,独立思考所在扇形的圆心角是度;(4)如果全市有16万名初中学生,那么在试卷评讲课中,“独立思考”的学生约有多少万人?21.为了解某校八年级学生暑假期间每天的睡眠时长(单位:h),随机调查了该校八年级a名学生,得到如下统计图.(1)m=,a=;(2)求这组学生每天睡眠时长的平均数;(3)根据样本数据,若该校八年级共有学生400人,估计该校八年级学生暑假期间每天睡眠时长不足8h的人数约为多少?22.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?23.某中学的“爱上阅读”小组成员,于2023年12月28日线上观看了阳城县委宣传部举办的书香润阳城共读共享:“悦读悦心”——“阅读的力量”读书活动(第17期).为了了解学校学生课外阅读情况,他们决定对本校学生每天的课外阅读情况进行调查,他们随机抽取了本校部分学生进行了问卷调查,并将结果分为A,B,C,D四个等级,表、图如下,请根据图中信息解答下列问题:等级A B C Dt<11≤t<1.5 1.5≤t<2t≥2每天课外阅读时间(小时)(1)本次抽样调查共抽取了多少名学生?(2)将条形统计图补充完整;(3)表示D等级的扇形圆心角的度数是多少?(4)若该校共有1200名学生,每天课外阅读时间在2小时以内的学生有多少人?。
北师大版八年级数学上册第六章《数据的离散程度》课时练习题(含答案)
北师大版八年级数学上册第六章《4.数据的离散程度》课时练习题(含答案)一、单选题1.在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是( ) A .平均数B .中位数C .众数D .方差2.为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是( )A .平均数B .中位数C .众数D .方差3.“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是( ). A .中位数B .众数C .平均数D .方差4.如果将一组数据中的每个数都减去5,那么所得的一组新数据( ) A .众数改变,方差改变 B .众数不变,平均数改变 C .中位数改变,方差不变 D .中位数不变,平均数不变 5.在对一组样本数据进行分析时,小凡列出了方差的计算公式:222221[(8)2(6)(9)(11)]5s x x x x =-+-+-+-,根据公式不能得到的是( )A .众数是6B .方差是6C .平均数是8D .中位数是86.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲 乙 丙 丁 平均数(环) 9.14 9.15 9.14 9.15 方差6.66.86.76.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁7.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x 甲,x 乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A .x 甲=x 乙,s 甲2>s 乙2B .x 甲=x 乙,s 甲2<s 乙2C .x 甲>x 乙,s 甲2>s 乙2D .x 甲<x 乙,s 甲2<s 乙28.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表: 一分钟跳绳个数(个) 141 144 145 146 学生人数(名) 5 2 1 2则关于这组数据的结论正确的是( ) A .平均数是144 B .众数是141 C .中位数是144.5 D .方差是5.4二、填空题9.如果有一组数据-2,0,1,3,x 的极差是6,那么x 的值是_________.10.一组数据的方差计算公式为(222221(5)(8)(8)11)4s x x x x ⎤=-+-+-+-⎦,则这组数据的方差是______.11.射击运动员小东10次射击的成绩(单位:环):7.5,8,7.5,8.5,9,7,7,10,8.5,8.这10次成绩的平均数是8.1,方差是0.79,如果小东再射击一次,成绩为10环,则小东这11次成绩的方差______0.79.(填“大于”、“等于”或“小于”)12.已知1,2,3,4,5的方差为2,则2021,2022,2023,2024,2025的方差为______.三、解答题13.某学校开展防疫知识线上竞赛活动,九年级(1)、(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)九(1)班竞赛成绩的众数是,九(2)班竞赛成绩的中位数是;(2)哪个班的成绩较为整齐,试说明理由.14.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.6 8.6 m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).15.为了从甲、乙两名学生中选拔一人参加县级中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前6次测验成绩的折线统计图.现对甲、乙的6次测验成绩的数据进行统计分析列表对比如下:平均数中位数众数方差甲75 75 c m乙75 b70 33.3(1)填空:b=____;c=____;(2)求m的值;(3)如果从稳定性来看,选谁参赛较合适?如果从发展趋势来看,选谁参赛较合适?请结合所学统计知识说明理由.16.市体校射击队要从甲、乙两名射击队员中挑选一人参加省级比赛,因此,让他们在相同条件下各射击10次,成绩如图所示.为分析成绩,教练根据统计图算出了甲队员成绩的平均数为8.5环、方差为1.05,请观察统计图,解答下列问题:(1)先写出乙队员10次射击的成绩,再求10次射击成绩的平均数和方差;(2)根据两人成绩分析的结果,若要选出总成绩高且发挥稳定的队员参加省级比赛,你认为选出的应是,理由是:.17.小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.18.为增强防疫意识,某初中在元旦举行了疫情防控知识竞赛活动,现从本校甲、乙两班中各随机抽取10名同学的测试成绩进行整理、描述和分析,如图所示:班级平均数/分中位数/分众数/分方差甲班83.7 82 46.21乙班83.7 86 13.21(1)两组数据的平均数、中位数、众数、方差如上表所示,请补充完整.(2)根据上述数据,请从两个不同角度评价甲班与乙班掌握防疫知识的情况。
2020年北师大版八年级数学上册第六章数据的分析单元测试题(含答案)
第六章数据的分析[时间:120分钟分值:150分]A卷(共100分)一、选择题(共9个小题,每小题4分,共36分)1.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是() A.众数是108 B.中位数是105C.平均数是101 D.方差是932.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差3.下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x-,那么(x1-x-)+(x2-x-)+…+(x n-x-)=0D.一组数据的方差是这组数据的极差的平方4.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则下列关于车速描述错误的是()A.平均数是23 B.中位数是25C.众数是30 D.方差是1295.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数35678人数1322 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6C.5,5,6 D.5,6,56.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书售价组成的一组数据中,中位数是4C.在该班级所售图书售价组成的一组数据中,众数是15D.在该班级所售图书售价组成的一组数据中,方差是28.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.92C.5 D.11 29.在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是()A.88, 2 B.88,2C.90, 2 D.90,2二、填空题(共4个小题,每小题5分,共20分)10.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他的数学学期综合成绩是____分.11.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____小时.12.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是____.13.某单位举办了英语培训,100名职工在一个月内参加英语培训的次数如图所示.这个月职工参加英语培训次数的众数为____次,中位数是____次.三、解答题(共3个小题,共44分)14.(14分)某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试、面试两项测试,三人的测试成绩如下表所示:笔试758090面试937068根据录用程序,组织400名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.民主评议得票率(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩(精确到0.1分),那么谁将被录用?15.(15分)[2019·天津]某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果绘制出如下的统计图1和图2,请根据相关信息解答下列问题:(1)本次接受调查的初中学生人数为___,图1中的m的值为____;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.16.(15分)洋洋八年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.B卷(共50分)四、填空题(共4个小题,每小题5分,共20分)17.一组数据:2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是____.18.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃)x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周这五天的平均最低气温为7 ℃,则第二周这五天的平均最低气温为_________.19.某公司员工的月工资统计如下:则该公司员工月工资的平均数为________________元,中位数为__________元,众数为__________元.20.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是____.五、解答题(共2个小题,共30分)21.(15分)为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是____(填“甲”或“乙”),请说明理由.解:整理数据:表一分析数据:将甲组数据重新排列为:393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402.表二得出结论:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.22.(15分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A,B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值),图中,从左往右第四组的成绩如下:A小区50名居民成绩的频数直方图【信息二】A,B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):AB根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.参考答案1. D【解析】 把六名学生的数学成绩从小到大排列为82,96,102,108,108,110,∴众数是108,中位数为102+1082=105,平均数为 82+96+102+108+108+1106=101, 方差为16[(82-101)2+(96-101)2+(102-101)2+(108-101)2+(108-101)2+(110-101)2]≈94.3≠93.2. B【解析】 由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.11个不同的成绩按从小到大排序后,成绩的中位数为第6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故本题选B.3. C 4. D 5. A【解析】 因为投中5次的人数最多,故众数为5;把10名队员投中的次数按由小到大的顺序排列为3,5,5,5,6,6,7,7,8,8,中间的两个数的平均数为6,故中位数为6;3×1+5×3+6×2+7×2+8×210=6,故平均数为6. 6. D【解析】 1~6月份利润的众数是120万元,故A 错误;1~6月份利润的中位数是125万元,故B错误;1~6月份利润的平均数约是128万元,故C错误;1~6月份利润的极差是40万元,故D正确.故选D.7. A【解析】 该班级所售图书的总收入为3×14+4×11+5×10+6×15=226(元),所以A 选项正确;将售价按由小到大的顺序排列,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;这组数据的众数为6,所以C 选项错误;这组数据的平均数为x =22650=4.52,所以这组数据的方差s 2=150[14×(3-4.52)2+11×(4-4.52)2+10×(5-4.52)2+15×(6-4.52)2]≈1.4,所以D 选项错误.8. B【解析】 本题考查了众数、中位数的概念与中位数的求法,由众数是4,知x =4,把数据重排为2,3,4,4,5,6,7,9,中间两个数的平均数为92,就是这组数据的中位数,因此本题选B.9. B【解析】 根据题意得:90×5-(91+89+92+90)=88(分),则丙的得分是88分,方差=15[(91-90)2+(89-90)2+(88-90)2+(92-90)2+(90-90)2]=2.10. 8811.1【解析】∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.12.乙【解析】x-甲=15×(90+88+92+94+91)=91,x-乙=15×(90+91+93+94+92)=92,s2甲=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s2乙=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,因为x-乙>x-甲,s乙<s甲.所以乙的成绩较好且比较稳定.13.6 614.解:(1)甲得分:400×25%=100(分).乙得分:400×40%=160(分).丙得分:400×35%=140(分).(2)将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩,则甲得分:(5×75+3×93+2×100)÷(5+3+2)=85.4(分).乙得分:(5×80+3×70+2×160)÷(5+3+2)=93(分).丙得分:(5×90+3×68+2×140)÷(5+3+2)=93.4(分).则丙将被录用.15.40 25解:(2)平均数为1.5 h ,众数为1.5 h ,中位数为1.5 h . (3)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1 h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1 h 的人数为800×90%=720(人).16.解:(1)洋洋该学期的数学平时平均成绩为 (106+102+115+109)÷4=108(分). (2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分). 17. 5【解析】 ∵整数a 是这组数据中的中位数,∴a =4, ∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5. 18. 10 ℃【解析】 由题意得x 1+x 2+x 3+x 4+x 55=7(℃), 则x 1+1+x 2+2+x 3+3+x 4+4+x 5+55=7+3=10(℃). 19. 2 000 1 000 1 000 20.12【解析】 若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4-5)2+(5-5)2+(5-5)2+(6-5)2]=12;若众数为6,则这组数据为4,5,6,6,中位数为5.5,不符合题意.21.乙 22. 75 解:(1)75分. (2)2450×500=240(人).(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数.1、天下兴亡,匹夫有责。
北师大版数学八年级上册 第六章 数据的分析综合测评(含答案)
第六章 数据的分析综合测评(本试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 一组数据4,6,5,5,10中,平均数是( )A .5B .6C .7D .82. 某车间5名工人日加工零件数(个)分别为5,9,3,4,3,这组数据的众数是( ) A .3个 B .4个 C .5个 D .9个3. 学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名.某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( )A .平均数B .中位数C .众数D .方差 4. 某校八年级八个班级向“希望工程”捐献图书的册数如下:所捐图书册数的中位数和众数分别是( ) A .90册,500册 B .93册,500册 C .90册,90册 D .93册,90册 5. 某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是3.6,4.6,6.3,7.3,则这4名同学3次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁6.(2021年黑龙江)一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是( ) A .众数 B .中位数 C .平均数 D .方差7. 某公司招聘职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行测试.测试结果如下表:(各项满分均为10分)如果将学历、经验和工作态度三项得分按1∶2∶3的比例确定各应聘者的最终得分,并以此为依据录取得分最高者,那么将被录取的是( )A .甲B .乙C .丙D .丁8. 在对一组数据进行分析时,小华列出了方差的计算公式:()()()()22222-3-3-4-x x x xn+++,由公式提供的信息,下列说法错误的是( )A .这组数据共有4个B .这组数据的中位数是3C .这组数据的众数是3D .这组数据的平均数是3.59. 在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x10. 下列说法:①一组数据:3,2,5,5,4,6的众数是5;②甲、乙两种麦种连续3年的平均亩产量相同,它们的方差分别为5和0.5,则乙麦种产量比较稳定;③一组数据2,4,x ,2,4,10的众数为2,则它的中位数是3,方差是48;④如果x 1,x 2,…x n ,的平均数是x ,那么(x 1−x )+(x 2−x )+…+(x n −x )=0.其中正确的有()A.①②③B.①③④C.①②④D.①②③④二、填空题(本大题共6小题,每小题3分,共18分)11. 已知一组数据1,3,a,10的平均数为5,则a=__________.12. 在“英语达人”中学生竞赛中,5位评委给小明的评分分别是:8,7,7,9,9,这组数据的的方差是__________.13. 某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元,3元,2元,1元.这四种矿泉水某天的销售量如图1所示,则这天销售的矿泉水的平均单价是__________元.图1 图214. 若一组数据8,3,x,y,5的众数和中位数分别是8和6,则这组数据的平均数为__________.15. 若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,2a2,…,2a n的方差是__________.16. 某中学学生对本校学生的每周零花钱使用情况进行了调查,得到一组学生平均一周用出的零花钱的数据.图2是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中平均一周用出零花钱25元和30元的学生一共42人.则这组数据的众数是__________元,中位数是__________元.三、解答题(本大题共7小题,共52分)17. (6分)小明八年级下学期的数学成绩如下表所示:考试类别平时成绩期中成绩期末成绩成绩(分)85 86 88如果按平时成绩占20%、期中成绩占30%、期末成绩占50%计算,求出小明该学期的总评成绩.18. (6分)某校200名学生参加植树活动,要求每人植树3~6棵.活动结束后对20名学生每人的植树量(单位:棵)进行了调查,调查结果如下表所示:棵数 3 4 5 6人数 5 9 5 1(1)这20名学生每人植树量的众数为__________棵,中位数为__________棵;(2)求这20名学生中植树棵树不少于5棵的人数所占的百分比.19.(8分)学校组织了“我和我的祖国”演讲比赛,甲、乙两队各有10人参加本次比赛,成绩(10分制)如下表所示:甲10 8 7 9 8 10 10 9 10 9乙7 8 9 7 10 10 9 10 10 10(1)甲队成绩的众数是__________分,乙队成绩的平均数是__________分;(2)哪个队的成绩比较整齐?20.(10分)“新冠肺炎”疫情期间,某口罩生产车间有15位工人,为了解生产进度,车间主任统计了15位工人某天生产口罩的只数如下表:每人生产口罩只数540 450 300 240 210 120人数 1 1 2 6 3 2(1)求这15位工人该天生产口罩的中位数和众数;(2)假如车间主任把每位工人每天生产口罩数定为250只,你认为这个定额是否合理?若不合理,应定为多少较为合理?请说明理由.21.(10分)“绿水青山就是金山银山”,某市市民积极参与义务植树活动.小致同学为了解自己所在小区300户家庭在4月份义务植树的数量,进行了抽样调查,随机抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如图3的统计图,请补充完整;②这30户家庭4月份义务植树数量的平均数是棵,众数是棵;(2)“互联网+全民义务植树”是新时代全民义务植树组织形式和尽责方式的一大创新,小致同学所调查的这30户家庭中有8户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式植树的家庭有多少户?图322. (12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩(单位:环)依次为:甲:8,8,7,8,9;乙:5,9,7,10,9.教练根据他们的成绩绘制了如图4所示的尚不完整的统计图表:图4 根据以上信息,解答下面的问题:(1)a=__________,b=__________,c=__________; (2)完成图6中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会__________.(填“变大”“变小”或“不变”)附加题(共20分,不计入总分)1.(6分)对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min {a ,b ,c }表示这三个数中最小的数,例如:M {-1,2,3}=1233-++=43,min {-1,2,3}=-1.如果M {3,x -1,5x +1}=min {2,-x +3,5x },那么x = .2.(14分)在发生某公共卫生事件期间,某专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是:连续14天,每天新增疑似病例不超过7人.已知在过去的14天内,甲、乙两地新增疑似病例数据信息如下:甲地:总体平均数为2,方差为2; 乙地:中位数为3,众数为4和5.请你运用所学知识判断:甲、乙两地是否会发生大规模群体感染?请说明理由.(山东 于宗英)平均数 众数 中位数 方差 甲 8 a 8 c乙 8 9 b 3.2第六章数据的分析综合测评一、1. B 2. A 3. B 4. D 5. A 6. D 7. A 8. D 9. A 10. C二、11. 6 12. 0.8 13. 2.25 14. 6 15. 20 16. 25 25三、17. 解:小明该学期的总评成绩为:85×20%+86×30%+88×50%=86.6(分).18. 解:(1)4 4(2)这20名学生中植树棵数不少于5棵的人数所占的百分比为:5+120×100%=30%.19. 解:(1)10 9(2)甲队的平均数为:(7+8×2+9×3+10×4)÷10=9;甲队的方差为:110()()()()2222 7-928-939-9+410-9+⨯+⨯⨯⎡⎤⎣⎦=1;乙队的方差为:110×()()()()222227-98-929-9+510-9⨯++⨯⨯⎡⎤⎣⎦=1.4.因为1<1.4,所以甲队的成绩比较整齐.20. 解:(1)这15位工人该天生产口罩的中位数是240只,众数是240只.(2)不合理.因为表中数据显示,每月能完成250件的人数一共有4人,还有11人不能达到此定额,不利于调动多数员工的积极性.因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240只较为合理.21. 解:(1)①由已知数据可知种植3棵树的家庭有12户,种植4棵树的家庭有8户.补全统计图如图1:图1②3.4 3(2)300×830=80(户).所以估计该小区采用这种形式植树的家庭有80户.22. 解:(1)8 9 0.4(2)乙成绩变化情况的折线如图2所示:图2(3)因为两人的平均成绩相同,而甲的成绩的方差小,所以甲的成绩较稳定,故教练选择甲参加射击比赛.(4)变小附加题1.12或132.解:①甲地不会发生大规模群体感染.理由如下:由题意,得()()()2221214122...214x x x ⎡⎤-+-++-⎣⎦=2,即()()()222121422...2x x x ⎡⎤-+-++-⎣⎦=28. 若甲地14天中存在某一天新增疑似病例超过7人,则最少为8人.因为(8-2)2=36>28,所以没有一天新增疑似病例超过7人,故甲地不会发生大规模群体感染. ②乙地不会发生大规模群体感染.理由如下:因为一共有14个数据,所以中位数为第7,8个数的平均数.因为中位数是3,所以第7,8个数可能为2,4或3,3两种情况.若中间两个数是2和4,则前面六个数只能取0,1,2这三个数,所以前七个数中有一个数至少会出现3次.因为众数是4和5,所以后六个数中4和5至少各出现4次,不合题意;若中间两个数都是3,因为众数是4和5,则后六个数中4和5至少各出现3次,所以后六个数只能为4,4,4,5,5,5.所以前六个数只能取0,1,2,且每个数最多出现两次.所以,这14个数只能是:0,0,1,1,2,2,3,3,4,4,4,5,5,5. 所以乙地不会发生大规模群体感染.。
完整版北师大版八年级上册数学第六章 数据的分析含答案
北师大版八年级上册数学第六章数据的分析含答案一、单选题(共15题,共计45分)1、某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是()A.众数是80B.中位数是75C.平均数是80D.极差是152、下列说法不正确的是()A.数据0、1、2、3、4、5的平均数是3B.选举中,人们通常最关心的数据是众数C.数据3、5、4、1、2的中位数是3D.甲、乙两组数据的平均数相同,方差分别是S甲2=0.1,S乙2=0.11,则甲组数据比乙组数据更稳定3、数据,,,,,的中位数是()A. B. C. D.4、已知一组数据为8,9,10,10,11,则这组数据的众数()A.8B.9C.10D.115、某次器乐比赛设置了6个获奖名额,共有ll名选手参加,他们的比赛得分均不相同.若知道某位选手的得分。
要判断他能否获奖,在下列ll名选手成绩的统计量中,只需知道( )A.方差B.平均数C.众数D.中位数6、一组数据:6,3,4,5,6的中位数是()A.4B.5C.4.5D.67、某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是()A.181,181B.182,181C.180,182D.181,1828、2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示:则下列说法中正确的是 ( )A. > ,应该选取B选手参加比赛;B. < ,应该选取A选手参加比赛;C. ≥ ,应该选取B选手参加比赛;D. ≤ ,应该选取A选手参加比赛.9、下列说法错误的是()A.一组数据的众数,中位数和平均数不可能是同一个数B.一组数据的平均数既不可能大于,也不可能小于这组数据中的所有数据C.一组数据的中位数可能与这组数据的任何数据都不相等D.众数,中位数和平均数从不同角度描述了一组数据的集中趋势10、如果老师要求你作一个“去年北京市冬季气温统计表”,为了收集数据,你应该()A.实地测量B.询问北京的朋友C.查找资料D.等老师介绍11、已知数据,则这组数的中位数是( )A.4B.6C.5D.7.512、某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42B.43、42C.43、43D.44、4313、一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8.5,9B.8.5,8C.8,8D.8,914、已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数15、某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是().A.4B.5C.6D.10二、填空题(共10题,共计30分)16、一组数据:5,8,7,6,9,则这组数据的方差是________.17、一组数据2, 4, 2, 3, 4的方差=________.18、数据1,2,3,4,6,3的众数是________.19、甲、乙两台机床生产同一种零件,并且每天产量相等,在6天中每天生产零件中的次品数依次是:甲:3、0、0、2、0、1;乙:1、0、2、1、0、2.则甲、乙两台机床中性能较稳定的是________.20、从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是________ .21、甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S2甲,S2乙,则射击成绩较稳定的是________(选填“甲”或“乙”).22、一组数据3,9,4,9,5的众数是________.23、已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2________S乙2(填“>”、“=”、“<”)24、某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22,15,18(单位:万元).若想让一半左右的营业员都能达到月销售目标,则月销售额定为________万元较为合适.25、数据1,2,3,4,5的平均数是________.三、解答题(共6题,共计25分)26、某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):(1)求这14位营销员该月销售该品牌电脑的平均数、中位数和众数.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?为什么?27、自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.3月25日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如表:如果规定:演讲内容、演讲技巧、仪表形象按 6:3:1 计算成绩,那么甲、乙两人的成绩谁更高?28、某公司抽查了10天全公司的用电数量,数据如下表(单位:度):(1)求出上表中数据的众数和平均数;(2)根据获得的数据,估计该公司本月的用电数量(按30天计算)?;若每度电的定价为0.5,估算本月的电费支出约多少元?29、为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是?女生收看“两会”新闻次数的中位数是?(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3 3 4 2 …根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.30、受疫情影响,某地无法按原计划正常开学,在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙两个班中推荐一个作为在线教学先进班级,下表是这两个班的五项指标(10分制)的考评得分表(单位:分):班级课程设置课程质量在线答疑作业情况学生满意度甲班10 10 6 10 7乙班10 8 8 9 8如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2:2:3:1:2的比例确定最终成绩,则应推荐哪个班为在线教学先进班级?参考答案一、单选题(共15题,共计45分)1、B2、A3、B5、D6、B7、D8、B9、A10、C11、C12、B13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共6题,共计25分)26、27、28、30、。
北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)
北师大版八年级上册数学第六章数据的分析单元测试卷一、单选题1.一组数据6,7,8,9,10,这组数据的平均数是()A.6B.7C.8D.92.“魅力凉都”六盘水某周连续7天的最高气温(单位℃)是18,22,22,23,24,25,26,则这组数据的中位数是()A.18B.22C.23D.243.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数4.一组数据1,2,3,5,3,4,10的极差、众数分别是()A.3,3B.9,3C.5,4D.6,10 5.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40B.35C.25D.58.某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台9.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,19B.19,20C.19,20.5D.20,1910.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为().A.1B.6C.1或6D.5或611.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为30C.平均数为24D.方差为84 12.某次期中考试,小明、小亮的语文、数学、英语三科的分数如下:如果将语文、数学、英语这三科的权重比由3:5:2变成5:3:2,那么分数变化情况是()A.小明增加的分数多B.小亮增加的分数多C .两人增加的分数一样多D .两人的分数都减少了13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃14.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 515.A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( ) A .D 、E 的成绩比其他三人好 B .B 、E 两人的平均成绩是83环 C .最高分得主不是A 、B 、CD .D 、E 中至少有1人的成绩不少于83环。
北师大版八年级数学上册第六章第1节《平均数》课时练习题(含答案)
北师大版八年级数学上册第六章第1节《平均数》课时练习题(含答案)一、单选题1.数据10,3,a ,7,5的平均数是6,则a 等于( ). A .3B .4C .5D .62.如果1x 与2x 的平均数是5,那11x -与25x +的平均数是( ) A .4B .5C .6D .73.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是( ) A .4B .5C .6D .74.为了满足顾客的需求,某商场将5kg 奶糖,3kg 酥心糖和2kg 水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( ) A .25元B .28.5元C .29元D .34.5元5.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行综合考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的各项分数依次为90、88、85分,那么小王的最后综合得分是( ) A .87B .87.5C .87.6D .886.小刘利用空闲时间到外地某建筑公司打工,公司承诺:正常上班的工资为200元/天,不能正常上班(如下雨)的工资为80元/天,如果某月(30天)正常上班的天数占80%,则当月小刘的日平均工资为( ) A .140元B .160元C .176元D .182元7.六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是( ) A .平均数是14B .中位数是14.5C .方差3D .众数是148.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y >z >xB .x >z >yC .y >x >zD .z >y >x二、填空题9.如果一组数据中有3个6、4个1-,2个2-、1个0和3个x ,其平均数为x ,那么x =______. 10.已知一组数据10、3、a 、5的平均数为5,那么a 为_____.11.某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分. 12.若已知数据1x ,2x ,3x 的平均数为a ,那么数据121x +,221x +,321x +的平均数为______(用含a 的代数式表示).13.已知数据1x ,2x ,3x ,4x 的平均数为10,则数据11x +,22x +,33x +,44x +的平均数是______.14.每年的4月23日是“世界读书日”,某校为了解4月份八年级学生的读书情况,随机调查了八年级50名学生读书的册数,数据整理如下:由此估计该校八年级学生4月份人均读书______册.三、解答题15.某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取.他们的各项成绩(单项满分100分)如表所示:(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?16.中华文化源远流长,中华诗词寓意深广,为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩不低于50分,为了更好地了解本次海选比赛的成绩分布情况.随机选取其中200名学生的海选比赛成绩(总分100分)作为样本进行整理,得到海选成绩统计表与扇形统计图如下: 抽取的200名学生成绩统计表 组别 海选成绩 人数 A 组 5060x ≤<10 B 组 6070x ≤< 30 C 组 7080x ≤< 40 D 组 8090x ≤<aE 组 90100x ≤≤ 70请根据所给信息解答下列问题:(1)填空:①=a ____________,②b =____________,③θ=____________度;(2)若把统计表每组中各个成绩用这组数据的中间值代替(例如:A 组数据中间值为55分),请估计被选取的200名学生成绩的平均数;(3)规定海选成绩不低于90分记为“优秀”,请估计该校参加这次海选比赛的2000名学生中成绩“优秀”的有多少人?17.学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题:演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表:内容表达风度印象总评成绩小明8 7 8 8 m小亮7 8 8 9 7.85小田7 9 7 7 7.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整?18.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级500名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图:测试成绩/分测试项目甲乙丙笔试92 90 95面试85 92 88其次,对三名候选人进行了笔试和面试两项测试.各项成绩如表所示,请你根据以上信息解答下列问题:(1)请计算每名候选人的得票数;(2)若每名候选人得一票记0.5分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?19.某学校对九年级共500名男生进行体能测试.从中任意选取40名的测试成绩进行分析,分为甲,乙两组,绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表成绩7 8 9 10人数 1 9 5 5请根据上面的信息,解答下列问题:(1)m ______:(2)从平均分角度看,评价甲,乙两个小组的成绩;(3)估计该校男生在这次体能测试中拿满分的人数.20.从甲、乙两个企业随机抽取部分职工,对某个月月收入情况进行调查,并把调查结果分别制成扇形统计图和条形统计图.(1)在扇形统计图中,“6千元”所在的扇形的圆心角是;(2)在乙企业抽取的部分职工中,随机选择一名职工,求该职工月收入超过5千元的概率;(3)若要比较甲、乙两家企业抽取的职工的平均工资,小明提出自己的看法:虽然不知道甲企业抽取职工的人数,但是可以根据加权平均数计算甲企业抽取的职工的平均工资,因此可以比较;小明的说法正确吗?若正确,请比较甲企业抽取的职工的平均工资与乙企业抽取的职工的平均工资的多少;若不正确,请说明理由。
八年级数学上册《第六章 数据的离散程度》练习题-带答案(北师大版)
八年级数学上册《第六章数据的离散程度》练习题-带答案(北师大版)一、选择题1.方差为2的是( )A.1,2,3,4,5B.0,1,2,3,5C.2,2,2,2,2D.2,2,2,3,32.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为( )A.1B.6C.1或6D.5或63.某村引进甲、乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550 千克/亩,方差分别为s甲2=141.7,s乙2=433.3,则产量稳定、适合推广的品种为( )A.甲、乙均可B.甲C.乙D.无法确定4.一组数据的方差为1.2,将这组数据扩大为原来的2倍,则所得新数据的方差为( )A.1.2B.2.4C.1.44D.4.85.数据0、1、2、3、x的平均数是2,则这组数据的方差是( )A.2B. 2C.10D.106.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是( )A.甲比乙稳定B.乙比甲稳定C.甲和乙一样稳定D.甲、乙稳定性没法对比7.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高( ) A.平均数变小,方差变小 B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大8.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差二、填空题9.数据3,3,6,5,3的方差是.10.已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.13.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.14.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是.三、解答题15.甲进行了10次射击训练,平均成绩为9环,且前9次的成绩(单位:环)依次为:8,10,9,10,7,9,10,8,10.(1)求甲第10次的射击成绩;(2)求甲这10次射击成绩的方差;(3)乙在相同情况下也进行了10次射击训练,平均成绩为9环,方差为1.6环2,请问甲和乙哪个的射击成绩更稳定?16.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 89 8 10 9乙10 710 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.17.甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):运动员 \ 环数 \ 次数 1 2 3 4 5甲10 8 9 10 8乙10 9 9 a b某同学计算出了甲的成绩平均数是9,方差是s2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a+b=;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a,b的所有可能取值,并说明理由.18.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178 178 b 0.6乙队178 a 178 c=,=,=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.19.某校为选拨参加2005年全国初中数学竞赛选手,进行了集体培训.在集训期间进行了10次测试,假设其中两位同学的测试成绩如下面的图表(如图3)所示:(1)根据图表中的信息填写下表:信息平均数众数中位数方差类别甲93 95 18.8乙90 90 68.8(2)这两位同学的测试成绩各有什么特点(从不同的角度分别说出一条即可)?(3)为了使参赛选手取得好成绩,应该选谁参加比赛?为什么?参考答案1.A2.C.3.B4.D5.A6.A.7.A.8.D.9.答案为:1.6. 10.答案为:2. 11.答案为:3.6. 12.答案为:3 13.答案为:乙. 14.答案为:2.15.解:(1)根据题意,甲第10次的射击成绩为: 9×10﹣(8+10+9+10+7+9+10+8+10)=9; (2)甲这10次射击成绩的方差为:110×[4×(10﹣9)2+3×(9﹣9)2+2×(8﹣9)2+(7﹣9)2]=1; (3)∵平均成绩相等,而甲的方差小于乙的方差 ∴乙的射击成绩更稳定.16.解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9 乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差=16[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=23. 乙的方差=16[(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=43. (3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.17.解:(1)如图所示;(2)[由题意,知15(10+9+9+a+b)=9,∴a+b=17.](3)在(2)的条件下,a,b的值有四种可能:第①种和第②种方差相等:s2乙=15(1+0+0+4+1)=1.2>s2甲,∴甲比乙的成绩较稳定. 第③种和第④种方差相等:s2乙=15(1+0+0+0+1)=0.4<s2甲,∴乙比甲的成绩稳定.因此,a=7,b=10或a=10,b=7时,甲比乙的成绩较稳定.18.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.19.解:(1)甲的中位数是94.5,乙的众数是99;(2)答案不惟一,如,甲的成绩比乙的成绩稳定等;(3)答案不惟一,如,应该选乙.因为乙的众数比甲的众数大,乙取得高分的可能性比甲高.若选甲,则理由为平均数高于乙,方差小,比乙稳定。
北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案
北师大版八年级数学上册《第六章数据的分析》单元检测卷-带答案核心考点整合考点1 平均数1.下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分90 80 70评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为分.2. 某新能源车销售网点2023 年7月至12月的销售数量如图所示,则这半年来平均每月的销售量为辆(结果保留整数).考点2 中位数3.2024 年4 月24 日是我国第九个“中国航天日”,某校开展了一次航天知识竞赛,共选拔5名选手参加总决赛,他们的决赛成绩(单位:分)分别是92,93,94,90,96.则这5名选手决赛成绩的中位数是.4.已知一组数据:7,6,8,x,3,它们的平均数是6,则这组数据的中位数是( )A.2B.6C.8D.7考点3 众数5.为了解某班学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位;分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80考点4 方差,由公式提供的信息判断:①样本容量为3;②样本中6.某组数据的方差计算公式为s2=2(2−x̅)2+3(3−x̅)2+2(5−x̅)2n位数为3;③样本众数为3;④样本平均数为10₃.其说法正确的( )3A.①②④B.②④C.②③D.③④考点5 极差7.在杭州亚运会的跳水比赛中,对某运动员的第一个动作,8位裁判的打分如下(单位:分):9,8.5,7.5,8.5,8.5, 7.5,7,8,这组数据的极差是.考点6 标准差8.对于一次函数y=3x+4,自变量分别取值x₁,x₂,…,xₙ,若这组数据的方差为5,则对应的函数值为y ₁,y₂,…, yn 这组数据的标准差为.考点7 平均数、众数、中位数的应用9.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20 份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)工作人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求工作人员抽取的问卷所评分数为几分? 与(1)相比,中位数是否发生变化?考点8 方差的应用10.超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s²,i该顾客选购的鸡蛋的质量平均数和方差分别为x₁,s²,则下列结论一定成立的是( )A.x̅<x̅1B.x̅>x̅1C.s2>s12D.s2<s1211.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中投进球的个数统计如下表:(1)求甲、乙两名队员投进球个数的平均数;(2)如果从甲、乙两名队员中选出一人去参加定点投篮比赛,应选哪名队员? 请说明理由.思想方法整合思想1 整体思想12.已知一组数据a₁,a₂,a₃,a₄,a₅的平均数为8,则另一组数据a₁+10,a₂−10,a₃+10,a₄−10,a₅+10的平均数为( )A.6B.8C.10D.12思想2 方程思想13.8名学生在一次数学测试中的成绩(单位:分)为80,82,79,69,74,78,x,81,这组成绩的平均数是77 分,则x的值为( )A.76B.75C.74D.73参考答案1 832 470 3.93分4. B 5. B 6. C 7.28. √5【点拨】因为这组数据x₁,x₂,…,x₀的方差为5所以函数值y₁,y₁,…,yₙ这组数据的方差是:3²×5 =45,所以这组数据的标准差为√45=3√5,【解】(1)由统计图可知,第10个数据是3分,第11个数据是4分,所以中位数为3.5分,由统计图可得平均数为1×1+3×2+6×3+5×4+5×5=3.5(分),所以客户所评分数的平均数和中位数都不低于3.5分20所以该部门不需要整改.>3.55,解得x>4.55(2) 设工作人员抽取的问卷所评分数为x 分,则有 3.5×20+x20+1因为满意度从低到高为1分,2分,3分,4分,5分,共5档.所以工作人员抽取的问卷所评分数为5分所以加入这个数据,客户所评分数按从小到大排列后,第11 个数据是4 分,即加入这个数据后,中位数是4 分所以与(1)相比,中位数发生了变化,由3.5分变成4 分。
北师大版八年级数学上册《第六章平行四边形》章节检测卷-带答案
北师大版八年级数学上册《第六章平行四边形》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共12小题,每小题3分,共36分)1.如图,在ABCD 中,若70B ∠=︒,则D ∠的度数是( )A .20︒B .50︒C .70︒D .110︒2.如图,四边形ABCD 是平行四边形,若300A C ∠+∠=︒,则A ∠的度数是( )A .120︒B .130︒C .140︒D .150︒ 3.如图,在ABCD 中,AE 平分BAD ∠,交CD 边于点E ,AD=6,EC=4,则AB 长为( )A .4B .6C .10D .124.如图,平行四边形ABCD 中,AB =8,BC =10,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD ,BC 于点E ,F ,且OE =3,则四边形EFCD 的周长是( )A .20B .24C .28D .32 5.如图,在ABCD 中,对角线,AC BD 相交于点E ,延长AB 至点F ,连接CF .若CF BD ∥,则下列说法一定正确的是( )A .12AB AF = B .AF CF = C .AED DCF ∠=∠ D .DEC F ∠=∠6.如图,ABC 中AD DE EF BF ===,点M 、N 分别为边AC 、BC 的中点,连接MN 、MD 、NF ,若8CMN S =△,则MNFD S 四边形的值为( )A .8B .12C .16D .187.如图,在ABCD □中,AB=BD ,点E 在BD 上CE CB =.如果70A ∠=︒,那么DCE ∠等于( )A .20°B .25°C .30°D .35°8.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B '处,若1246.∠=∠=︒则B ∠为( )A .64︒B .104︒C .111︒D .121︒9.如图,□ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,12AB BC =连接OE .下列结论:∠∠ADO =30°;∠S □ABCD =AB ·AC ;∠OB =AB ;∠S 四边形OECD =32S △AOD ,其中成立的个数为( )A .1个B .2个C .3个D .4个10.一个多边形截去一个角后,形成另一个多边形的内角和为540°,那么原多边形的边数为( )A .4B .4或5C .4或6D .4或5或611.平行四边形ABCD 中45ACB ∠=︒,AC ,BD 交于点O ,E 是BC 边上一点,连接AE ,过点B 作BF AE ⊥并延长交AC 于点G ,交CD 于点H ,已知AB AE =,AF=3,EF=1,则下列结论:∠2BAE CBH ∠=∠;∠27ABE S =△∠2BE CO =;∠GH CH =中正确的个数是( ).A .1个B .2个C .3个D .4个12.如图,已知∠ABC 的面积为12,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF=4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .2B .3C .4D .5二、填空题(本大题共8小题,每小题3分,共24分)13.如图,在平行四边形ABCD 中110A ∠=︒,CE 平分BCD ∠,则AEC ∠的度数是 .14.如图,小明从点A出发,沿直线前进了5米后向左转30,再沿直线前进5米,又向左转30照这样走下去,他第一次回到出发地A点时,一共走了米.15.如图,小明从点A出发,前进5 m后向右转20°,再前进5 m后又向右转20°,这样一直走下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形(1)小明一共走了米;(2)这个多边形的内角和是度.OP ,则BC的长为;16.如图,ABCD的对角线AC、BD相交于点O,P是AB边上的中点,且217.如图,平行四边形ABCD中,AE是DC边上的高,AE=4,点P、Q分别是AD、EC的中点,DC=6,则PQ的长为.18.如图,在梯形ABCD中,AD//BC,对角线AC∠BD,且AC=12,BD=9,则此梯形的中位线长是19.如图,四边形ABCD 中,AD//BC ,12cm AD =和15cm BC =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止;点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,直线PQ 分原四边形为两个新四边形;则当P ,Q 同时出发 秒后其中一个新四边形为平行四边形.20.四边形ABCD 为平行四边形,已知AB 13BC =6,AC =5,点E 是BC 边上的动点,现将∠ABE 沿AE 折叠,点B ′是点B 的对应点,设CE 长为x ,若点B ′落在∠ADE 内(包括边界),则x 的取值范围为 .三、解答题(本大题共5小题,每小题8分,共40分)21.在平面直角坐标系中,∠ABC 的三个顶点的位置如图所示,现将∠ABC 沿AA′的方向平移,使得点A 移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得∠A′B′C′(其中B′、C′分别是B 、C 的对应点);(2)求∠ABC 的面积;(3)以A 、B 、C 、D 为顶点构造平行四边形,则D 点坐标为____________.22.如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°,…这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?∠的平分线DG交边23.如图,已知四边形ABCD是平行四边形,BCD∠的平分线CF交边AB于F,ADCAB于C,且DG与CF交于点E.=;(1)求证:AF BG∆是直角三角形;(2)求证:EFG∆是等腰直角三角形.(直接写出要添加的条件,不需要证明)(3)在ABCD中,添上一个什么条件使EFG24.如图,在ABCD中AB AD>.(1)用尺规完成以下基本作图:在AB上截取AE,使AE AD∠的平分线交AB于点F,=,连接DE;作BCD交DE 于点G .(保留作图痕迹,不写作法,不下结论)(2)求证:AF BE =.(请补全下面证明过程)证明:∠四边形ABCD 在是平行四边形∠CD AB ∥ AD BC =∠CF 平分BCD ∠∠CD AB ∥∠BFC BCF ∠=∠又∠AE AD = AD BC =∠AE EF BF EF -=-∠AF BE =.25.在ABCD 中3cm 5cm 4cm AB AD BD =,=,=,动点P 从点D 出发,以4cm/s 的速度沿折线DC CB BD --运动,连接AP 交BD 于点O ,设点P 的运动时间为t 秒.(1)当点P 在DC 边上运动时,直接写出DP CP 、的长为DP =________,CP =________.(用含t 代数式表示)(2)在(1)的条件下,当OPD △是等腰三角形时,求t 的值;(3)点Q 与点P 同时出发,且点Q 在AB 边上由点A 向点B 运动,点Q 的速度是1cm/s ,当直线PQ 平分ABCD的面积时,直接写出t 的值.参考答案1.C2.D3.C4.B5.A6.C7.C8.C9.B10.D11.C12.C13.125︒/125度14.6015. 90 288016.4171318.7.519.4或520.613x 3221.(1)略;(2)5.5;(3)(-1,-1),(5,3),(-3,5) 22.(1)小明一共走了120米(2)这个多边形的内角和是3960度 23.(1)略;(2)略;(3)四边形ABCD 为矩形(答案不唯一) 24.(1)略;(2)BCF DCF ∠=∠ BFC DCF ∠=∠ BF BC = AE BF =25.(1)4t ;34t - (2)1s 4 (3)35秒或52秒或3秒。
北师大版八年级上册数学第六章测试题含答案
北师大版八年级上册数学第六章测试题含答案一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数(单位:环)如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.92.期中考试后,班里有2名同学议论他们所在组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7名同学的成绩排在最中间的恰好也是86分.”上面2名同学的话能反映的统计量分别是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为() A.3 B.4 C.5 D.64.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁5.下列说法错误..的是()A.一组数据的平均数、中位数可能相同B.一组数据的中位数可能不唯一C.一组数据的平均数、众数、中位数从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元7.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确...的是()(第7题)A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员得分的平均数D.甲运动员的成绩比乙运动员的成绩稳定8.已知A样本的数据如下:72,73,76,76,77,78,78,78;B样本的数据恰好是A 样本数据每个都加2,则A,B两个样本的下列统计量中对应相同的是()A.平均数B.标准差C.中位数D.众数9.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据a1,a2,a3,0,a4,a5的平均数和中位数分别是()A.a,a3B.a,a2+a32 C.56a,a2+a32 D.56a,a3+a4210.随机抽取某校八年级若干名学生进行体能测试,成绩记为1分、2分、3分、4分四个等级,将抽查结果绘制成如图所示的条形统计图和扇形统计图.根据图中信息,这些学生的平均分是()(第10题) A.2.2分B.2.5分C.2.95分D.3.0分二、填空题(每题3分,共30分)11.数据-3,-6,0,3,6,9的极差是________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是___________________________________.13.如图,它是某商场一天的运动鞋销售量情况统计图,这些运动鞋尺寸的中位数为____________ .(第13题) (第15题)14.如果样本方差s 2=14[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2],那么这个样本的平均数为________,数据个数为________.15.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是________.16.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.17.已知样本数据x 1,x 2,x 3,x 4的方差为2,则4x 1,4x 2,4x 3,4x 4的方差是________. 18.数据3.2,3.4,3.2,x ,3.9,3.7的中位数是3.5,则其众数是________,平均数是________. 19.5个整数从小到大排列,中位数是4.如果这个样本的唯一众数是6,则这5个整数的和最大可能是________.20.某班40名学生的某次数学测验成绩统计如下:若这个班的数学平均成绩是74分,则x=________,y=________.三、解答题(21题8分,24题12分,其余每题10分,共60分)21.某公司欲招聘一位工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表:若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?22.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,如图是他们投标成绩的统计图.(第22题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.23.某乡镇外出务工人员共400名,为了解他们在一个月内的收入情况,随机抽取10名外出务工人员在某月的收入(单位:元)情况为:2 800,2 600,3 200,2 400,3 200,3 800,3 200,3 000,2 500,3 200.(1)写出这10名外出务工人员在这一个月内收入的众数、中位数;(2)求这10名外出务工人员在这一个月内收入的平均数,并根据计算结果估计该乡镇所有外出务工人员在这一个月的总收入.24.某同学进行社会调查,随机调查了某个地区的20个家庭的年收入情况,并绘制了统计图(如图),请你根据统计图给出的信息回答下列问题:(1)完成下表:这20个家庭的年平均收入为________万元;(2)样本中的中位数是________万元,众数是________万元;(3)在平均数、中位数两数中,哪个更能反映这个地区家庭的年收入水平?(第24题)25.甲、乙两人在5次打靶测试中命中的环数如下(单位:环):甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写下表:(2)...(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差________(填“变大”“变小”或“不变”).26.某市甲、乙两个汽车销售公司1月至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1月至10月的销售情况进行分析:①从平均数和方差结合来看;②从折线图上甲、乙两个汽车销售公司销售量的趋势来看.(第26题)答案一、1.C 2.D 3.B 4.D 5.B 6.A7.D8.B9.D10.C二、11.1512.168 cm13.24.5 cm14.2;415.乙16.88.617.3218.3.2;3.519.2120.10;8三、21.解:甲的平均成绩为(87×6+90×4)÷10=88.2(分),乙的平均成绩为(91×6+82×4)÷10=87.4(分).因为88.2>87.4,所以甲将被录取.22.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.23.解:(1)众数是3 200元,中位数是3 100元.(2)平均数是110×(2 400+2 600+2 500+2 800+3 000+3 200×4+3 800)=2 990(元).估计该乡镇所有外出务工人员在这一个月的总收入为2 990×400=1 196 000(元).24.解:(1)1;1;2;3;4;5;3;1;1.6(2)1.2;1.3(3)中位数更能反映这个地区家庭的年收入水平.25.解:(1)8;8;9;3.2(2)教练的理由是甲射击成绩方差较小,成绩较稳定.(3)变小26.解:(1)9;5.2;7;8(2)①因为甲、乙两个汽车销售公司月销售量的平均数相同,而s甲2<s乙2,所以甲汽车销售公司比乙汽车销售公司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。
北师大八年级数学上册:第六章数据的分析单元测试题(含答案)
第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级上册数学第六章测试题(附答案)
一、单选题(共12题;共36分)
1.中央电视台举行中国诗词大会,在某一场的比赛中,五位选手答对的题目数分别是8,6,7,8,9,则关于这组数据的说法不正确的是()
A. 众数是8
B. 中位数是8
C. 极差是3
D. 平均数是8
2.下列特征量不能反映一组数据集中趋势的是()
A. 众数
B. 中位数
C. 方差
D. 平均数
3.某班30名学生的身高情况如下表
关于身高的统计量中,不随x、y的变化而变化的有()
A. 众数,中位数
B. 中位数,方差
C. 平均数,方差
D. 平均数,众数
4.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:
15
由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()
A. 平均数、中位数
B. 众数、中位数
C. 平均数、方差
D. 中位数、方差
5.下列说法正确的是()
A. 掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件
B. 审查书稿中有哪些学科性错误适合用抽样调查法
C. 甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D. 掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为
6.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是()
A. 平均数为30
B. 极差为5
C. 中位数为31
D. 众数为29
7.该校22名男子足球队队员的年龄分布情况如下表:
年龄岁13 14 15 16 17 18
频数人数 2
则这些队员年龄的平均数和中位数分别是(
A. 16岁、15岁
B. 15岁、14岁
C. 14岁、15岁
D. 15岁、15岁
8.下列说法正确的是()
A. 掷一枚硬币,正面一定朝上
B. 某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖
C. 旅客上飞机前的安检应采用抽样调查
D. 方差越大,数据的波动越大
9.下列几个常见统计量中能够反映一组数据波动范围的是()
A. 平均数
B. 中位数
C. 极差
D. 众数
10.如果一组数据a1,a2,…a n的平均数和方差分别是5和3,那么一组新数据a1+2,a2+2,a3+2…,
a n+2平均数和方差是()
A. 5,3
B. 5,4
C. 7,3
D. 7,5
11.一组数据3、5、8、3、4的众数与中位数分别是()
A. 3,8
B. 3,3
C. 3,4
D. 4,3
12.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
时间(小时)5 6 7 8
人数10 15 20 5
则这50名学生这一周在校的平均体育锻炼时间是()
A. 6.2小时
B. 6.4小时
C. 6.5小时
D. 7小时
二、填空题(共5题;共10分)
13.我校八年一班甲、乙两名同学10次投篮命中的平均数均为7,方差=1.45,=2.3,教练想从中选一名成绩较稳定的同学加入校篮球队,那么应选________.
14.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是________分.
15.在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为________ .
16.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是________(填“甲”或“乙”)
17.某学校九(1)班40名同学的期中测试成绩分别为,,,……,.已知+ + +……+ = 4800,y= + + +……+ ,当y取最小值时,的值为________.
三、解答题(共3题;共19分)
18.某农户承包荒山种了44棵苹果树.现在进入第三年收获期.收获时,先随意摘了5棵树上的苹果,称得每棵树摘得的苹果重量如下(单位:千克)
35 35 34 39 37
(1)在这个问题中,总体指的是?个体指的是?样本是?样本容量是?
(2)试根据样本平均数去估计总体情况,你认为该农户可收获苹果大约多少千克?
19.光明中学数学活动小组为了调查居民的用水情况,从某社区的500户家庭中随机抽取了20户家庭的月用水量,结果如下表所示
(1)求这20户家庭月用水量的平均数、众数和中位数;
(2)根据上述数据,试估计该社区的月用水量.
20. 某中学举行“中国梦•校园好声音”歌手大赛,根据初赛成绩,初二和初三各选出5名选手组成初二代表队和初三代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.
四、作图题(共1题;共13分)
21.为践行习总书记提出的“绿水青山就是金山银山”重要思想,我市举办了“重庆市第五届生态文明知识竞赛”.某校从七、八年级中各随机抽取20名同学的竞赛成绩(百分制)进行整理分析(成绩得分用表示,共分成五组:(A. B. , C. , D. , E. ),绘制了如下不完整的统计图表:
根据以上信息,解答下列问题:
(1)补全频数分布直方图________,并写出上表中a, b的值:a=________, b=________;
(2)七年级小明的成绩为93分,八年级小白的成绩为95分,哪位同学的成绩在各自年级抽取的同学中排名更靠前,请说明理由;
(3)七年级共有400人,估计该年级此次竞赛成绩高于平均分91分的有多少人.
五、综合题(共2题;共22分)
22.某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:
根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分.
(1)分别计算三人民主评议的得分;
(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?
23.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
(1)写出表格中a,b,c的值:a=________,b=________,c=________.
(2)如果乙再射击一次,命中7环,那么乙的射击成绩的方差________.(填“变大”“变小”“不变”)(3)教练根据这10次成绩若选择甲参加比赛,教练的理由是什么?
答案
一、单选题
1. D
2. C
3. A
4.B
5. C
6. D
7. D
8. D
9. C 10. C 11. C 12. B
二、填空题
13. 甲14. 89.3 15. 16. 甲17. 120
三、解答题
18. (1)在这个问题中,总体指的是44棵苹果树摘得的苹果重量,个体指的是每棵树摘得的苹果重量,样本是5棵树摘得的苹果重量,样本容量是5.
(2)5棵树上的苹果的平均质量为:(千克),则根据样本平均数去估计总体我认为该农户可收获苹果大约36×44=1584千克;(3)若市场上苹果售价为每千克5元,则该农户的苹果收入将达到多少元?
因为市场上苹果售价为每千克5元,则该农户的苹果收入将达到1584×5=7920元.
19.解:(1)平均数:=1(5吨),
众数:∵用水量为10吨的最多,∴众数是10吨;
中位数:根据第10,11个数据都是15吨,∴中位数是15吨;
(2)∵平均数为15吨,∴该社区的月用水量约为:15×500=7500(吨)。
20.(1)填表:初中平均数为:(75+80++85+85+100)=85(分),众数85(分);高中部中位数80(分).(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.
(3)=[++++]=70
=[++++]=160
因为<,因此,初中代表队选手成绩较为稳定.
四、作图题
21. (1);92;100
(2)解:小明同学的成绩在自己年级抽取的同学中排名更靠前,
理由:∵93>92,说明小明的成绩在本年级中是前10名,95<96,说明小白的成绩在本年级中后10名,
∴小明同学的成绩在自己年级抽取的同学中排名更靠前;
(3)解:∵D.90≤x<95,七年级D组中的成绩分别是:90,92,92,94,
∴七年级此次竞赛成绩高于平均分91分的有:(人)
答:七年级此次竞赛成绩高于平均分91分的有220人.
五、综合题
22. (1)解:由题意可得,
甲民主评议的得分是:200×25%=50(分),乙民主评议的得分是:200×40%=80(分),
丙民主评议的得分是:200×35%=70(分)
(2)解:由题意可得,
甲的成绩是:75× =70.4(分),
乙的成绩是:=77(分),
丙的成绩是:=73.9(分),
∵70.4<73.9<77,
∴乙当选学生会主席
23. (1)7;7.5;4.2(2)变小
(3)解:因为他们的平均数相同,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.。