不等式的证明(一)
不等式的证明方法
不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
基本不等式证明
所以,ab a b 成立 2
当且仅当a b时取“”
分析法——执果索因
证法3:
对于正数 a,b,有
( a b)2 0 a b 2 ab 0
a b 2 ab
a b ab 2
综合法——由因索果
如果 a,b 是正数,那么 ab a b
2
当且仅当a b时取" " 号
问题 3、当a 0, b 0时 ,这个不等式仍然成立吗?
把不等式 ab a b (a 0,b 0) 称为基本不等式。 2
注意 (1)不等式成立条件(2)等号成立条件
问题4: 你能给出基本不等式几何解释吗?
ab
a
b
“半径不小于半弦”
回顾反思
1、今天这节课学了哪些主要知识? 2、在解决问题时用了哪些方法?
问题1、如何合理的表示物体的质量?Βιβλιοθήκη b两个正数a、b ,我们把
称为a、b
2
的算术平均数, ab 称为几何平均数。
问题2、两个正数a、b的算术平均数与几何平均数 之间具有怎样的大小关系呢?
猜想:ab a b(a 0,b 0) 2
问题3:如何证明 ab a b(a 0,b 0) 2
不等式证明的基本方法 比较法(作差、作商法)
基本不等式的证明(一)
一、创设问题情景:
❖ 把一个物体放在天平的一个盘子上,在另一个盘子 上放砝码使天平平衡,称得物体的质量为a。如果 天平制造得不精确,天平的两臂长略有不同(其他 因素不计),那么a并非物体的实际质量。不过, 我们可以作第二次测量:把物体调换到天平的另一 个盘上,此时称得物体的质量为b。
拓展延伸
这个基本不等式可否推广到“n个非负数”的情 形,有兴趣的同学可作进一步的研究,也可 查阅有关资料。
4 基本不等式的证明(1)
4、基本不等式的证明(1)目标:(,0)2a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。
过程:一、问题情境把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为a 。
如果天平制造得不精确,天平的两臂长略有不同(其他因素不计),那么a 并非物体的实际质量。
不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。
那么如何合理的表示物体的质量呢?把两次称得的物体的质量“平均”一下,以2a b A +=表示物体的质量。
这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b ==,有2,M ab M ==,0a b >时,2a b +叫,a b,a b 的几何平均数 2a b +二、建构一般,判断两数的大小可采用“比较法”:02a b+-=≥ 2a b +≤(当且仅当a b =时取等号) 说明:当0a=或0b =时,以上不等式仍成立。
从而有 2a b +≤(0,0)a b ≥≥(称之“基本不等式”)当且仅当a b =时取等号。
2a b +≤的几何解释: 如图,,2a b OC CD OC CD +≥==三、运用例1 设,a b 为正数,证明:1(1)2(2)2b a a a ba +≥+≥ 注意:基本不等式的变形应用 2,2ab a b ab +⎛⎫≤+≤ ⎪⎝⎭例2 证明:22(1)2a b ab +≥ 此不等式以后可直接使用1(2)1(1)1x x x +≥>-+ 4(3)4(0)a a a +≤-< 22≥ 22>例3 已知,0,1a b a b >+=,求证:123a b+≥+四、小结五、作业 反馈32 书P91 习题1,2,3。
高等数学课程中的不等式的证明
高等数学课程中的不等式的证明不等式是高等数学教学内容的重要组成部分,是高等数学中经常遇到而解决起来又比较困难的问题之一。
下面通过高等数学的一些原理和方法,分享几种不等式证明的常用的方法。
一、利用拉格朗日中值定理证明不等式拉格朗日中值定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内至少存在一点,使得。
二、利用函数的单调性证明不等式函数单调性的判定定理:设函数y=f(x)在区间[a,b]上连续,在(a,b)内可导,那么:(1)如果f?(x)>0,则f(x)在区间[a,b]上单调增加;(2)f?(x)例2.证明:X>0时,1+>证明:令f(x)=,则f?(x)==,因为f(x)在[0,+oo)上连续,在(0,+oo)内f?(x)>0,因此f(x)在[O,+oo)上单调增加。
从而当x>O时,f(x)>f(O)。
由于f(O)=O,故f(x)>f(O)=O。
即>0,亦即1+>。
注:运用函数的单调性证明不等式,关键在于合理地利用题设条件,构造出相应的辅助函数f(x),将原问题等价代换,根据导数f?(x)的符号判定函数f(x)在所给区间上的单调性,从而导出所证不等式。
三、利用函数的凹凸性证明不等式函数凹凸性的定义:设f(x)在[a,b]上连续,若对[a,b]中任意两点x1,x2,恒有f((x1+x2)/2)2f(x1)+f(x2)/2,则称f(x)在[a,b]上是凸函数;若恒有f((x1+x2)/2)sf(x1)+f(x2)/2,则称f(x)在[a,b]上是凹函数。
函数凹凸性的判定定理:设f(x)在[a,b]上连续,在区间(a,b)内有二阶导数,(1)如果在区间(a,b)内,(x)>0,那么曲线y=f(x)在[a,b]内是凹的;(2)如果在区间(a,b)内,(x)例3.证明:a>0,b>0且a#b,n>1时,证明:令f(x)=xn,x?(0,+oo),则f?(x)=nxn-1,=n(n-1)xn-2,当n>1时,对任意的x?(0,+oo),都有>0。
苏教版 高中数学必修第一册 基本不等式的证明 课件1
二定:①和a+b一定时,由
2
a+b
a+b
ab≤ 2 变形得ab≤
,即积
2
2
a+b
ab
___有最大值
;
2
5
a+b
②积ab一定时,由 ab≤ 2 变形得a+b≥2 ab,即和 a+b 有
最小值2 ab.
三相等:取等号的条件都是当且仅当a=b时,等号成立.
9a
a 2 8a
所以a b a
(a 1)
a 1
a 1
令t a 1 0, 则a t 1
a 2 8a (t 1)2 8(t 1) t 2 10t 9 t 9 10 2 t 9 10 16
y
t
t
a 1
t
≥2
+2
16
+2
−2=6
• 规律与方法
a+b
1.两个不等式 a +b ≥2ab 与 2 ≥ ab都是带有等号的不等式,对于“当
2
2
且仅当…时,
取等号”这句话的含义要有正确的理解.一方面:
当 a=b 时,
a+b
a+b
2 = ab;另一方面:当 2 = ab时,也有 a=b.
2. 在利用基本不等式证明的过程中,常需要把数、式合理地拆
1 2
“和定积最大”
s
a=b
大
4
ab有最____值______(当且仅当______时取“=”).
一正二定三相等
例3、已知a 0, b 0,9a b ab 0, 求a b的最小值
高中不等式证明例题(一题多解)
多种方法证明高中不等式例1证明不等式n n2131211<++++(n ∈N *)证法一:(1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立; (2)假设n =k (k ≥1)时,不等式成立,即1+k13121+++ <2k ,,1211)1(11)1(21121131211+=++++<+++=++<+++++k k k k k k k k k k 则∴当n =k +1时,不等式成立.综合(1)、(2)得:当n ∈N *时,都有1+n13121+++ <2n .另从k 到k +1时的证明还有下列证法:,1111212212:.12112,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=+++>++=-++<++∴>++<++∴>+-=+++-=+--+k k k kk k k k k k k k k k k k k k k k k k k 又如.12112+<++∴k k k证法二:对任意k ∈N *,都有:.2)1(2)23(2)12(22131211),1(21221n n n n k k k k k k k =--++-+-+<++++--=-+<+=因此证法三:设f (n )=),131211(2nn ++++-那么对任意k ∈N*都有:1)1(])1(2)1[(11]1)1(2)1(2[1111)1(2)()1(2>+-+=++-+⋅+=-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f∴f (k +1)>f (k )因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0, ∴.2131211n n <++++例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值. 解法一:由于a 的值为正数,将已知不等式两边平方,得: x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ),①∴x ,y >0,∴x +y ≥2xy ,②当且仅当x =y 时,②中有等号成立. 比较①、②得a 的最小值满足a 2-1=1, ∴a 2=2,a =2 (因a >0),∴a 的最小值是2. 解法二:设yx xyy x xy y x y x y x yx yx u ++=+++=++=++=212)(2. ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立), ∴y x xy +2≤1,yx xy+2的最大值是1. 从而可知,u 的最大值为211=+, 又由已知,得a ≥u ,∴a 的最小值为2. 解法三:∵y >0, ∴原不等式可化为yx+1≤a 1+yx, 设y x =tan θ,θ∈(0,2π). ∴tan θ+1≤a 1tan 2+θ;即tan θ+1≤a se c θ ∴a ≥sin θ+cos θ=2sin(θ+4π),③又∵sin(θ+4π)的最大值为1(此时θ=4π). 由③式可知a 的最小值为2.例3 已知a >0,b >0,且a +b =1.求证:(a +a 1)(b +b 1)≥425证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法) 设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立.证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π) .425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα例4.已知a ,b ,c 为正实数,a +b +c =1. 求证:(1)a 2+b 2+c 2≥31(2)232323+++++c b a ≤6证明:(1)证法一:a 2+b 2+c 2-31=31(3a 2+3b 2+3c 2-1)=31[3a 2+3b 2+3c 2-(a +b +c )2]=31[3a 2+3b 2+3c 2-a 2-b 2-c 2-2ab -2ac -2bc ]=31[(a -b )2+(b -c )2+(c -a )2]≥0 ∴a 2+b 2+c 2≥31证法二:∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ≤a 2+b 2+c 2+a 2+b 2+a 2+c 2+b 2+c 2 ∴3(a 2+b 2+c 2)≥(a +b +c )2=1 ∴a 2+b 2+c 2≥31证法三:∵33222c b a c b a ++≥++∴a 2+b 2+c 2≥3cb a ++ ∴a 2+b 2+c 2≥31证法四:设a =31+α,b =31+β,c =31+γ. ∵a +b +c =1,∴α+β+γ=0∴a 2+b 2+c 2=(31+α)2+(31+β)2+(31+γ)2=31+32 (α+β+γ)+α2+β2+γ2=31+α2+β2+γ2≥31 ∴a 2+b 2+c 2≥31629)(323232323323,23323,21231)23(23:)2(=+++<+++++∴+<++<+++<⨯+=+c b a c b a c c b b a a a 同理证法一 ∴原不等式成立. 证法二:3)23()23()23(3232323+++++≤+++++c b a c b a336)(3=+++=c b a∴232323+++++c b a ≤33<6 ∴原不等式成立.例5.已知x ,y ,z ∈R ,且x +y +z =1,x 2+y 2+z 2=21,证明:x ,y ,z ∈[0,32]证法一:由x +y +z =1,x 2+y 2+z 2=21,得x 2+y 2+(1-x -y )2=21,整理成关于y 的一元二次方程得:2y 2-2(1-x )y +2x 2-2x +21=0,∵y ∈R ,故Δ≥0∴4(1-x )2-4×2(2x 2-2x +21)≥0,得0≤x ≤32,∴x ∈[0,32] 同理可得y ,z ∈[0,32]证法二:设x =31+x ′,y =31+y ′,z =31+z ′,则x ′+y ′+z ′=0, 于是21=(31+x ′)2+(31+y ′)2+(31+z ′)2 =31+x ′2+y ′2+z ′2+32 (x ′+y ′+z ′)=31+x ′2+y ′2+z ′2≥31+x ′2+2)(2z y '+'=31+23x ′2故x ′2≤91,x ′∈[-31,31],x ∈[0,32],同理y ,z ∈[0,32]证法三:设x 、y 、z 三数中若有负数,不妨设x <0,则x 2>0,21=x 2+y 2+z 2≥x 2+21232)1(2)(2222+-=+-=+x x x x z y >21,矛盾.x 、y 、z 三数中若有最大者大于32,不妨设x >32,则21=x 2+y 2+z 2≥x 2+2)(2z y +=x 2+2)1(2x -=23x 2-x +21=23x (x -32)+21>21;矛盾. 故x 、y 、z ∈[0,32]例6 .证明下列不等式:(1)若x ,y ,z ∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz , 则zyx y x z x z y +++++≥2(z y x 111++))()()()()()(222)(4)(2))(()(2)]()()([)(2)(:)2()(20)()()()2()2()2()(22:)1.(62222222222223333332222222222222222222222222222222222≥-+-+-+-+-+-⇔++≥+++++⇔+++++≥+++++++⇔++≥+++++⋅⇔++≥+++++++≥+++++∴≥-+-+-=-++-++-+=++-+++++y x z x z y z y x y x xy x z zx z y yz xyz z xy yz x xy y x zx x z yz z y xyz z xy yz x x z z y y x xy y x zx x z yz z y z y x zx yz xy y x xy x z zx z y yz xyz zx yz xy z yx y x z x z y z y x zx yz xy z c b a y b a c x a c b x a c z c a z c b y b c y b a x a b zx x a cz c a yz z c b y b c xy y b a x a b zx yz xy z cb a y b ac x c b 所证不等式等介于证明证明∵上式显然成立,∴原不等式得证.例7.已知i ,m 、n 是正整数,且1<i ≤m <n . (1)证明:n i A i m <m i A i n ; (2)证明:(1+m )n >(1+n )m7.证明:(1)对于1<i ≤m ,且A i m =m ·…·(m -i +1),n i n n n n n nm i m m m m m m i i m i i m 11A ,11A +-⋅⋅-⋅=+-⋅⋅-⋅= 同理, 由于m <n ,对于整数k =1,2,…,i -1,有mkm n k n ->-, 所以i m i i n i i i mi i n n m mn A A ,A A >>即(2)由二项式定理有:(1+m )n =1+C 1n m +C 2n m 2+…+C nn m n ,(1+n )m =1+C 1m n +C 2m n 2+…+C m m n m ,由(1)知m iA in>n iA i m (1<i ≤m ),而C i m=!A C ,!A i i i ni n i m =∴m i C i n >n i C i m (1<m <n )∴m 0C 0n =n 0C 0n =1,m C 1n =n C 1m =m ·n ,m 2C 2n >n 2C 2m ,…, m m C m n >n m C m m ,m m +1C 1+m n >0,…,m n C n n >0, ∴1+C 1n m +C 2n m 2+…+C n n m n >1+C 1m n +C 2m n 2+…+C m m n m ,即(1+m )n >(1+n )m 成立.例8.若a >0,b >0,a 3+b 3=2,求证:a +b ≤2,ab ≤1. 证法一:因a >0,b >0,a 3+b 3=2,所以 (a +b )3-23=a 3+b 3+3a 2b +3ab 2-8=3a 2b +3ab 2-6=3[ab (a +b )-2]=3[ab (a +b )-(a 3+b 3)]=-3(a +b )(a -b )2≤0. 即(a +b )3≤23,又a +b >0,所以a +b ≤2,因为2ab ≤a +b ≤2, 所以ab ≤1.证法二:设a 、b 为方程x 2-mx +n =0的两根,则⎩⎨⎧=+=ab n ba m ,因为a >0,b >0,所以m >0,n >0,且Δ=m 2-4n ≥0 ① 因为2=a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]=m (m 2-3n )所以n =mm 3232-② 将②代入①得m 2-4(mm 3232-)≥0, 即mm 383+-≥0,所以-m 3+8≥0,即m ≤2,所以a +b ≤2,由2≥m 得4≥m 2,又m 2≥4n ,所以4≥4n , 即n ≤1,所以ab ≤1.证法三:因a >0,b >0,a 3+b 3=2,所以2=a 3+b 3=(a +b )(a 2+b 2-ab )≥(a +b )(2ab -ab )=ab (a +b )于是有6≥3ab (a +b ),从而8≥3ab (a +b )+2=3a 2b +3ab 2+a 3+b 3=(a +b )3,所以a +b ≤2,(下略)证法四:因为333)2(2b a b a +-+8))((38]2444)[(22222b a b a ab b a ab b a b a -+=----++=≥0, 所以对任意非负实数a 、b ,有233b a +≥3)2(b a +因为a >0,b >0,a 3+b 3=2,所以1=233b a +≥3)2(b a +,∴2b a +≤1,即a +b ≤2,(以下略)证法五:假设a +b >2,则a 3+b 3=(a +b )(a 2-ab +b 2)=(a +b )[(a +b )2-3ab ]>(a +b )ab >2ab ,所以ab <1, 又a 3+b 3=(a +b )[a 2-ab +b 2]=(a +b )[(a +b )2-3ab ]>2(22-3ab )因为a 3+b 3=2,所以2>2(4-3ab ),因此ab >1,前后矛盾,故a +b ≤2(以下略)。
不等式证明基本方法
不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
不等式证明方法
不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。
不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。
一、数学归纳法。
数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。
在不等式证明中,我们可以利用数学归纳法证明不等式的成立。
具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。
通过数学归纳法,我们可以比较简单地证明一些不等式的成立。
二、换元法。
换元法是不等式证明中常用的一种方法。
当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。
换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。
三、分析法。
分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。
在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。
四、综合利用不等式性质。
不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。
具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。
五、几何法。
在不等式证明中,几何法也是一种常用的证明方法。
通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。
在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。
六、数学推理法。
数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。
在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。
不等式证明方法大全
不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。
常用的推导法有数学归纳法、递推法、代入法等。
其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。
(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。
(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。
通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。
2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。
常用的数学运算包括加法、减法、乘法、除法等。
在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。
3.几何法:几何法是指通过将不等式转化为几何问题进行证明。
几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。
通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。
4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。
这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。
5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。
通过逐个讨论每种情况,可以得出要证明的不等式的证明。
6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。
反证法常用于证明不等式的唯一性和存在性。
7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。
通过不断进行递推,可以逐步证明不等式的成立。
以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。
在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。
不等式证明几种方法
同理: ,
以上三式相乘:(1a)a•(1b)b•(1c)c≤ 与①矛盾
∴原式成立
例五、已知a+b+c> 0,ab+bc+ca> 0,abc> 0,求证:a,b,c> 0
证:设a< 0,∵abc> 0,∴bc< 0
又由a+b+c> 0,则b+c=a> 0
∴ab+bc+ca=a(b+c) +bc< 0与题设矛盾
8.若x,y> 0,且x+y>2,则 和 中至少有一个小于2
一、裂项放缩
例1.(1)求 的值; (2)求证: .
解析:(1)因为 ,所以
(2)因为 ,所以
奇巧积累
:(1) (2)
(3)
(4)
(5) (6)
(7) (8)
(9)
(10) (11)
(11)
(12)
(13)
(14) (15)
(15)
例2.(1)求证:
分析:当水的流速相同时,水管的流量取决于水管横截面面积的大小。设截面的周长为 பைடு நூலகம்则周长为 的圆的半径为 ,截面积为 ;周长为 的正方形为 ,截面积为 。所以本题只需证明 。
证明:设截面的周长为 ,则截面是圆的水管的截面面积为 ,截面是正方形的水管的截面面积为 。只需证明: 。
为了证明上式成立,只需证明 。
例3、已知a,b,m都是正数,并且 求证: (1)
证法一要证(1),只需证 (2)
要证(2),只需证 (3)
要证(3),只需证 (4)
已知(4)成立,所以(1)成立。
不等式证明的几种方法
不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。
例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。
2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。
该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。
例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。
由此可知,不等式不成立。
3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。
通过反证法证明。
例如,要证明n^2<2^n,首先当n=1时,不等式成立。
假设当n=k时,不等式也成立,即k^2<2^k成立。
我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。
通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。
4.几何法几何法可以通过将不等式转化为几何问题来证明。
例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。
通过建立几何模型,可以直观地看出不等式成立的原因。
例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。
5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。
例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。
以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。
在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。
不等式的性质证明
不等式的性质证明不等式是数学中常见的概念,它描述了两个数、两个算式或两个函数之间的大小关系。
在数学研究和实际问题中,不等式的性质具有重要的意义。
本文将深入探讨不等式的基本性质,并进行相应的证明。
一、不等式的基本性质1. 传递性:对于任意的实数a、b、c,若a < b,b < c,则有a < c。
即如果一个数小于另一个数,而另一个数又小于另一个数,那么第一个数一定小于第三个数。
证明:设a < b,b < c,用反证法。
假设a ≥ c,那么由于a < b,根据传递性得知b ≥ c,与b < c矛盾。
故假设不成立,得证。
2. 加法性:对于任意的实数a、b、c,若a < b,则有a + c < b + c。
即两个不等式的同侧同时加上一个相同的数,不等号的方向不变。
证明:设a < b,用反证法。
假设a + c ≥ b + c,那么由于a < b,根据传递性得知a + c < b + c,与假设矛盾。
故假设不成立,得证。
3. 乘法性:对于任意的实数a、b和正数c,若a < b且c > 0,则有ac < bc。
即两个不等式的同侧同时乘上一个正数,不等号的方向不变;若c < 0,则有ac > bc,即两个不等式的同侧同时乘上一个负数,不等号的方向反向。
证明:设a < b,用反证法。
假设ac ≥ bc,若c > 0,则由于a < b,根据乘法性得知ac < bc,与假设矛盾;若c < 0,则有ac > bc,同样与假设矛盾。
故假设不成立,得证。
二、不等式中的常见定理及证明1. 加法定理:对于任意的实数a,b和c,若a < b,则有a + c < b + c。
证明:设a < b,令d = b - a,根据传递性得知0 < d。
由于c > 0,根据乘法性可得0 < c × d。
基本不等式的证明
基本不等式的证明1.代数法定理1:如果,a b R ∈,那么222a b ab +≥,当且仅当a b =时,等号成立。
证明: ()2222a b ab a b +-=- 当a b ≠时()2a b ->0当a b =时()2a b -=0,所以 ()2a b -≥0,即 22a b +≥2ab.定理2:如果,0a b >,那么2a b +≥a b =时,等号成立。
证明: 22+≥∴ a b +≥即2a b +≥显然,当且仅当a b =时,2a b +这里,a b 均为正数,我们就称2a b +为,a b ,a b 的几何平均数,因而,这一定理又可叙述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。
2.几何面积法如图,在正方形中有四个全等的直角三角形。
设直角三角形的两条直角边长为、,那么正方形的边长为。
这样,4个直角三角形的面积的和是,正方形的面积为。
由于4个直角三角形的面积小于正方形的面积,所以:。
当直角三角形变为等腰直角三角形,即时,正方形缩为一个点,这时有。
得到结论:如果,那么(当且仅当a b =时,等号成立) 特别的,如果,,我们用、分别代替、,可得: 如果,,则,(当且仅当a b =时,等号成立).通常我们把上式写作:如果,,,(当且仅当a b =时,等号成立)最值定理:当两个正数的和一定时,其乘积有最大值;当两个正数的乘积一定时。
其和有最 小值。
现给出这一定理的一种几何解释(图1).以a b +长的线段为直径作圆,在直径AB 上取点C ,使AC=a ,CB=b .过点C 作垂直于直径AB 的弦'DD ,连接AD 、DB ,易证,那么即CD =这个圆的半径为2a b +,显然,它大于或等于CD ,即 2a b +≥ 其中当且仅当点C 与圆心重合,即a b =时,等号成立. 如果把2a b +看作是正数,a b,a b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.例1. 如果,a b R +∈,试比较2a b +211a b +的大小 解: ,a b R +∈, ∴b a 11+≥ab 12即211a b+≤又22⎪⎭⎫ ⎝⎛+b a =4222ab b a ++≤42222b a b a +++=222b a + ∴2a b +≤a b =时,等号成立而由定理2≤2a b +≥2a b +≥≥211a b+(当且仅当a b =时,等号成立)。
证明不等式的基本方法
恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2
不等式证明19个典型例题
不等式证明19个典型例题典型例题一例1 假设10<<x ,证明)1(log )1(log x x a a +>-〔0>a 且1≠a 〕.分析1 用作差法来证明.需分为1>a 和10<<a 两种情况,去掉绝对值符号,然后比拟法证明.解法1 〔1〕当1>a 时,因为 11,110>+<-<x x ,所以 )1(log )1(log x x a a +--)1(log )1(log x x a a +---=0)1(log 2>--=x a .〔2〕当10<<a 时,因为 11,110>+<-<x x所以 )1(log )1(log x x a a +--)1(log )1(log x x a a ++-=0)1(log 2>-=x a .综合〔1〕〔2〕知)1(log )1(log x x a a +>-.分析2 直接作差,然后用对数的性质来去绝对值符号.解法2 作差比拟法.因为 )1(log )1(log x x a a +--ax a x lg )1lg(lg )1lg(+--= [])1lg()1lg(lg 1x x a+--= [])1lg()1lg(lg 1x x a+---= 0)1lg(lg 12>--=x a ,所以)1(log )1(log x x a a +>-.说明:解法一用分类相当于增设了条件,便于在变形中脱去绝对值符号;解法二用对数性质〔换底公式〕也能到达同样的目的,且不必分而治之,其解法自然简捷、明快.典型例题二例2 设0>>b a ,求证:.ab b a b a b a >分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a ba b a ---=⋅=)( ∵0>>b a ,∴.0,1>->b a ba ∴1)(>-b a b a . ∴a b ba ba b a .1> 又∵0>ab b a ,∴.a b b a b a b a >.说明:此题考察不等式的证明方法——比拟法(作商比拟法).作商比拟法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小. 典型例题三例3 对于任意实数a 、b ,求证444()22a b a b ++≥〔当且仅当a b =时取等号〕 分析 这个题假设使用比拟法来证明,将会很麻烦,因为,所要证明的不等式中有4()2a b +,展开后很复杂。
不等式的证明方法
不等式的证明方法不等式的性质和基本不等式是证明不等式的理论依据,但是由于不等式的形式多样,因此不等式的证明方法也很多。
我总结了一些不等式的证明方法 ,下面举例说明。
一. 比较法例1 求证:223x +>x .证明:因为()222155232320222x x x x x ⎛⎫+-=-+=-+≥> ⎪⎝⎭所以 223x +>x .证明例1的方法称为作差比较法。
用差与“0”比较大小。
例2 已知a >b>c>0,求证:()3a b c ab cab c abc ++>。
证明:因为()2223333a b c b a c c a b a b ca b c a b c abcabc ------++=333333a b a cb a b cc a c babc------+++=333a b a c b c a a b b c c ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且a >b>0, 所以a -b>0,1a b >,故31a b a b -⎛⎫> ⎪⎝⎭。
同理可证31a c a c -⎛⎫> ⎪⎝⎭,31b cb c -⎛⎫> ⎪⎝⎭。
所以3331a b a c b c a a b b c c ---⎛⎫⎛⎫⎛⎫> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而()3a b ca b ca b c a bc ++>。
证明例2的方法称为求商比较法。
用商与“1”比较大小。
二.反证法 例3是无理数。
=q p,p ≠0,且p,q 互素,则所以, 222p q = ①故2q 是偶数,q 也必是偶数。
不妨设q=2k,代入①式,则有2224pk =,即222p k =,所以,p 也是偶数.P 和q 都是偶数,它们有公约数2,这与p,q 互素相矛盾。
不是有理数,而是无理数。
证明例3的方法称为反证法。
当命题过于简单,或正面情况非常复杂时,一般用反证法。
例谈证明不等式的四种常用措施
=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
选修4-5第二讲-证明不等式的基本方法-课件
(a b)(a b)2
a,b 0,a b 0
又a b(a b)2 0
故(a b)(a b)2 0即(a3 b3 ) (a2b ab2 ) 0
判断一个数或式子与0的大小关系.作商比较法的实质是把两个数或式 子的大小判断问题转化为判断一个数或式子与1的大小关系. 2.作商比较法适用于哪些类型的问题?
提示:主要适用于积、商、幂、对数、根式等形式的不等式证明.
3.
已知
a
1,a
2∈(
0
,
1
)
,
M
=a
1a
2,N
=a
1+a
+
2
1,
则M
,N
的
大
小关系是________.
m(b a) 0 即 a m a 0 a m a
b(b m)
bm b
bm b
(2)作商比较法
例3 已知a,b是正数,求证aabb abba ,当且仅当a b时,等号成立.
证明:
aabb abba
aabbba
a
ab
b
根据要证的不等式的特点(交换a, b的位置, 不等式不变)
为_a_b___1或__a_b 2
6.若0
a
b
1, P
log 1
2
a
b 2
,Q
1 2
(log 1
2
a
log 1
2
b), M
log 1 (a
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若x为锐角,则
sin x<x<tanx
sin x<tanx sin x>tanx
线性规划简述
1.含义:简言之,图象法解二元不等式 2.步骤:一面二线三找点 来先去后为最值
解析几何的基础
形
数
点
坐标
线
方程
面
不等式
二元不等式与平面域
1.直线对坐标平面的划分 (二元一次不等式表示平面域)
直线 Ax By C 0 ,将坐标平面划分成两个半平面 Ax By C 0和 Ax By C 0 ,位于同一半平面内的点 其坐标必适合同一个不等式 (同侧同号,异侧异号)
b
不妨设a b 0,则 a 1, a b 0 b
故
a
ab
1,当且仅当a
b时, 等号成立
b
所以,原不等式成立
作业:
1.课本P: 75 B组 Ex1①② 2.(2010年湖北)设 a>0,b>0,称a2abb 为a,b的调和平均数
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法1:如图,易得
y=x y = tanx
y = sinx
(2)三角混合不等式: 若 0<x< ,则 sinx<x<tanx
2
法2:如图单位圆O中,角x的终边为OT,易得
S⊿APO<S扇形APO<S⊿ATO
而 S⊿APO= AO • PM sin x
注1.若2个不等式需进行减(除)运算,一般是转换成加(乘)
注2.若变量间具有约束关系时,等号没有可加(乘)性
3.重要的(经典)不等式
⑩ □2+○2≥±2□○ 当且仅当○=□时等号成立
11 均值不等式: 若□,○∈R+,则
2
1 □
+
1 ○
□○
≤
□
+
2
○
□2+○2 2
当且仅当□=○时等号成立
3 111 abc
2
2
F
ab
1
2
1
ab
D
a
bB
A
OC
如图,在RT⊿OFCa中2 ,bO2F= a b
2
2
ab 1 2F1
ab
OOCB=OBB-CBC= a b b a b
2
2
A
OCB
由勾股定理得
CF 2 OF 2 OC2 ( a b)2 ( a b)2 a2 b2
2
2
2
所以 CF= a2 b2 a b ab 2
注:直线划分坐标面 先画直线定边线 有等为实反为虚 特点验证确定面 左小右大 A要正 上大下小 B要正
2.类似直线,圆锥曲线也将坐标平面划分成两个区域
常见的几类目标函数 1.直线型:
①直线平移型:z ax by (a,b为常数,截距……)
②直线旋转型:z y y0 x x0
(x0 ,y0为常数,斜率……)
单调性法
注:对数不等式要注意Domain
解三角不等式
(一)基础型——背诵法
1.若 sin x 0 ,则 x 2.若 cos x 0 ,则 x 3.若 tan x 0 ,则 x 4.若 sin x cos x ,则 x 5.若 sin x tan x ,则 x
(二)其他型——图象法
数形结合周期性 上大下小中方程
a2 b2 b
3.S与S1的大小关系是…?
G
F
C
S≥Sl
A
aH E
即 a2 b2 2ab B
法2:课本P:98 探究
如图,AB为圆O的直径,弦DE⊥AB,OF⊥AB, CG⊥OD
令AC=a,CB=b(不妨设a>b),则易得 在RT⊿OFC中,CF>OF 在RT⊿OCD中,OD>CD
A 在RT⊿CDG中,CD>DG 故 CF>OF=OD>CD>DG
G
B
A
OC
故 CF>OF=OD>CD>DG
E
又因 故
CF=
a2 b2
2
aa22bb22 2
2
aO2aF22=bbOa2D2=2
ab
baa22ab2b2a1ab222C2baDb1b=a2a1abb2b1
a
b 2
2
ab ab
11a21b1
DaG2b=
11 ab
1 a
2
1 b
(当且仅当a=b时,取“a=”b号)
称 S1 a1bn a2bn1 L anb1 为反序和
称 S2 a1b1 a2b2 L anbn 为顺序和
反序和≤乱序和≤顺序和
当且仅当a1 a2 an或b1 b2 bn时,取""
解不等式概述
整式不等式
1.题型:
分式不等式 不等式组
绝对值不等式
一元不等式 根式不等式
3 abc a b c 3
3 a3 b3 c3 3
当且仅当a=b=c时,“=”成立
12 三角形(绝对值)不等式 |□|-|○|≤|□±○|≤|□|+|○|
13 柯西不等式 i:一般式
(a21+a22+…+an2)(b21+b22+…+b2n)≥(a1b1+a2b2+…+anbn)2
当且仅当 bi=0 或存在一个数 k,使 ai=kbi 时等号成立
(一)基础型——背诵法
sin x cos x
1.若 sin x 2.若 cos x
3.若 tan x
4.若 sin x 5.若 sin x
0 ,则 x
sin x>cosx
0 ,则 x
0 ,则 x
sin x<cosx
cos x ,则 x
tan x ,则 x
sin x>tanx sin x<tanx
1.单绝对值号+右端常数型:大于号要中间,小于号要两头 2.单绝对值号+右端变量型:数法形法要灵活 3.双绝对值号型:
①零点分段法 ②函数图象法 ③绝对值几何意义法
解根式不等式
1.数法:陷阱有三:①正值可方②Domain③“=”的取舍
2.形法:
解指对不等式
形法 数法
巧构函数是关键 上大下小中方程
同底法 取对数法 其他法
解一元二次不等式
1.图象(标根)法:
2.公式(口诀)法:
口诀1:大于号要两头 口诀2:一正二方三大头
解分式不等式
1.“左右”去分母法
小于号要中间 无根大全小为空
2.“上下”去分母法
解不等式组
数形结合“或”字型 书写格式整体观
解连不等式
通法:“截”成不等式组 特法:左右是常数时,可变形成高次不等式
解绝对值不等式
S S S S 则易得 OA1B2
OA2 B1
OA1B1
OA2 B2
而
SOA1B1
a1b1sin 2
O
S OA2 B2
a2b2 sin 2
O
SOA1B2
a1b2 sin 2
O
S OA2 B1
a2b1sin 2
O
B2 B1
O
A1
A2
即 a1b2a2b1 a1b1a2b2
3个以上的,逐步调整法证之……
=(x+y+z)(x²+y²+z²-xy-yz-xz)
=(x+y+z) × (x-y)2 +(y-z)2 +(z-x)2 ≥0 2
所以x³+y³+z³≥3xyz
(7)已知a,b是正数,求证 : aabb abba
(当且仅当a b时等号成立)
证明:因
aabb abba
aa b b ba a ab
(6)已知x>0,y>0,z>0,证明:x³+y³+z³≥3xyz
补充1:类似于x2+y2≥2xy ,有x³+y³+z³≥3xyz
补充2:
(1) (x±y)³= x³±3x²y+3xy²±y³
(2) a³±b³= (a±b)(a² ab+b²) (3) x²+y²+z²-xy-yz-xz= (x-y)2 +(y-z)2 +(z-x)2
四个式子中有一个为常数,且□与○能够相等,则其他
三个式子有最值
注1:此法非通法 多元有优势 小作抓“等”字 大作“正常等”
注2:书写格式 三因一果 注3:常见题型 明考暗考
配凑连用 嵌积重点
§159 不等式的证明(一)
一、不等式常用的证明方法
1.形法 2.数法
二、形法
1.函数图象 2.线性规划 3.其他图象……
2
(6)已知x>0,y>0,z>0,证明:x³+y³+z³≥3xyz
证明:已知x>0,y>0,z>0
而 x³+y³+z³-3xyz =(x³+3x²y+3xy²+y³)+z³-3x²y-3xy²-3xyz =[(x+y)³+z³]-3xy(x+y+z) =(x+y+z)[(x+y)²-(x+y)z+z²]-3xy(x+y+z)
G
a
即
2
DD2GGb2CCOOaDDDD222
baaaabbabbb 22
=
111 aaa
112
111 bbb
A
O
CB
如图,AB为圆O的直径,弦DE⊥AB,OF⊥AB, CG⊥OD
令AC=a,CB=b(不妨设a>b),则易得
F
D
在RT⊿OFC中,CF>OF 在RT⊿OCD中,OD>CD 在RT⊿CDG中,CD>DG