高中数学全国卷数列专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列专题复习(1)
一、等差数列和等比数列的性质
1、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = (A )
172 (B )19
2
(C )10 (D )12 2、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = 3、设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =
A 5
B 7
C 9
D 11
4、已知等比数列{}n a 满足114a =,()35441a a a =-,则2a = A.2 B.1 1C.2 1
D.
8
5、等比数列{a n }满足a 1=3,
135a a a ++ =21,则357a a a ++= A21 B42 C63 D84
6、等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = (A ) ()1n n + (B )()1n n - (C )
()12
n n + (D)
()12
n n -
7、设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =
A .3
B .4
C .5
D .6
8、等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= (A )
13 (B )13
- (C )
19 (D )1
9
- 9、已知{n a }为等比数列,472a a +=,568a a =-,则110a a +=
A7 B5 C -5 D -7
10、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =
(A) 11、如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14
(B )21 (C )28 (D )35
12、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 13、等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =___________。 14、设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =
(A)8 (B)7 (C) 6 (D) 5
15、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=
2n n c a +,c n +1=2
n n
b a +,则( ).
A .{Sn}为递减数列
B .{Sn}为递增数列
C .{S 2n -1}为递增数列,{S 2n }为递减数列
D .{S 2n -1}为递减数列,{S 2n }为递增数列
二、数列求和
1、已知等差数列{}n a 的前n 项和为n S ,555,15a S ==,,则数列1
1
{
}n n a a +的前100项和为( )(A )
100101 (B )99
101
(C )99100 (D )101100 2、等比数列{}n a 的各项均为正数,且2
12326231,9.a a a a a +==
(1)求数列{}n a 的通项公式;
(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫
⎨⎬⎩⎭
的前n 项和.
3、已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列。 (1)求{}n a 的通项公式;(2)求14732+n a a a a -++⋅⋅⋅+;
4、已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。 (1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫
⎨
⎬⎩⎭
的前n 项和.
5、已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5. (1)求{a n }的通项公式;(2)求数列21211
n n a a -+⎧
⎫⎨⎬⎩⎭
的前n 项和.
6、已知{a n }是各项均为正数的等比数列,且1212
11
2(
)a a a a +=+;345345
1112(
)a a a a a a ++=++ (1)求{a n }的通项公式;(2)设2
1()n n n
b a a =+
,求数列{b n }的前n 项和T n.
三、数列递推
1、设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.
2、数列{n a }满足1(1)21n
n n a a n ++-=-,则{n a }的前60项和为____________。 3、若数列{}n a 的前n 项和21
33
n n S a =
+,则{}n a 的通项公式是n a =_______. 4、已知数列{}n a 满足1a =1,131n n a a +=+.
(1)证明{
}
12
n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112
n
a a a ++<…+.
5、n S 为数列{n a }的前n 项和.已知0n a >,2
243n n n a a S +=+, (1)求{n a }的通项公式:(2)设1
1
n n n b a a += ,求数列{}n b 的前n 项和
6、已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (1)证明:2n n a a λ+-=;(2)是否存在λ,使得{n a }为等差数列?并说明理由.
7、设数列{}n a 满足10a =且
111
1.11n n
a a +-=--
(1)求{}n a 的通项公式;(2
)设n b =设S 1
,n
n k k b ==∑证明: 1.n S <
8、已知数列{}n a 中,1111,n n
a a c a +==-
. (1)设51
,22
n n c b a ==-,求数列{}n b 的通项公式;
(2)求使不等式13n n a a +<<成立的c 的取值范围 .