泛函分析讲义第八章
泛函分析 PPT课件
• 可数基数a,连续基数c。
• 主要结论:1.可数集的子集至多可数; 2.有限或可数多个可数集合的并是可数集; 3.有限个可数集的直积是可数集; 4. 无限集必于它的某真子集对等,含可数子集;
可数集的例子:整数集,有理数集,n维欧式空间中 的有理点集。
实数的基本定理:确界存在原理、单调有界原理、 闭区间套引理、聚点定理、有限覆盖定理等等都 当成已知
距离空间的拓扑
• 空间引入距离,才有了空间上映射的连续性概念 (开集的原像是开集)
• 称X的子集B(x,r)={y;p(x,y)<r}为以x为心半径为r的 开球
• 称X的子集S(x,r)={y; p(x,y)=r}为以x为心半径为r的 有着很大优越和方便之处,但并不完全一致。如:离散距离空间中的球 面只有两种可能:空集或全空间
• 紧集的连续象是紧集 • 紧集上的连续函数是一致连续的,能取到最大值
和最小值。 • 空间X是有限维的当且仅当X的闭单位球是紧集。 • 非紧的空间,可以通过一点紧致化,进而利用紧
空间的性质来研究
小结
• 我们讨论距离空间的基本性质 • 距离空间就是赋予距离的集合,是三维立体空间
概念的推广,二者既有相同又不完全相同。
• Zorn引理是集论的一个重要工具,与选择公理,良序原理都是彼此等价的,主要应用于 数学上存在性定理的证明,而不具体描述寻求的方法。
泛函分析讲义(中文版-武汉大学).
则称 d 是 X 上的度量(距离)函数,称 X 为度量(距离)空间.有时为了明确,记为 ( X , d ) .
度量空间的子集合 E ,仍以 d 为 E 上度量构成的度量空间称为 ( X , d ) 的子空间.
例 1 对于 n 维空间Φ n 中的点 x = (x1, , xn ) 和 y = ( y1, , yn ) ,定义
利用 Zorn 引理可以证明: 任一线性空间必存在极大线性无关集合,这一集合即是 X 的 Hamel 基.换句话说,任一线性空间必存在 Hamel 基.
凸集和子空间是线性空间中时常用到的子集. X 的子集 E 称为是凸的,若 ∀x, y ∈ E ,
0 ≤ r ≤ 1 , rx + (1 − r) y ∈ E .对于任一集合 E ⊂ X ,记
容易验证 X 是线性空间. 今后对于有限维空间,无穷序列空间和函数空间将分别采用以上规定的线性运算.许多
在经典分析、代数、复变、实变、微分方程中遇到的空间都是线性空间。 注意:定义 1 与线性代数中关于线性空间的叙述是一致的,但是其内涵要比线性代数中
广泛得多。因为在线性代数中限定所考虑的对象为 n 数组。这一点很重要,例如在线性代数 中有一个结论:任何 n +1 个向量必线性相关。对于现在的空间,这一结论却不必成立。
实际上在Φ
n
上还可以定义其他度量,例如
d1 ( x,
y)
=
max
1≤i≤n
xi
−
yi
,此时 (Φ n , d1) 仍是度
量空间.但须注意应把 (Φ n , d1) 与 (Φ n , d ) 视为不同的度量空间.此外注意今后当说到Φ n 是
度量空间时,总意味着它带有欧氏度量.
(53页幻灯片)泛函分析PPT课件
泛函分析的产生
十九世纪后数学发展进入了一个崭新阶段
对欧几里得第五公设的研究,引出了非欧几何 对于代数方程求解的研究,建立并发展了群论 对数学分析的研究又建立了集合论
二十世纪初出现了把分析学一般化的趋势
瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作 希尔伯特空间的提出
分析学中许多新理论的形成,揭示出分析、几何、代数的许多概念和方 法常常存在相似的地方
泛函分析导 引
泛函分析概览
形成于20世纪30年代的数学分支 从变分问题,积分方程和理论物理的研究中发 展而来 综合运用了函数论,几何学,代数学的观点
➢ 可看成是无限维向量空间的解析几何及数学分 析
研究内容
无限维向量空间上的函数,算子和极限理论 研究拓扑线性空间到拓扑线性空间之间满足各 种拓扑和代数条件的映射
设 f (x) 是定义在[a, b]上的有界函数
并任在意[a取, bξ]上i 任∈意[x取i-1一,xi]组(i分=1点,2,a…=x,n0<),x1…作<和xn式-1<xn=b,
n
S f (i )xi
i1
若其极限存在则称Riemann可积
nHale Waihona Puke b(R) a f (x)dx lxim0 i1 f
在数学上,把无限维空间到无限维空间的变换叫做算 子
研究无限维线性空间上的泛函数和算子理论,就产生 了一门新的分析数学,叫做泛函分析。
泛函分析的特点
把古典分析的基本概念和方法
一般化 几何化
从有限维到无穷维
泛函分析对于研究现代物理学是一个有力的工具
从质点力学过渡到连续介质力学,就要由有穷自由度系 统 过渡到无穷自由度系统 现代物理学中的量子场理论就属于无穷自由度系统
实变函数与泛函分析基础第二版程其襄第八章答案
−1
0
解 由 f (x) = ∫ 0 x(t)dt − ∫1 xf (t)dt ≤ ∫0 xf (t)dt + ∫1 xf (t)dt ≤ 2 x
−1
0
−1
0
−1,
f
≤
2 。设 x n
=
1,
−nt,
t
∈
1 n
,1
t
∈
−1,
−
1 n
t∈ −1,1 nn
则
x n
∈
C
[
−1,1]
,且
x
= 1, n = 1, 2,L
∫ ∫ ∫ ∫ f
(
x n
)
=
0
1
x(t)dt − x(t)dt
−1
0
= 2(1− 1) + n
0 1
(
−nt
)dt
−
−
1
n (−nt ) dt
0
= 2(1− 1 ) + 1 + 1 n 2n 2n
n
=2−1 。 n
由此,
f
≥
f
(x ) n
=
F (xy) F( y 2)
代入上式得 F (
x
2)−
F (xy) F( y 2)
≥
0
因 F (xy) = F (xy) ,得 F (xy) = F (xy)F ( x 2 )F ( y 2 ) ≥ F (xy) 证毕
习题解答 1,举例说明有界线性算子的值域不一定是闭线性空间。
( ) 解
设
C 0
是收敛到
(
x)
《实变函数与泛函分析基础》第二版_程其襄第八章答案
x + - x− , 其 中
x+ = max{x,0}, x− = max{− x,0} 均是 C 0 (−∞,+∞) 中的非负函数,且 x+ ≤ x , x− ≤ x .
同理 y = y + − y , y + 和 y− 是非负函数,且 y+ ≤ y , y − ≤ y 。 若存在 M > 0 ,使任意非负函数 ϕ , F (ϕ ) ≤ M ϕ , 则 F 必有界
x(t i ) = ε i , i = 1,2, Λ n, 且||x||=1.这样|f(x)|=||
n
∑ λ x(t ) |= ∑ | λ
i i i =1 i =1
i
| ,所以. ||f(x)|| ≥ ∑ | λi |
i =1
由此 ,我们证明了||f(x)||=||
∑| λ
i =1
i
| 。证毕。
例题 2 设 F 是 C 0 ( −∞,+∞) 上的线性泛函, ( C 0 ( −∞,+∞) 的定义参见七章例题讲例 5) 。若 F 满足条件:若 ϕ ∈ C 0 ( −∞,+∞) 且任意 t ∈ ( −∞,+∞), ϕ (t ) ≥ 0, 则称 F 是正的线性泛 函,求证: C 0 ( −∞,+∞) 上的正的线性泛函的连续的。 证明 任意复值函数 f ∈ C 0 ( −∞,+∞) , 都可以写成 f = x + iy,其中 x,y 是 C 0 ( −∞,+∞) 中 的 实 值 函 数 , ||x|| ≤ f 且 ||y|| ≤|| f || . 而 实 值 函 数 又 可 以 x=
2 2 2
λ,
0 ≥ F ( x − iy ) = F ( x ) − λ F ( xy ) − λ F ( xy ) + λ F ( y )
应用泛函分析教案
应用泛函分析教案第一章:泛函分析基础1.1 集合与函数的概念集合的基本运算函数的定义与性质函数的图像与性质1.2 赋范线性空间与内积空间赋范线性空间的概念内积的定义与性质内积空间的性质1.3 线性算子与对偶空间线性算子的定义与性质对偶空间的概念与性质常用的线性算子与对偶空间第二章:赋范线性空间的基本定理2.1 泛函分析的基本定理闭图像定理共鸣定理开映射定理2.2 赋范线性空间的完备性完备性的定义与性质博尔查诺-魏尔斯特拉斯定理帕奇-弗雷歇定理2.3 赋范线性空间的同调性质同调序列与同调群直和、半直和与同调性质维数定理与同调性质的关系第三章:希尔伯特空间与自伴算子3.1 希尔伯特空间的概念与性质内积空间的进一步研究希尔伯特空间的特点与性质希尔伯特空间的对偶空间3.2 自伴算子的性质自伴算子的定义与性质自伴算子的谱分解自伴算子的对偶性质3.3 谱定理与自伴算子的应用谱定理的定义与证明自伴算子在量子力学中的应用自伴算子在偏微分方程中的应用第四章:赋范线性空间的框架4.1 框架的概念与性质框架的定义与构造框架的性质与例子框架在信号处理中的应用4.2 Riesz表示定理Riesz表示定理的定义与证明Riesz表示定理的应用框架与Riesz表示定理的关系4.3 框架的推广与变种广义框架的概念与性质框架的推广到其他赋范线性空间框架的变种与推广第五章:应用泛函分析解决问题5.1 泛函分析在数学物理中的应用偏微分方程的解的存在性与唯一性量子力学中的算子方法连续介质力学中的泛函分析方法5.2 泛函分析在信号处理中的应用框架在信号处理中的应用小波分析与泛函分析的关系信号处理中的其他泛函分析方法5.3 泛函分析在其他学科中的应用泛函分析在概率论与统计学中的应用泛函分析在优化与控制理论中的应用泛函分析在其他科学领域中的应用第六章:Banach空间与不动点定理6.1 Banach空间的概念与性质Banach空间的基本定义Banach空间的例子Banach空间的性质6.2 不动点定理及其应用不动点定理的定义与证明合同映射与不动点不动点定理在优化问题中的应用6.3 算子方程的解法算子方程的定义算子方程的解法算子方程解的存在性与唯一性第七章:Hilbert空间上的正交基与正交分解7.1 正交基的概念与性质正交基的定义正交基的性质正交基的构造方法7.2 正交分解定理正交分解定理的定义与证明正交分解的应用格拉姆-施密特正交化方法7.3 正交投影与不变子空间正交投影的概念与性质不变子空间的概念与性质正交投影在量子力学中的应用第八章:算子的谱理论8.1 谱映射定理谱映射定理的定义与证明谱映射定理的应用谱映射定理的推广8.2 算子的本征值与本征函数算子的本征值与本征函数的定义算子的谱定理算子的本征值与本征函数的应用8.3 算子的扩张与restriction算子的扩张与restriction 的定义扩张与restriction 的性质扩张与restriction 在应用中的例子第九章:泛函分析在现代数学中的应用9.1 泛函分析在代数学中的应用向量空间与线性代数环、域与代数结构泛函分析与代数拓扑的关系9.2 泛函分析在几何学中的应用向量丛与纤维丛微分几何与泛函分析度量空间与测地线9.3 泛函分析在物理学中的应用量子力学与算子方法连续介质力学与偏微分方程统计物理学与泛函分析第十章:泛函分析的前沿问题与展望10.1 泛函分析的发展历程泛函分析的起源与早期发展泛函分析的主要里程碑泛函分析在现代数学中的地位10.2 泛函分析的前沿问题希尔伯特空间中的谱理论非线性泛函分析与动力系统算子代数与量子计算10.3 泛函分析的未来展望泛函分析在数学其他领域的影响泛函分析与其他学科的交叉泛函分析在科技应用的潜力重点和难点解析重点一:泛函分析的基本概念与性质集合的基本运算、函数的定义与性质、函数的图像与性质是泛函分析的基础知识,需要重点掌握。
泛函分析ppt课件
傅里叶变换与小波变换的应用
傅里叶变换的应用
傅里叶变换在信号处理、图像处理、语音处理等领域 有着广泛的应用。例如,在信号处理中,可以通过傅 里叶变换将信号从时域转换到频域,从而方便地进行 信号的分析和合成。在图像处理中,可以通过傅里叶 变换对图像进行频域滤波,从而实现图像的降噪和增 强。在语音处理中,可以通过傅里叶变换对语音信号 进行分析和处理,从而实现语音的识别、压缩和加密 等任务。
REPORTING
在物理学中的应用:量子力学与相对论
量子力学
泛函分析在量子力学中有着广泛的应用,如波函数的形式化 描述、薛定谔方程的推导等。
相对论
泛函分析也被用于相对论中的时空变换和场方程的构造,以 及在广义相对论中研究黑洞的性质等。
在工程学中的应用:控制理论、电气工程等
控制理论
泛函分析在控制理论中有着重要的应用 ,如研究系统的稳定性、时域响应等。
PART 05
泛函分析在信号处理中的 应用
REPORTING
信号处理的基本概念
信号的定义与分类
信号是传递或表达某些信息的数据或数据流。它可以分为 离散信号和连续信号,离散信号是离散时间点的数据,而 连续信号是连续时间点的数据。
信号处理的定义与目的
信号处理是对信号进行变换、分析和解释的过程,目的是 从原始信号中提取有用的信息,或者将原始信号变换为另 一种形式,使其更易于分析和理解。
其他应用
泛函分析还可以应用于滤波器设计、压缩感知等领域。例如,基于小波变换的压缩感知方 法可以在保持信号质量的同时,实现信号的压缩和存储。
实例分析:信号的傅里叶变换与小波变换
傅里叶变换的基本原理
傅里叶变换是一种将时域信号转换到频域的方法。它将一个时域信号表示为一系列不同频率的正弦和 余弦函数的线性组合。通过傅里叶变换,我们可以将信号从时域转换到频域,从而可以更好地分析信 号的频率特性。
泛函分析讲义张恭庆答案
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
泛函分析第八章习题解答
1.举例说明有界线性算子的值域不一定是闭线性子空间.解 设0C 是满足1nn x∞=∑收敛的数列()12,,,,n x x x 全体组成的空间.若()12,,,,,sup n n nx x x x x x == .定义00:A C C →如下:对0x C ∀∈,1211,,,,2n Ax x x x n ⎛⎫= ⎪⎝⎭,则对0x C ∀∈,11supsup sup 1n n n nn nAx x x x x n n ==≤=⋅.由有界线性算子的定义知,A 是有界算子,且{}01sup1x C x A Ax x ∈==≤=,{}001sup 1x C x A Ax x ∈==≥=,其中()01,0,0,x = ,所以1A =.设01,1,,1,0,0,n n x C ⎛⎫' ⎪=∈ ⎪⎝⎭个,则11111,,,,0,0,,1,,,,22n n Ax Ax n n ⎛⎫⎛⎫''=→ ⎪ ⎪⎝⎭⎝⎭ .令111,,,,2x n ⎛⎫= ⎪⎝⎭,则0x C ∉,故0AC 不是闭集.证毕. 2.求[]1,1C -上线性泛函()()()011f x x t dt x t dt -=-⎰⎰的范数.解 由()()()()()()()01011111111max 2x f x x t dt x t dt x t dt x t dt x t dt x t dt x -----≤≤=-≤+≤≤=⎰⎰⎰⎰⎰⎰得2f ≤.设()11,,1,11,1,,11,,.n t n x t t n nt t n n ⎧⎡⎤-∈⎪⎢⎥⎣⎦⎪⎪⎡⎤=∈--⎨⎢⎥⎣⎦⎪⎪⎛⎫-∈-⎪ ⎪⎝⎭⎩则()[]1,1n x t C ∈-,且()1max 1,1,2,n n x x x t n -≤≤=== ,()()()()()1101100111112121222n n n n n f x x t dt x t dt nt dt nt dt n n n nn --⎛⎫⎛⎫=+=-+---=-++=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰,因而,()12.n f f x n ≥=-()1lim lim lim 2 2.n n n n f f x n →∞→∞→∞⎛⎫≥=-= ⎪⎝⎭故2f =.3. 设无穷阵(),,1,2,ij a i j = ,满足1supijij a∞=<∞∑,作l ∞到l ∞中算子如下:若()()1212,,,,,x y ξξηη== ,Tx y =,则1,1,2,i ij j j a i ηξ∞===∑ .证明:1sup ij ij T a ∞==∑.证 设M =1supijij a∞=∑,则若()()1212,,,,,x y Tx ξξηη=== ,11sup sup sup sup sup i ij j jij j i i i j j j j Tx y T a a M M x ηξξξ∞∞==⎛⎫====≤≤= ⎪⎝⎭∑∑,因此T M ≤.对00,i ε+∀>∃∈ ,使得01supi jij aM ε∞=>-∑.设()12,,x x x = ,其中()0,1,2,j i j x sign a j == ,则x l ∞∈,且1x =.若()12,,y Tx ηη== ,则00011i i jj i j j j ax a M ηε∞∞====>-∑∑,因此sup i iTx M ηε=>-.由于ε是任意的,故T M >.因而1supijij T M a∞===∑.4. 设{}1sup n n α≥<∞,在pl 中定义线性算子,,1,2,i i i y Tx i ηαξ=== ,其中()()1212,,,,,,,,,n n x y ξξξηηη== .证明:T 是有界线性算子,并且{}1sup n n T α≥=.证 设{}1sup n n M α≥=,由于{}11sup sup n n n n n Tx M M x T M αξξ≥≥=≤=⇒≤.又对00,n εα∀>∃,使得0n M αε>-.设()12,,,,n x ξξξ= ,其中0i n ≠,则0i ξ=,而00n n sign ξα=.则0n Tx M αε=>-.由ε的任意性,得T M ≥,所以Tx M =.证毕.5. 设X 是n 维向量空间,在X 中取一组基{}()12,,,,n e e e t μν 是n n ⨯矩阵,.作X 到X 中的算子如下:当1n x x e ννν==∑时,1n y Tx y e μμμ===∑,其中1,1,2,,ny t x n μμνννμ===∑ .若规定向量的范数为1221nx x νν=⎛⎫=⎪⎝⎭∑.证明上述算子的范数满足112222111max nnnt T t μνμννννν===⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑. 证 若1nx x e ννν==∑,则 22222111111111nnnn n nnn n Tx t x t x t x t x μννμννμννμνννννννννν=========⎛⎫⎛⎫⎛⎫⎛⎫=≤≤= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑, 所以12211n nT t μννν==⎛⎫≤⎪⎝⎭∑∑.对任意的ν,1nTe t e νμννν==∑,于是1221n Te t νμνμ=⎛⎫= ⎪⎝⎭∑,所以, 1221n T t μνμ=⎛⎫≥ ⎪⎝⎭∑.因此1221max nt T μννν=⎛⎫≤ ⎪⎝⎭∑.证毕. 6. 设T 赋范线性空间X 到赋范线性空间Y 的线性算子,若T 的零空间是闭集,T 是否一定有界?解答 令X Y ==P []0,1,其中P []0,1是[]0,1上多项式函数全体,它是[]0,1C 的一个子空间.T 是P []0,1到P []0,1的微分算子.若0Tf =,则f 是常值函数,而常值函数全体是一个闭子集.而由第一节例9可知,T 是非有界的.7.作()1plp <<+∞中算子如下:当()12,,p x x x l =∈ 时,()12,,Tx y y = ,其中11111,1,2,,,1p qq n nm m nm m n m y t x n t p q ∞∞∞===⎛⎫==<∞+= ⎪⎝⎭∑∑∑ .证明:T 是有界算子.证 若()12,,px x x l =∈ ,则11111111111111111ppppqpppqpnm mnm m nmm n m n m n m m p p pqqqqnmnmn m n m Tx t x t x t x t x t ∞∞∞∞∞∞∞=======∞∞∞∞====⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪=≤≤ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎪⎝⎭⎝⎭⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ == ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪ ⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑∑1,px ⎪⎪⎪,所以,T 为有界算子,且111p pqqnmn m T t ∞∞==⎛⎫⎛⎫ ⎪≤ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭∑∑.证毕. 8. n 按范数()12max ,,,,j n jx x ξξξξ== 成赋范空间,问n 的共轭空间是什么? 解 记n按范数max j jx ξ=组成的赋范线性空间为X ,n按范数1nii x ξ==∑组成的赋范线性空间为Y .下面证明X Y '=.定义X '到Y 的映射T ,对()()()1,,,n f X Tf f e f e '∀∈= ,其中10,,0,1,0,,0,1,2,,i i e i n -⎛⎫ ⎪== ⎪⎝⎭个,对()()111,()max n nni i ii i i ii i i x e f x f e f e Tf x ξξξ===∀==≤=⋅∑∑∑,于是f Tf ≤.反之,对()12,,,n y Y ηηη∀=∈ ,定义f X '∈:对()11,n ni i i ii i x e f x ξξη==∀==∑∑,则Tf y =.因此T 是从X '到Y 上的映射.(也就是说,T 是满射)若()0,,0y = ,则()11,00n ni i ii i x e f x ξξ==∀==⋅=∑∑,故00f Tf f =⇒==;若()()12,,,0,,0n y ηηη=≠ ,令()1niii x sign e η==∑,则1x =.因此()1nii f f x y Tf η=≥===∑,从而Tf f =.于是T 是X '到Y 的同构映射,在同构的意义下,X Y '=.9. 设0C 表示极限为0的实数列全体,按通常的加法和数乘以及0sup ,i ix x C ξ=∈,()12,,,,n x ξξξ= 构成Banach 空间,证明:()10C l '=.证 令10,0,,0,1,0,n n e -⎛⎫⎪= ⎪⎝⎭个,则0,1,2,n e C n ∈= .对()0f C '∀∈,定义()()()()12,,,,n Tf f e f e f e = .则有1Tf l ∈,且Tf f ≤.事实上:记()1,sin ,nn n n n n i ii f e g x eηξηξ====∑,则n x C ∈且1,1,2,n x n ≤= .()111n nnn i i i i i i i i f x f e ξξηη===⎛⎫=== ⎪⎝⎭∑∑∑,由于()n n f x fx f ≤≤,因此1n i i f η=≤∑,令1,i i n f η∞=→∞≤∑,因而1Tf l ∈,且Tf f ≤.另一方面,对()12,,,,n y ηηη∀= ,定义0C 上线性泛函:f 若()120,,,,n x C ξξξ=∈ ,则()1i ii f x ξη∞==∑,因此()()()()()1212,,,,,,,,n n Tf f e f e f e y ηηη=== ,又因为()11sup i iiiii i f x x y ξηξη∞∞===≤=∑∑,因此()0f C '∈,且f y Tf ≤=,所以f Tf =.由以上证明可知,T 是()0C '到1l 上的同构映射,而在同构的意义下, ()0C '=1l .证毕.。
泛函分析讲义
泛函分析讲义第五章Banach代数1代数准备知识2 Banach代数2.1 Banach代数的定义2.2 Banach代数的极大理想与Gelfand表示3例与应用4 c’代数5 Hilbert空间上的正常算子5.1 Hilbert空间上正常算子的连续算符演算5.2正常算子的谱族与谱分解定理5.3正常算子的谱集6在奇异积分算子中的应用第六章无界算子1 闭算子2 cayley变换与自伴算子的谱分解2.1 cayley变换2.2自伴算子的谱分解3无界正常算子的谱分解3.1 B0rel可测函数的算子表示3.2无界正常算子的谱分解?4 自伴扩张4.1 闭对称算子的亏指数与自伴扩张4.2 自伴扩张的判定准则5自伴算子的扰动5.1稠定算子的扰动5.2自伴算子的扰动5.3 自伴算子的谱集在扰动下的变化?6无界算子序列的收敛性6.1预解算子意义下的收敛性6.2图意义下的收敛性第七章算子半群1无穷小生成元1.1无穷小生成元的定义和性质1.2 Hme—Yosida定理2无穷小生成元的例子3单参数酉群和Stone定理3.1单参数酉群的表示——stone定理3.2 stone定理的应用1.B0chner定理2.Schr6dinger方程的解3.遍历(ergodic)定理3.3 Trotter乘积公式4 Markov过程4.1 Markov转移函数4.2扩散过程转移函数5散射理论5.1波算子5.2广义波算子6发展方程第八章无穷维空间上的测度论1 C[O,T]空间上的wiener测度1.1 C[O,T]空间上wiener 测度和wiener积分1.2 Donsker泛函和Donske卜Lions定理1.3 Feynman—Kac公式2 Hilbert空间上的测度2.1 Hilbert—Schmidt算子和迹算子2.2 Hilbert空间上的测度2.3 Hilbert空间的特征泛函3 Hilbert空间上的Gauss测度3.1 Gauss测度的特征泛函3.2 Hilbert空间上非退化Gauss测度的等价性清词丽句必为邻2015-09-21 04:05 | 豆瓣:烟波浩渺1980杜甫的《戏为六绝句》(其五)不薄今人爱古人,清词丽句必为邻。
[学习]泛函分析习题答案第八章习题答案
9. 设A、B (E),A1 (E),证明: 若AB BA,A1B BA1.
因为AB BA,所以 A1 AB A1BA,即 B A1BA,由此又得: BA1 A1BAA1 A1B
9
10. 举例说明共鸣定理中空间E1完备的条件不能去掉.
考 虑l01 { x (i ) | (i )中 只 有 有 限 个 坐 标 0}, 在l01中 定 义 范 数
故 i
T 1
1, 所 以inf n1
|n
|
T 1
1
0
反 之 , 设 0, 则sup | 1 | 1
n1
n
令Sx
1
iiBiblioteka x (i ) l 16
则S是 有 界 线 性 算 子 , 显 然TS ST I, 故T有 有 界 逆S.
7.
设p
1 ,1 p
1 q
1,无 穷 阵(ij
)适 合 条 件
1时 ,x0
r 2
x
B,
从 而p( x0
r 2
x)
K, 由 此 可 知p( x)
2 r
p( r 2
x)
2 r
p( x0
r 2
x
x0 )
2 r [ p( x0
r 2
x)
p( x0 )]
2[K r
p( x0 )], 令M
2[K r
p( x01)1],
即 得 p( x) M x E x 1, 从 而 有 p( x) M (x E).
12
12. 设(i )为 一 数 列 , 证 明 : 若 对一 切(i ) l q (1 q ),
级数
i 1
i
收
i
泛函分析讲义第八章
第八章 有界线性算子和连续线性 泛函
§1 有界线性算子和连续线性泛函 §2 有界线性算子空间和共轭空间
显然,赋范线性空间中的相似算子显然是有界算子。 注意区别有界算子与有界函数。
(3)连续性与有界性的关系 设T是赋范线性空间X到赋范线性空间Y中的线性算子,则T 为有界算子的充要条件为T是X上连续算子。
4、算子的范数 T为赋范线性空间X的子空间D(T)到赋范线性空间Y中的线 性算子,称
|| Tx || 为算子T在D(T)上的范数。 || T || sup x 0 || x ||
的线性算子,如果存在常数 x c ,是对所有
则称T是D(T)到Y中的有界线性算子。
D(T),有 ||T x||c|| x||
换句话说,设X,Y是两个赋范线性空间,T是X到Y的
线性算子,如果算子T将其定义域中每个有界集映射成Y中
的有界集,就称T是有界线性算子,简称为有界算子。不 是有界的算子成为无界算子。
• 设X是内积空间,M是X完备子空间,则对每个 x∈X,存在唯一的y∈M,使得 •
||x y || d ( x , M )
xn (t ) t n ,则 x n 1 ,但
n 1 T x m a x |n t | n n 0 t 1
,
所以
T T x n n
,T是无界算子。
§2 有界线性算子空间和共轭空间
1、有界线性B(X → Y) 算子全体所成空间 设X,Y都是赋范线性空间,B(X→Y)是X到Y的有界线性算
部分习题解-黎永锦《泛函分析讲义》的Word文档
泛函分析讲义-黎永锦134部分习题解答意义深刻的数学问题从来不是一找出解答就完事了,好象遵循着的格言,每一代的数学家都重新思考并重新改造他们前辈所发现的解答,并把这 解答纳入当代流行的概念和符号体系之中L. Bers (贝尔斯)(1914-1993,美国数学家)习题一1.2 设∑=∞≤∈=n i ii i x R x x l 11}||,|){(,对任意1)(),(l y y x x i i ∈==,∑∞=-=1||),(i iiy x y x d ,||sup ),(i i y x y x -=ρ, 试证明d 和ρ为X 上的两个度量,且存在序列1}{l x n ⊂,1l x o ∈,使得0),(0→x x n ρ,但),(0x x d n 不收敛于0.1.2证明:(1)只须按度量定义验证即可知道为上的两个度量(,)d x y 和(,)x y ρ为 1l 上的两个度量.(2)取111(,,,,0,)n x n n n= 当i n ≤时,()1n i n x = , 当i n >时()0n ix =,则1n x l ∈且()1(,0)sup |0|0n n inx xρ=-=→,但()111(,0)|0|1nn n in i i d x x∞===-==∑∑.因此(,0)0n x ρ→,但),(0x x d n 不收敛于0.黎永锦-部分习题解答1351.4 试找出一个度量空间),(d X ,在X 中有两点y x ,,但不存在X z ∈,使得=),(z x d ),(21),(y x d z y d =. 1.4 证明:在2R 上取离散度量(,)d x y =0, 1,.x y x y ⎧=⎨≠⎩当时当时,则对于x y ≠,有(,)1d x y =,但不存在2z R ∉,使得12(,)(,)(,)d x z d y z d x y ==.1.6 在∞l 中,设F 为的非空子集,G 为开集,试证明G F +为开集.1.6证明:由(,)sup ||i i d x y x y =-可知,对任意,x y l ∞∈,有(,)(,0)d x y d x y =-,若G 是开集,则对于任意,x F y G ∈∈,有开球(,)U y r G ⊂.故(,)x U y r x G +⊂+,因而G x r y x U +⊂+),(,从而对任意,x F x G ∈+是开集,由()x FF G x G ∈+=+ 可知F G +是开集.1.8 在∞l 中,设|){(i x M =只有限个i x 不为0},试证明M 不是紧集. 1.8证明:取()()n n i x x =,当i n >时,()0n ix =当i n ≤时,()1n i i x = ,则n x M ∈,且lim n n x x →= ,这里112(1,,,,)n x = ,但x M ∉,因此M 不是闭集,所以M 不是紧集.1.10 设),(d X 为度量空间,X F ⊂,试证明CC F F )(0=.1.10证明:对于任意0x F ∈,有0(,)U x r F ⊂,故φ=C F r x U ),(,因而C C F x )(∈,从而C C F F )(0⊂.对于任意C C F x )(∈,有()Cx F ∉,因而存在φ=C F r x U ),(,故(,)U x r F ⊂,从而0x F ∈,故0)(F F C C ⊂.所以,0()C CF F ⊂.1.12 设),(d X 为度量空间,X F ⊂,试证明}|),(inf{),(F y y x d F x d ∈=为X 到 ),0[+∞的连续算子.泛函分析讲义-黎永锦1361.12 证明:对于任意,x z X ∈,有.(,)inf{(,)|}inf{(,)(,)|}(,)inf{(,)|}(,)(,)d x F d x y y F d x z d y z y F d x z d y z y F d x z d z F =∈≤+∈=+∈=+故(,)(,)(,)d x F d z F d x z -≤类似地,有(,)(,)(,)d z F d x F d z x -≤因此|(,)(,)|(,)d x F d z F d x z -≤所以,0n x x →时,必有0(,)(,)n d x F d x F →,即(,)d x F 是连续函数. 1.14 设),(d X 为度量空间,F 为闭集,试证明存在可列个开集n G ,使n G F =.1.14 证明:由于F 是闭集,因此{|(,)0}F x d x F ==,又因为(,)d x F 是连续的,所以对任意1,{|(,)}n n x d x F <是开集,从而对于开集1{|(,)}n n G x d x F =<,有1{|(,)0}{|(,)1/}n F x d x F x d x F n ∞====< ,所以1n n F G ∞== .1.16 试证明∞l 是完备的度量空间.1.16证明:设{}n x 为 ∞l 的Cauchy 列,则对于任意0ε>,存在 N,使得n N >时有()()(,)sup ||n p n n p n i i d x x x x ε++=-<.故对每个固定的i,有()()||(,1)n p n i i x x n N p ε+-<>>.因此(){}n i x 是Cauchy 列.因而存在i x ,使得()lim n ii n x x →∞=,令()i x x =,则由可知(1)||N i i x x ε+-≤故黎永锦-部分习题解答137(1)||||N i i x x ε+≤+由于(1)1()N N ix x l ++∞=∈,因此存在常数1N M +使得11sup ||N i N x M ++≤<+∞.又由()()||n p n ii x x ε+-<可知||n i i x x ε-<对任意i 及n N ∈成立.故()(,)sup ||n n i i d x x x x ε=-<所以,n x x →,即l ∞是完备的度量空间. 1.18 证明0c 中的有界闭集不一定是紧集.1.18 证明:令{()|||1}i i M x x =≤,则M 是0c 的有界闭集,但M 是不紧集.1.20 设),,1[+∞=X |/1/1|),(y x y x d -=,试证明),(d X 为度量空间,但不是完备的. 1.20证明:容易验证|/1/1|),(y x y x d -=是),(d X 的度量.取X x n ∈,),1[+∞∈=n x n ,则}{n x 为X 的Cauchy 列,但}{n x 没有极限点,因此}{n x 不是收敛列,所以不是完备的.1.22 试证明度量空间),(d X 上的实值函数f 是连续的当且仅当对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.1.22证明: 若度量空间),(d X 上的函数f 是连续的,则明显地,对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集.如果对于任意R ∈ε,})(|{ε≤x f x 和})(|{ε≥x f x 都是),(d X 的闭集,则于任意R ∈21,εε,容易知道})(|{})(|{\})(|{2121εεεε≥≤=<<x f x x f x X x f x 是开集,对于R 上的开集G ,有G 的构成区间),(n n βα,使得),(n n G βα =,因而)(1G f -是开集,所以f 是连续的.1.24 设R 为实数全体,试在R 上构造算子T ,使得对任意R y x ∈,,y x ≠,都有||||y x Ty Tx -<-,但T 没有不动点.泛函分析讲义-黎永锦1381.24证明:(1) 设R 为实数全体,12:,tan T R R Tx x x π-→=+- 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知22|()()|||||1f x f y x y x y ξξ-=-<-+ 但f(x)没有不动点.实际上,若()x f x = ,则1tan 2x π-=,因而矛盾.(2) 设),,1[+∞=X 11:,x T X X Tx x +→=+ 则对任意,,x y R x y ∈≠,由'()()()()f x f y f x y ξ-=-可知21|()()|[1]||||(1)f x f y x y x y ξ-=--<-+但f(x)没有不动点.实际上,若()x f x =,则110x +=,矛盾,所以f(x)没有不动点.1.25 设函数),(y x f 在)},(],,[|),{(+∞-∞∈∈=y b a x y x H 上连续,处处都有偏导数),('y x f y ,且满足+∞<≤≤<M y x f m y ),('0试证明0),(=y x f 在],[b a 上有唯一的连续解)(x y ϕ=. 提示:定义:],[],[:b a C b a C T →为),(1ϕϕϕx f MT -= 证明T 为压缩算子,然后利用S. Banach 不动点定理.1.26 设),(d X 为度量空间,T 为X 到X 的算子,若对任意X y x ∈,,y x ≠,都有 ),(),(y x d Ty Tx d <,且T 有不动点,试证明T 的不点是唯一的.1.26证明:反证法,假设A 有两个不动点12,x x ,使得1122,A x x A x x ==,则121212(,)(,)(,)d x x d Ax Ax d x x =<但这与12x x ≠矛盾,所以A 只有唯一的不动点.黎永锦-部分习题解答1391.27 设),(d X 为度量空间,且X 为紧集,T 为X 到X 的算子,且y x ≠时,有),(),(y x d Ty Tx d <,试证明T 一定有唯一的不动点.证明思路:构造X 上的连续泛函),(),(y x d Ty Tx d <,利用紧集上的连续泛函都可以达到它的下确界,证明存在X x ∈0,使得}|)({inf )(0X x x f x f ∈=,0x 就是T 的不动点. 1.28 试构造一个算子22:R R T →,使得T 不是压缩算子,但2T 是压缩算子.1.28证明:定义)0,(),(:221x x x T →,则T 不是压缩算子,但2T )0,0(),(:21→x x 是压缩算子.1.30 设||),(),,1[y x y x d X -=+∞=,x x Tx X X T /13/,:+=→,试证明T 是压缩算子. 1.30证明:由 x x Tx /13/+=,可知|/13//13/|||y y x x Ty Tx +--=-),(32|||131|2y x d y x ≤--=ξ,所以T 是压缩算子.习题二2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义⎩⎨⎧≠+-==.y x 1||||;y x ,0),(时当时当,y x y x d试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=. 2.2证明:由度量的定义可知是X 上的度量.假设存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-,则对于,K x X λ∈∈,一定有11||||||||||x x λλ=⋅.泛函分析讲义-黎永锦140如果取001,,||||12x X x λ=∈=,则 001000013||||||||1||||||1122x x x λλλ=+=⋅+=+= , 但是1)11(21)1||(||||||||||00100=+=+=x x λλ,因此11||||||||||x x λλ=⋅不成立,所以一定不存在X 上的范数1||||⋅,使得1(,)||||d x y x y =-.2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.4证明:由于M 是线性子空间,因此0M ∈.由M 是开集可知存在(0,){|||||}U x x M εε=<⊂.因而对于任意,0x M x ∈≠,有),0(2εεU x∈,从而M x∈2ε,因为M 是线性子空间,所以x M ∈,即M X =.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.6证明:由n x x →可知存在0M >,使得||||x M ≤,故||||||||||||||||||||||||||||||||0n n n n n n n n n n n x x x x x x x x x M x x λλλλλλλλλλλλ-≤-+-≤-⋅+⋅-≤-+⋅-→所以,n n x x λλ→.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.10证明:明显地M 是线性子空间,取112(1,,,,0,0)n n x = ,则n x M ∈ 且0n x x →,但1102(1,,,,0,0)n x M =∉ ,所以M 不是闭的子空间.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.黎永锦-部分习题解答1412.12证明:由)()()(y f x f y x f +=+可知,)()(x nf nx f =对所有正整数N n ∈都成立.并且)()()(m x mf m x m x m x f x f =+⋅⋅⋅++=,故)(1)(x f mm x f =对所有正整数N m ∈都成立.因此所有正有理数Q q ∈都有)()(x qf qx f =成立,由)()())((x f x f x x f -+=-+和)0()0()0(f f f +=可知0)0(=f 并且)()(x f x f -=-,因而)()(x qf qx f =对所有有理数Q q ∈都有成立.由于f 在R 上连续,因此,对于任意R ∈α,有Q q n ∈,使得α→n q ,从而)()(lim )(lim )(x f x f q x q f x f n n n n αα===∞→∞→,所以f 是线性的.2.14设X 是有限维Banach 空间,n i i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.14证明:令{|}i j M span x i j =≠,则M 是 n-1维的闭子空间,且i i x M ∉,由Hahn Banach -定理可知存在*,||||1i g X x ∈=,使得()(,)i i i i g x d x M =,且()0g x =对任意i x M ∈成立,令(,)ii i g i d x M f = ,则*i f X ∈,且()1,()0i i i j f x f x ==,对任意i j≠成立.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立.2.16证明: 由M 是闭线性子空间,M X x \0∈因此,因此0(,)0d x M >存在*,||||1g X g ∈=,使得00()(,)g x d x M =,且()0g x =对于任意x M ∈成立.令0(,)gd x M f =,则00||||10(,)(,)()1,||||g d x M d x M f x f ===,且()0f x =对任意x M ∈成立.2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.18证明:假设存在00,x y ,使得0000||||||||||||x y x y +=+,但00x y λ≠,对任意0λ>成泛函分析讲义-黎永锦142立,则0000||||||||xy x y ≠,故有0000000000||||||||||||||||||||||||||||||||||||||||1x x y yx y x x y y ++⋅+⋅<因而0000||||||||||||1x yx y ++< 但这与0000||||||||||||x y x y +=+矛盾,所以||||||||||||y x y x +=+时,有x y λ=对某个0λ>成立.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间. 2.20证明:在1l 中,取1111(,0,,0,0,,0),(0,,0,,0,,0)2222x y == ,则||||1,||||1x y ==,且x y ≠,但||||2x y +=,因而1l 不是严格凸的.类似的,在∞l 中,取(1,0,1,0,0,,0),(1,1,0,,0)x y == ,则 ||||1,||||1x y ==,且x y ≠,但 ||||2x y +=,所以l ∞不是严格凸的.2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.22证明:令{()|N 0}i i i X x x R i N x =∈>=存在某个,使得时,有,定义1||||||()||||i i i x x x ∞===∑,则(,||||)X ⋅是赋范空间,取12(0,0,,0,,0,0,,0)n n x = ,则1211||||nni i x∞∞===∑∑,因此1ni x∞=∑绝对收敛,但级数1ni x∞=∑不收敛.2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x xf x x f n n →. 2.24证明:由x x n →可知, ||||||||x x n →,因而,||||||||x xx x n n →,所以, ≤-|)||||()||||(|x x f x x f n n 0||||||||||||||||→-x xx x f n n . 2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.黎永锦-部分习题解答1432.26证明:容易验证M 是]1,0[C 的线性子空间.由于]1,0[C 是完备赋范线性空间,M 是]1,0[C 的闭子空间,因此M 是]1,0[C 的完备线性子空间.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.2.28证明:由于1||})1,(inf{||}|||inf{||),(100≥=∈-=x M y y x M x d ,并对于M y ∈=)0,0(0,有1||)1,0(||||||00==-y x ,所以1),(0=M x d ,且),(||||000M x d y x =-.习题三3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i i i∈==任意,试证明T 是线性有界算子,并求||||T .3.2证明: 由T 的定义可知T 是线性算子,且||||31||31||)3(||||||1x x x Tx i i i =≤=∑∞=, 因此13||||T ≤,从而T 是线性有界算子.取0(1,0,,0)x = ,则01x l ∈,且0||||1x =,故01||||||||3T Tx ≥=,所以1||||3T =. 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.4证明:由于||||||||sup ||||supsup 111T x Txx Tx Tx x x x =≤≤≠<<,因此Tx T x 1||||sup ||||<≥.对于任意10n >,由||||sup ||||||||sup ||||||||sup||||1||||0||||0||||Tx x xT x Tx T x x x =≠≠===可知,有||||1n x =,使得1||||||||n n Tx T ≥-,故111||(1)||(1)(||||)n n n n T x T -≥--,因而111||||1sup ||||||(1)||(1)(||||)n n n n x Tx T x T <≥-≥--对任意n 成立泛函分析讲义-黎永锦144从而||||1||||sup ||||x T Tx <≤,所以||||sup ||||1||||Tx T x <=3.6 设X 是赋范空间,X x ∈α,若对任意*f X ∈,有+∞<|)(|sup ααx f ,试证明+∞<||||sup ααx .3.6 证明:定义*:,()()T X K T f f x ααα→=,则T α是*X 到K 的线性有界算子,且对于任意*f X ∈,有sup |()|sup |()|T f f x ααα=<+∞因为任意赋范空间X 的共轭空间 *X 都是完备的,因此由一致有界原理,有sup ||||T α<+∞.由αT 的定义可知||)(||sup |)(||sup ||||1||||1||||αααx f f T T f f ====故||||||||T x αα=,所以,sup ||||x α<+∞.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.证明思路:明显地,只需证明),(Y X L 是Banach 空间时,Y 是Banach 空间.由于}0{≠X ,因此有1||||,00=∈x X x ,故由Hahn-Banach 定理存在1||||=f ,使得1||||)(00==x x f .若Y y n ∈}{是Cauchy 列,定义算子列),(Y X L T n ∈为n n y x f x T )(=,则),(Y X L T n ∈,并且||||||||n m n m y y T T -=-,因而}{n T 为),(Y X L 的Cauchy 列,所以存在),(Y X L T ∈,使得T T n →.不难证明0Tx y n →,从而Y 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f .3.8证明: 由于lim ()()n n f x f x →∞=,因此sup{|()|}n f x <∞对任意x 成立,由X 是Banach黎永锦-部分习题解答145空间可知sup{||||}n f M <<∞因而|()|||||||||||||n n f x f x M x ≤⋅<,所以|()|||||f x M x ≤,即f 是X 的线性连续泛函. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT1||||1≤-. 3.10 证明:由||||||||Tx M x ≥可知T 是单射,因而1T -存在,且对于任意y Y ∈,由T 满射可知存在x X ∈,使得y Tx =,容易验证T 是线性算子,故1111||||||||||||||||||||T y T Tx x Tx y --==≤=,所以,1T -连续,且11||||MT-≤.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射. 3.12证明:由0f ≠可知存在00x ≠,使得0()1f x =,故对于X 的开集G 及任意()f G α∈,必有x G ∈,使得()f x α=,由于是G 开集,故有0ε>,使(,)U x G ε⊂,因此对00,||||||x x x λλε+<,有0x x G λ+∈,因而0()f x x G λ+∈,但00()()()f x x f x f x λλαλ+=+=+,故(,)()f G αεαε-+⊂ ,即α为G 的内点,所以()f G 为开集,即f 一定开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.证明思路:先证S 为闭算子,从而S 是线性连续算子,然后利用Hahn-Banach 定理的推论可泛函分析讲义-黎永锦146知, 当0≠Sx 时,存在1||||,*=∈f X f ,使得||||)(Sx Sx f =,不难进一步证明T 为是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.14证明:若()n y T F ∈,且0n y y →,则存在n x F ∈使得()n n y f x =,由于F 是紧集,因此存在k n x ,使得0k n x x →,且0x F ∈.由0y Tx k n →及T 是闭线性算子可知0y Tx =,所以0()y T F ∈,即)(F T 是闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.证明思路:由于T 的定义域为X ,因此明显地,只需证明T 为闭线性算子.设有点列X x n ∈}{,X y x ∈,,当∞→n 时,x x n →,y Tx n →.由)(T R 是闭的,)(T R Tx n ∈可知必有X x ∈0,使得0Tx y =.由于T T=2,因此0)(2=-=-n n n n Tx x T x Tx T ,即)(T N x Tx n n ∈-.由)(T N 是闭的,可得)()(lim T N x Tx x y n n n ∈-=-∞→,从而0)(=-x y T .因此y Tx Tx T Ty Tx ====00)(,所以T 为闭线性算子.由闭图像定理可知),(X X L T ∈3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T . 3.16证明:由于n T 强收敛于,因此T 对任意x X ∈,有||||0n T x Tx -→,故对于任意*f Y ∈,有|()()||()|||||||||0n n n f T x f Tx f T x Tx f T x Tx -=-≤⋅-→,所以n T 弱收敛于T .黎永锦-部分习题解答147习题四4.2 试证明∞=l l *1.4.2证明:对于任意1x l ∈,有11lim ni ii i n i i x x ex e ∞→∞====∑∑,故对于任意*1f l ∈,有11()lim ()lim ()nni i i i n n i i f x f x e x f e →∞→∞====∑∑由于1111|()||||()|||||||||||||||||n n n niiiiiiii i i i x f e x f e x f e x f ====≤≤⋅⋅=⋅∑∑∑∑因此由1()i x x l =∈可知1||n ii x =∑收敛,从而1()niii x f e =∑绝对收敛,且11|()||()|sup |()|sup |()|||||i i i i i i i f x x f e f e x f e x ∞∞===≤=⋅∑∑令()(())i i y f e α==,则y l ∞∈,且对于任意,都1()i x x l =∈,有1()i i i f x x α∞==∑ 且||||||||f y =.反过来,对于任意 ()i y l α∞=∈,则定义f 为11(),()i iii f x x x x l α∞==∀=∈∑则f 是上的线性连续泛函,且||||sup ||||||i f y α==,所以 ∞=l l *1 4.4 试证明1*l l ≠∞.4.4证明: 用反证法,假设 *1l l ∞=,则由于1l 是可分的,因此是l ∞可分的,但这与1l 不可分矛盾,所以1*l l ≠∞泛函分析讲义-黎永锦1484.6 试证明在2l 中强收敛比按坐标收敛强.4.6证明:若()(0)202(),()n n i i x x l x x l =∈=∈,且0n x x →,则()(0)21/21(||)0n i i i x x ∞=-→∑因此,对于任意i 有()(0)()(0)21/21||(||)n n iii i i xxx x ∞=-≤-∑从而()(0)n ii x x →,所以强收敛比按坐标收敛强.4.7 设X 是无穷维的赋范空间,试证明*X 一定也是无穷维的赋范空间.证明思路:对于任意的自然数n ,由于X 是无穷维的赋范空间,因此存在n 个线性无关的的X e e e n ∈⋅⋅⋅,,,21,由Hahn-Banach 定理,不难证明存在*21,,,X f f f n ∈⋅⋅⋅,使得都成立对任意并且j i e f e f j i i i ≠==,0)(,1)(,从而只需证明n f f f ,,,21⋅⋅⋅是线性无关的,则n X >)dim(*,所以*X 一定也是无穷维的赋范空间.4.8设X 是赋范空间,X x x n ∈,,x x wn −→−,若}{n x 是相对紧的,试证明x x n −→−. 4.8证明:由于{}n x 是相对紧的,因此存在子列{}k n x 收敛于y ,但n x 弱收敛于x ,因此对于任意*f X ∈,有()()k n f x f x →.由{}k n x 收敛于y 可知|()()|||||k kn n f x f y f x y -≤⋅-→,从而()()f x f y =,对任意成*f X ∈立.因而x y =.故k n x x →,所以x x n −→−. 4.10设Y X ,为赋范空间,),(Y X L T ∈,若x x w n −→−,试证明Tx Tx wn −→− 4.10证明:对于任意*g Y∈,定义X 上的泛函()()f x g T x =,则由|()||()||||||f x g T x g T x =≤⋅⋅,可知f 是X 上的线性连续泛函,由于n x 弱收敛x ,因黎永锦-部分习题解答149此()()n f x f x →,因而()()n g Tx g Tx →,所以n Tx 弱收敛Tx .4.12 设X 为Banach 空间,*,,,X f f X x x n n ∈∈n x 弱收敛于x ,且n f 收敛于f ,试证明)()(x f x f n n →.4.12证明:由于n x 弱收敛于x 时,有0M >,使得||||n x M ≤<∞,因此|()()||()()||()()||||||||||()()||||||()()|n n n n n n n n n n n f x f x f x f x f x f x f f x f x f x M f f f x f x -≤-+-≤-⋅+-≤-+-所以,当n x 弱收敛于x ,且n f 收敛于f 时,有()()n n f x f x →.4.14设Y X ,是Banach 空间,),(Y X L T ∈,且1-T 存在且有界,试证明*T 的逆存在且*11*)()(--=T T .4.14证明:由 **11*()()T T T T I --==及 1**1*()()T T TT I --==可知*1()T -存在,并且*11*)()(--=T T .4.16设X 是赋范空间,}{,0n w n x span M x x =−→−,试证明M x ∈0. 4.16证明:反证法,假设0x M ∉,则由于M 是闭子空间,因此0(,)0d x M >,故由Hahn Banach-定理可知存在*f X ∈,使得00()(,)f x d x M =且对于任意 ,()0x M f x ∈=,所以00()0,()(,)0n f x f x d x M ==>,但这与n x 弱收敛于0x 矛盾,因而n x 弱收敛0x 时,一定有0x M ∈.习题五泛函分析讲义-黎永锦1505.2设X 是内积空间,X y ∈,试证明),()(y x x f =是X 上的线性连续泛函,且||||||||y f =.5.2证明: 由()(,)f x x y =可知f 线性泛函,且|()||(,)|||||||||f x x y x y =≤⋅,因此f 是X 上的连续线性泛函,并且||||||||f y ≤,取||||y y x =,则||||||||1,|()||(,)|(,)||||y y x f x x y y y ====,所以,||||||||f y =.5.4 设X 是内积空间,X e e n ∈,,1 ,若=),(j i e e ⎩⎨⎧=≠.1j,0j i ,i试证明n e e ,,1 线性无关.5.4证明:若12,,,n e e e X ∈ ,且=),(j i e e ⎩⎨⎧=≠.1j ,0j i ,i则对于i K α∈,当10ni ii eα==∑时,有1(,)0ni i i i i e e αα===∑.因此120n ααα==== ,所以12,,,n e e e 线性无关.5.6 设M 是Hilbert 空间X 的闭真子空间,试证明⊥M 含有非零元素.5.6 证明: 由M 是X 的真子空间,因而对\x X M ∈,存在0x M ⊥∈,使得 00x x y =+,由x M ∉及0x M ∈可知00x x -≠所以0y ≠,且y M ⊥∈,即M ⊥含有非零元.5.8 设M 是Hilbert 空间X 的闭真子空间,试证明⊥⊥=M M .5.8证明:由于M M⊥⊥⊂,因此只须证MM ⊥⊥⊂.对于任意x M ⊥⊥∈有y M ⊥∈使得0x x y =+,由M M ⊥⊥⊂可知0x M ⊥⊥∈,故0x x M ⊥⊥-∈,因此0y x x M ⊥⊥=-∈,所以y y ⊥,因而0y =,从而MM ⊥⊥⊂.黎永锦-部分习题解答1515.9 设f 是实内积空间3R 上的线性连续泛函,若32132)(x x x x f ++=,试求X y ∈,使得),()(y x x f =.5.9 解答:取)3,2,1(,3=∈y R y ,则一定有32132)(x x x x f ++=. 5.10 设M 是内积空间X 的非空子集,试证明⊥⊥⊥⊥=M M . 5.10 证明:由()MM ⊥⊥⊥⊥⊥⊥=可知, M M ⊥⊥⊥⊥⊂.反过来,对任意x M ⊥⊥⊥∈,及y M M⊥⊥∈⊂,可知(,)0x y =,因而x y ⊥对于任意y M ∈成立,故x M ⊥∈因此M M ⊥⊥⊥⊥⊂,所以M M ⊥⊥⊥⊥=.5.12 设X 是Hilbert 空间,M 、N 是X 的闭真空间,N M ⊥,试证明N M +是X 的闭子空间.5.12证明:明显地N M +是X 的线性子空间,因此只须证N M +在X 中是闭的,若,,n n n n x y M N x M y N +∈+∈∈,且n n x y z +→,则由于X 是Hilbert 空间,M 是闭子空间,因此,,z x y x M y M ⊥=+∈∈,故,n n x x M y y M ⊥-∈-∈.因而22222||||||||||||||()||||||0n n n n n n n n x x y y x x y y x y x y x y z -+-=-+-=+-+=+-→,所以,n n x x y y →→,故,,z x y x M y N =+∈∈,即N M +是的X 闭子空间. 5.14 设X 是内积空间,X y x ∈,,试证明y x ⊥的充要条件为对任意K ∈α,有||||||||y x y x αα-=+.5.14 证明:若x y ⊥,则对任意K α∈,有2222||||(,)(,)(,)(,)(,)||||||||||x y x y x y x x x y y x y y x y αααααααα+=++=+++=+ 且2222||||||||||||||x y x y αα+=+ 因此||||||||y x y x αα-=+.泛函分析讲义-黎永锦152反过来,若K α∈,有||||||||y x y x αα-=+,则由(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα++=+++和(,)(,)(,)(,)(,)x y x y x x x y y x y y αααααα--=--+可知2(,)2(,)0x y y x αα+=令(,)x y α= ,则22|(,)||(,)|0x y x y += 因而(,)0x y =,所以x y ⊥.5.16设X 是内积空间,X y x ∈,,试证明y x ⊥当且仅当对任意K∈α,有||||||||x y x ≥+α.5.16证明:若x y ⊥,则对任意K α∈,有x y α⊥,因此 22222||||||||||||||||||x y x y x αα+=+≥,所以||||||||x y x ≥+α.反过来,若对任意K α∈,有||||||||x y x ≥+α,则 令2(,)||||x y y α=-,由22||||||||0x y x α+-≥及|||||),(|),(|||||),(||||||),(||||||),(|),(||),(),(),(),(),(),(),(),(),(224222222≥-=+--=++=-+++=-++y y x y y y y x y y x y y x y y x y y x x x y y x y y x x x x x y x y x αααααααα因此(,)0x y =,所以,x y ⊥.5.17 设}|{N i e i ∈是内积空间X 的正交规范集,试证明黎永锦-部分习题解答153|||||||||),)(,(|1y x e y e x i ii⋅≤∑∞=对任意X y x ∈,成立.5.17证明:由于{|}i e i N ∈是X 的正交规范集,因此对任意,x y X ∈,有222211|(,)|||||,|(,)|||||ii i i x e x y e y ∞∞==≤≤∑∑故21/221/2111|(,)(,)|[|(,)|][|(,)|]||||||||iiiii i i x e y e x e x e x y ∞∞∞===≤=⋅∑∑∑5.18设}|{N i e i ∈为Hilbert 空间的正交规范集,}{i e span M =,试证明M x ∈时,有i i i e e x x ∑∞==1),(.5.18证明:若x M ∈,则由于{}i e 是正交规范集,因此221|(,)|||||ii x e x ∞=≤∑.因为X 是完备的,所以由22||(,)|||(,)|0n p n p iiii ni nx e e x e ++===→∑∑ 可知1(,)i ii x e e ∞=∑是收敛级数,记1(,)iii y x e e ∞==∑,则1(,)((,),)(,)(,)0j i i j j j i x y e x x e e e x e x e ∞=-=-=-=∑故x y M -⊥,由,x y M ∈,可知x y M -∈,因而x y x y -⊥-,所以,0x y -=,即ii iee x x ∑∞==1),(.泛函分析讲义-黎永锦1545.19设}{n x 是Hilbert 空间X 的正交集,试证明1{}ii x ∞=∑弱收敛当且仅当21||||ii x ∞=<∞∑.5.19证明:若1ii x ∞=∑弱收敛,则存在0M >,使得M x ni i≤∑=||||1对任意n 成立,故由{}ix 是正交集可知22211||||||||ii i i x x M ∞∞===≤∑∑,所以21||||i i x ∞=<∞∑.反之,若21||||ii x ∞=<∞∑,则由0||||||||2121→=∑∑++=++=pn n i ipn n i ix x 可知1{}i i x ∞=∑是X 的Cauchy 列,所以1i i x ∞=∑在Hilbert 空间X 中收敛,因而1i i x ∞=∑弱收敛.5.20设}|{∧∈=ααe S 是内积空间X 的正交规范集,则对于任意}|),{(,∧∈∈ααe x X x 中最多只有可列个不为零,且22|||||),(|x e x i ≤∑∧∈α.5.20证明:若Λ是有限集,则明显地,有22|||||),(|x e x i≤∑∧∈α若Λ不是有限集,则对于任意}1),(|{,me x e S N m m ≥=∈αα,只能是有限集,因而'1m m S S ∞== 是可数集,且对任意'\e S S α∈,有(,)0x e α=,故22|||||),(|x e x i ≤∑∧∈α5.21 设X 是Hilbert 空间,),(X X L T ∈,若1-T 存在,且),(1X X L T∈-,试证明1*)(-T 存在且*11*)()(--=T T .5.21 证明:由于X 是Hilbert 空间,且),(1X X L T∈-,因此1*()T -存在.对于任意,x y X ∈,有11**1*(,)(,)(,())(,())x y T Tx y Tx T y x T T y ---===黎永锦-部分习题解答155又因为11*1**(,)(,)(,)(,())x y TT x y T x T y x T T y ---===,所以,*1*1**()()T T T T --=,因而*11*)()(--=T T .5.22 设X 是Hilbert 空间,),(,X X L T T n ∈,若T T n →,试证明**T T n →.5.22证明:由***()n n T T T T -=-及*||()||||||n n T T T T -=-,可知n T T →时,有**||||||||0n n T T T T -=-→,因此**T T n →.5.24 若X 是Hilbert 空间,),(,X X L T S ∈是自伴算子,R ∈βα,,试证明T S βα+是自伴算子.5.24证明:由于,S T 是自伴算子,因此*S S = ,且*T T =,所以对于***,,()R S T S T S T αβαβαβαβ∈+=+=+.5.25 设X 是Hilbert 空间,),(X X L T ∈,若T 是自伴算子,N n ∈,试证明n T 是自伴算子.5.25证明:由于*T T =,因此***()()()n nnT T T T T T =⋅⋅⋅== ,所以n T 是自伴的.5.26 设X 是复H i l b e r t 空间,),(X X L T ∈若试证明存在唯一的自伴算子),(,21X X L T T ∈,使得21iT T T +=,且21*iT T T -=.5.26 证明:令**111222(),()iT T T T T T =+=-,则),(,21X X L T T ∈,且*1212,T T iT T T iT =+=-由于***1111*******11122222()(),[()]()()iii T T T T T T T T T T T T T T =+=+==-=--=-=因此1T 和2T 都是自伴算子.假设存在自伴算子12,(,)S S L X X ∈,使得12T S iS =+,则1212S iS T iT +=+且**12121212()()S iS S iS T iT T iT -=+=+=-,因此1122,S T S T ==.泛函分析讲义-黎永锦156所以,存在唯一的自伴算子),(,21X X L T T ∈,使得*1212,T T iT T T iT =+=-. 5.27 设X 是Hilbert 空间,T T X X L T T n n →∈),,(,,若n T 是正规算子,试证明T 是正规算子.5.27 证明:由于n T 是正规,因此**n n n T T T T =故************************||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||n n n n n n n n n n n n n n n nn n n nn n n n n T T TT TT T T T T T T TT T T TT T T TT T T TT TT TT T T T T T T T T T T T T T T T T T T T T T -≤-+-+-≤-+-≤-+-⋅-+-≤⋅-+⋅-+⋅-+⋅**||n T -由n T T →可知**n T T →,所以**||||0T T TT -=即T 是正规算子.5.28 设X 是复H i l b e r t 空间,),(X X L T ∈,试证明T 是正规算子当且仅当||||||||*Tx x T =对于任意X x ∈成立.5.28 证明:若T 是正规算子,则**T T TT =,因此对于任意x X ∈,有**((),)0T T TT x x -=,故**(,)(,)T Tx x TT x x =,因此**(,)(,)Tx Tx T x T x =,所以*||||||||T x T x =对任意x X ∈成立.反之,若对任意x X ∈有*||||||||T x Tx =,则**(,)(,)Tx Tx T x T x =,故**(,)(,)T Tx x TT x x =.因而**((),)0T T TT x x -=对任意x X ∈成立.所以**0TT T T -=,即是T 正规算子.5.29 设X 是Hilbert 空间, T 是X 到X 的线性算子,若对任意,x y X ∈,有(,)(,)Tx y x Ty =,试证明T 是连续线性算子.5.29 证明:由于()D T X =,因此只须证T 是闭线性算子,若00,n n x x Tx y →→,则对于黎永锦-部分习题解答157任意y X ∈,有000(,)lim(,)lim(,)(,)(,)n n n n y y Tx y x Ty x Ty Tx y →∞→∞====故00(,)(,)y y Tx y =对任意y X ∈成立,因此00Tx y =,因而T 是闭线性算子,所以由闭图象定理可知T 是连续的.学年论文可选的题目学完一门课程,如能对所学内容做些比较系统的整理和思考,对加深该课程的理解和进一步学习都会有很好的帮助.学年论文的写作,可以提高阅读有关文献资料的能力,学会从书本和论文中了解有关信息、得到启发.并可有目的、有计划地搜集相关资料,可以养成独立思考和研究探索的好习惯. 下面的一些题目和思路可供参考:1. 抽象空间的球具有哪些奇怪的性质,在度量空间和赋范空间中,它们的性质有哪些不同,如开球的闭包一定是与开球球心和半径一样的闭球吗?开球有可能是闭集吗?2. 不动点定理的推广和应用,特别是在微分方程中的一些应用.3. 度量空间和赋范空间中,序列的各种收敛性的相互关系.4. 度量空间和赋范空间中,紧、完备、闭、有界等的相互关系.5. 凸集和凸函数的性质.6. 线性连续泛函和可加泛函的性质.7. 一致有界原理的应用.8. 逆算子定理或闭算子定理的应用. 9. Hahn-Banach 定理及其推广和应用. 10. 内积空间中的正交性的推广.11. 平面几何的有关概念和性质在Hilbert 空间的推广.泛函分析讲义-黎永锦12. 数学分析中的Fourier 级数相关概念在内积空间的推广.13. 赋范空间中的级数收敛的判别法.158。
泛函分析部分知识总结
泛函分析单元知识总结与知识应用一、单元知识总结第七章、 度量空间和赋范线性空间 §1 度量空间§1.1定义:若X 是一个非空集合,:dX X R ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。
例:1、设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当,则(,)X d 为离散的度量空间。
2、序列空间S ,i =1i |-|1(,)21+|-|i ii i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]kki d x y y x ∞=∑是度量空间§2 度量空间中的极限,稠密集,可分空间 §2.1收敛点列:设{}n x 是(,)X d 中点列,如果∃x X ∈,使n lim (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列。
例:1、nn x R ∈,{}n x 按欧氏距离收敛于x 的充要条件为1,i n ∀≤≤各点列依分量收敛。
2、[a,b]C 中(,)0k d x y x x →⇔→(一致)3、可测函数空间()M X 中点列(,)0n n d f f f f→⇔⇒(依测度)稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。
泛函分析讲义张恭庆答案
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
《泛函分析》教学大纲
《泛函分析》教学大纲课程编号:10140032英文名称:Functional Analysis学分:3学时:总学时48学时,其中理论48学时,实践0学时先修课程:数学分析、实变函数、高等代数、解析几何课程类别:专业课程(选修1)授课对象:数学与应用数学(师范)专业学生教学单位:数理信息学院修读学期:第6学期一、课程描述和预期目标本课程为专业选修课程,它运用代数,几何手段处理问题的新观点和新方法把具体的分析问题抽象到一种更加纯粹的代数拓扑结构的形式中进行研究. 本课程总学时共48学时,其中理论课48学时,在教与学的教学活动中,本课程坚持理念“以学生发展为中心,学生学习结果(课程教学目标)为导向,并持续改进(教学反思)学生的学习效果”。
本课程主要包含可使学生了解和掌握度量空间、赋范线性空间、Hilbert空间和Banach 空间中有界线性算子与连续线性泛函的基本概念、基本理论及其应用,培养学生抽象思维、逻辑思维、分析和解决问题的能力,为进一步学习数学的有关学科打下扎实的理论基础。
本课程教学活动结束,学生将达到以下学习效果:熟悉泛函分析学科发展的基本情况,把握中学数学与泛函分析的内在联系;掌握泛函分析的基本知识和主要思想方法,具备较好的分析、演绎推理和数学表达能力;初步使学生能体验和感受到数学魅力,提高学生的数学素养。
【学生学习结果1】: 通过课堂讲授、课堂讨论、课后作业、课堂报告、查阅文献资料等教学活动,学生学会泛函分析(度量空间和赋范线性空间、有界线性算子和连续线性泛函、内积空间和希尔伯特(Hilbert)空间、巴拿赫(Banach)空间中的基本定理)的基础知识和理论,初步熟悉和掌握必要的泛函分析基础(基本概念,系统的泛函分析理论和抽象的严格的泛函分析方法),为学生进一步学习现代数学打下必要的基础,培养学生抽象思维能力、逻辑推理、分析问题和解决问题的能力,提高学生对知识的理解和应用能力。
【学生学习结果2】:通过互动的课堂教学,学生的学习兴趣被刺激;通过学科探索讨论课,学生的学习主动性被激发;通过写专题读书报告,学生的查阅资料和归纳总结的能力被训练;通过难题攻关,学生不仅享受理解和应用数学思想和方法的乐趣,而且学会进行独立思维和解决实际问题,并能够积极创新。
泛函分析讲义
2.2.5 线性泛函的连续性和有界性 . . . . . . . . . . . . . . . . . . . . . . . 71
2.2.6 赋范空间中的Hahn-Banach定理 . . . . . . . . . . . . . . . . . . . . . 75
2.2.7 赋范线性空间中的分离性定理 . . . . . . . . . . . . . . . . . . . . . . 78
1.6 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.1 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Riesz引理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 有界线性算子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
目录
iii
3.3 开映照定理、闭图像定理和共鸣定理 . . . . . . . . . . . . . . . . . . . . . . 104 3.3.1 开映照定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.3.2 闭图象定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3.3 共鸣定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设X,Y都是赋范线性空间,T是X到Y的线性算子,如果T 在某一点x0 D(T)上连续,则T在D(T)上处处连续。
该定理说明,要验证线性算子T的连续性,只需要验证T在某一点 连续。又相当于下面要引进的有界性。
(2)有界线性算子
设X,Y都是赋范线性空间,T是X的线性子空间D(T)到Y 的线性算子,如果存在常数c ,是对所有x D(T),|有| Tx || c || x ||
2、线性算子和线性泛函的例子
(1)设X是线性空间, 是一给定的数,对任何 x X ,
令
Tx x
显然,T是X到X中的线性算子,称为相似算子。
当 1 时,称为恒等算子;当 0 时,称为零算子。
(2)对每个x C[a,b] ,规定
(Tx)(t)
t
x( )d
a
由积分的线性性质,可知T是C[a,b] 到C[a,b] 中的线性算子。
若T || T || || x ||
|| T || sup || Tx || sup || Tx ||
||x||1
||x||1
并非所有算子都有界。例如微分算子,P[0,1]为C[0,1]的子空间,令
xn (t) t n,则 xn 1 ,但
Txn
max | ntn1 | n 0t 1
,
所以 T Txn n ,T是无界算子。
§2 有界线性算子空间和共轭空间
1、有界线性B(X → Y) 算子全体所成空间
设X,Y都是赋范线性空间,B(X→Y)是X到Y的有界线性算
子全体,当A,B B(X→Y), 是任意一个数时,规定
若令 f (x)
b
x( )d
则 f 是 C[a,b]上线性泛函。
a
若令 (Tx)(t) tx(t) T是线性算子,称为乘法算子。
(3)对每个x P[0,1] ,规定 (Tx)(t) d x(t) dt
由导数运算的线性性质,可知T是 P[0,1] 到 P[0,1] 中的线性算 子,称为微分算子。
定理2 任何赋范线性空间的共轭空间是巴拿赫空间。 定义:设X和Y是两个赋范线性空间,T 是X到Y中的线性 算子,并且对所有x X ,有 Tx x
则称T 是X到Y中的保距算子,如果T 又是映射到Y上的,则 称T 是同构映射,此时称X与Y同构。(了解作用)
例如: l1 的共轭空间为 l 。
l p 的共轭空间为 l q ,其中
第八章 有界线性算子和连续线性 泛函
§1 有界线性算子和连续线性泛函
§2 有界线性算子空间和共轭空间
主要内容:
算子:从赋范线性空间X到另一个赋范线性空间Y中的映 射。算子可以说是函数和函数之间的对应。
泛函:如果Y是数域,则称这种算子为泛函。 本章主要研究线性算子和线性泛函,首先引入线性泛函 和线性算子的概念,证明赋范线性空间中线性算子的连 续性等价于有界性,并引出有界线性算子的一个基本的 量,即算子的范数,证明有界线性算子全体按算子范数 成为一个赋范线性空间。
( A B)x Ax Bx
( A)x Ax 则B(X→Y)按上述线性运算及算子范数成为赋范线性空间。
定理1 设X是赋范线性空间,Y是巴拿赫空间时,B(X→Y)也 是巴拿赫空间。
2、连续线性泛函全体所成空间
设X是赋范线性空间,令X 表示X上连续线性泛函全体所成 的空间,称为共轭空间。
(3)连续性与有界性的关系
设T是赋范线性空间X到赋范线性空间Y中的线性算子,则T 为有界算子的充要条件为T是X上连续算子。
4、算子的范数
T为赋范线性空间X的子空间D(T)到赋范线性空间Y中的线
性算子,称 || T || sup || Tx || 为算子T在D(T)上的范数。 x0 || x ||
则称T是D(T)到Y中的有界线性算子。
换句话说,设X,Y是两个赋范线性空间,T是X到Y的 线性算子,如果算子T将其定义域中每个有界集映射成Y中 的有界集,就称T是有界线性算子,简称为有界算子。不 是有界的算子成为无界算子。
显然,赋范线性空间中的相似算子显然是有界算子。 注意区别有界算子与有界函数。
a,b 11 22 ...nn
其中 i 表示 i 的复共轭,并且内积与向量 a 的长度有以下
关系:
a a, a
内积性质: (有限维复欧式空间)
1° a, a 0 且 a, a 0 等价于 a 0
若令 t0 [0,1], f (x) x(t0 ) ,则 f 是 P[0,1]上线性泛函。
(4)矩阵与线性算子的对应性:
设Rn 是n维线性空间,在Rn 中取一组基{e1, e2,..., en} ,则对任何 x Rn
可以唯一的表示成
x
n
v ev
,对每一个方阵(tv )n ,作 Rn
§1 有界线性算子和连续线性泛函
1、线性算子和线性泛函
设X和Y是两个同为实(或复)的线性空间,D是X的线性
子空间,T为D到Y中的映射,如果对于任何x, y D ,及数
成立
T (x y) Tx Ty (1)
T ( x) Tx
(2)
则称T为D到Y中的线性算子,其中D称为T的定义域,记为 D(T),TD称为T的值域,记为R(T),当T取值于实(或复)数 域时,就称T为实(或复)线性泛函。
到 Rn
v 1
中算子T 如下:当
n
x vev
时,令 y Tx n ye
v 1
1
其中 y n tvv , 1, 2,..., n。显然这样定义的T是线性算子,称
v 1
为线性变换。算子由方阵 (tv )n唯一确定。
3、线性算子的有界性与连续性
1 1 pq
1
引言:有限维空间中向量的范数相当于向量的模,但是在有 限维欧几里的空间中还有一个重要的概念----两个向量的夹 角,特别是两个向量的正交,所以在赋范线性空间当中,引 入向量的内积来描述模与夹角,建立内积空间。
1、内积定义
a (1,2,...,n ), b (1,2,...,n ), 则 a 与 b 内积定义为