基尼系数的四种计算方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基尼系数的计算方法及数学推导
金融三班袁源
摘要:本文归纳了基尼系数的四种计算方法:直接计算法、拟合曲线法、分组计算法和分解法,并进行了数学推导和证明。

在此基础上,文章比较了各种算法优缺点,分析了误差可能产生的环节。

关键词:洛伦茨曲线基尼系数
一、洛伦茨曲线和基尼系数
年,统计学家洛伦茨提出了洛伦茨曲线,如图一。

将社会总人口按收入由低到高的顺序平均分为个等级组,每个等级组均占%的人口,再计算每个组的收入占总收入的比重。

然后以人口累计百分比为横轴,以收入累计百分比为纵轴,绘出一条反映居民收入分配差距状况的曲线,即为洛伦茨曲线。

图一
为了用指数来更好的反映社会收入分配的平等状况,年,意大利经济学家基尼根据洛伦茨曲线计算出一个反映收入分配平等程度的指标,称为基尼系数()。

在上图中,基尼系数定义为:
式()当为时,基尼系数为,表示收入分配绝对平等;当为时,基尼系数为,表示收入分配绝对不平等。

基尼系数在~之间,系数越大,表示越不均等,系数越小,表示越均等。

二、基尼系数的计算方法
式()虽然是一个极为简明的数学表达式,但它并不具有实际的可操作性。

为了寻求具有可操作性的估算方法,自基尼提出基尼比率以来,许多经济学家和统计学家都进行了这方面的探索。

在已有的研究成果中,主要有四种有代表性的估算方法,结合自己的计算,笔者将它们归纳为直接计算法、拟合曲线法、分组计算法和分解法。

、直接计算法
直接计算法在基尼提出收入不平等的一种度量时,就已经给出了具体算法,而且这种
算法并不依赖于洛伦茨曲线,它直接度量收入不平等的程度。

定义
△=∑∑∣-∣, ≤△≤式()
式中,△是基尼平均差,∣-∣是任何一对收入样本差的绝对值,是样本容量,是收入均值。

定义
△, ≤≤式()
可以证明:△=(证明过程见附录一),而由式(),,,因此,式()中定义的即为基尼系数,综合式()、(),基尼系数的计算方法为:
∑∑∣-∣式()直接计算法只涉及居民收入样本数据的算术运算,很多学者认为理论上看,只要不存在来源于样本数据方面的误差,就不存在产生误差的环节。

实际上,在附录一证明过程当中将看到,直接计算法依然采用了以直代曲法计算面积,只不过这个过程在样本数据范围内达到了最小近似,其精确度直接取决于样本数据本身。

因此,可以认为它不带任何误差的计算了样本数据的基尼系数值。

、拟合曲线法
拟合曲线法计算基尼系数的思路是采用数学方法拟合出洛伦茨曲线,得出曲线的函数表达式,然后用积分法求出的面积,计算基尼系数。

通常是通过设定洛伦茨曲线方程,用回归的方法求出参数,再计算积分。

例如,设定洛伦茨曲线的函数关系式为幂函数:αβ式()
根据选定的样本数据,用回归法求出洛伦茨曲线,例如,α=,β.求积分
∫式()
计算
-=-式()拟合曲线法的在两个环节容易产生谬误:一是拟合洛伦茨曲线,得出函数表达式的过程中,可能产生误差;二是拟合出来的函数应该是可积的,否则就无法计算。

、分组计算法
这种方法的思路有点类似用几何定义计算积分的方法,在轴上寻找个分点,将洛伦茨曲线下方的区域分成部分,每部分用以直代曲的方法计算面积,然后加总求出面积。

分点越多,就越准确,当分点达到无穷大时,则为精确计算。

图二
假设分为组,每组的收入为,则每个部分的面积为:
∑+∑∑式()
加总得到:。

相关文档
最新文档