单片机控制交通灯控制系统设计
基于单片机的智能交通灯控制器设计
基于单片机的智能交通灯控制器设计一、本文概述随着城市化进程的加快,交通拥堵问题日益严重,智能交通系统的应用与发展成为解决这一问题的关键。
其中,智能交通灯控制器作为交通系统的重要组成部分,对于提高道路通行效率、保障行车安全具有重要意义。
本文旨在设计一种基于单片机的智能交通灯控制器,通过优化算法和硬件设计,实现交通灯的智能控制,以适应不同交通场景的需求,提升城市交通的整体运行效率。
本文将首先介绍智能交通灯控制器的研究背景和意义,阐述现有交通灯控制系统的不足和改进的必要性。
接着,文章将详细介绍基于单片机的智能交通灯控制器的设计方案,包括硬件电路的设计、控制算法的选择与优化等方面。
在此基础上,本文将探讨如何通过软件编程实现交通灯的智能控制,并讨论如何在实际应用中调试和优化系统性能。
文章将总结研究成果,展望智能交通灯控制器在未来的发展方向和应用前景。
通过本文的研究,旨在为城市交通管理提供一种新的智能化解决方案,为缓解交通拥堵、提高道路通行效率提供有力支持。
本文的研究也有助于推动单片机技术和智能交通系统的发展,为相关领域的研究和实践提供有益的参考和借鉴。
二、单片机技术概述单片机,即单片微型计算机(Single-Chip Microcomputer),是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计时器等功能集成到一块硅片上,构成一个小而完善的微型计算机系统。
单片机以其体积小、功能强、成本低、可靠性高、应用广泛等特点,广泛应用于工业控制、智能仪表、家用电器、医疗设备、航空航天、军事装备等领域。
单片机作为智能交通灯控制器的核心部件,具有不可替代的重要作用。
它负责接收来自传感器的交通信号输入,根据预设的交通规则和算法,快速作出判断,并输出相应的控制信号,以驱动交通信号灯的亮灭和变化,从而实现交通流量的有序控制和疏导。
基于STC89S52单片机智能交通灯控制系统的设计与制作及应用
STC89S52单片机智能交通灯控制 系统的应用
在应用方面,我们将该智能交通灯控制系统安装在了某城市的交通要道上。通 过实时采集车辆和行人的信息,根据交通灯时序控制算法控制交通灯的时序, 实现了对交通流量的有效调控。同时,我们还通过无线通信模块将交通灯的运 行情况实时传输到城市交通管理中心,方便管理人员对整个城市的交通状况进 行监控和调度。
智能交通灯控制系统在国内外的 研究现状
智能交通灯控制系统最早出现在20世纪90年代,经过多年的发展,已经在国内 外得到了广泛应用。目前,该系统的实现方式主要有两种:一种是基于嵌入式 系统,通过传感器采集车辆和行人的信息,然后通过预先设定的算法控制交通 灯的时序;另一种是基于计算机控制系统,通过监控摄像头采集交通流量信息, 然后通过中央控制系统对交通灯进行实时控制。
未来的研究方向可以包括提高系统的自适应性、降低对传感器的依赖程度、综 合考虑行人和非机动车的需求等方面。
参考内容
一、引言
随着社会和经济的快速发展,城市交通问题日益凸显,如交通拥堵、安全事故 等。为了改善这些问题,智能交通系统逐渐被引入到城市交通管理中。其中, 智能交通灯控制系统作为智能交通系统的重要组成部分,对于提高交通效率、 确保交通安全起着至关重要的作用。本次演示将介绍一种基于STC89C52单片 机的智能交通灯控制系统的设计。
三、系统软件设计
本系统的软件设计采用C语言,主要包括以下几个部分:
1、初始化程序:在系统上电后,首先进行硬件初始化,包括单片机的时钟、 I/O口等 单片机通过I/O口读取这些数据。
3、信号灯控制程序:根据采集到的交通数据,单片机通过信号灯控制模块控 制交通信号灯的灯光时序。例如,当检测到车辆较多时,单片机将延长绿灯时 间;当检测到行人较多时,单片机将延长红灯时间。
基于单片机的交通灯控制系统设计探讨
基于单片机的交通灯控制系统设计探讨1. 引言1.1 研究背景随着城市化进程的不断加快,交通拥堵问题日益突出,如何提高城市交通的效率和安全性成为亟待解决的难题。
交通灯作为道路交通管理的重要组成部分,其控制系统的设计对于交通流畅和安全起到至关重要的作用。
传统的交通灯控制系统存在诸多弊端,例如固定的时间间隔控制,无法根据实际道路交通情况进行动态调整,导致交通拥堵和浪费。
基于单片机的交通灯控制系统则能够实现智能化控制,根据实时的交通流量和车辆需求,灵活调整红绿灯时间,提高交通效率和安全性。
通过对单片机交通灯控制系统的设计和研究,可以探讨如何优化交通流量,减少交通事故发生率,改善城市交通环境,进而提升城市发展的整体水平。
本文旨在探讨基于单片机的交通灯控制系统设计,为城市交通管理提供科学有效的解决方案。
1.2 研究目的本文旨在探讨基于单片机的交通灯控制系统设计,通过分析交通信号灯控制系统的原理、硬件设计方案、软件设计方案、系统实现与测试以及系统性能分析,来验证设计的有效性并探讨存在的问题,进一步指出未来的研究方向。
具体目的如下:1. 研究交通信号灯控制系统的设计原理,深入了解交通信号灯的工作机制和控制要求,为后续的硬件设计和软件编程提供理论依据。
2. 设计并实现交通信号灯控制系统的硬件方案,包括信号灯灯组、控制器以及传感器等硬件元件的选取和连接方式,以确保系统稳定可靠。
3. 制定相应的软件设计方案,包括对交通信号灯状态的控制逻辑、定时器设置、中断服务程序等,保证系统能够按照预期进行状态切换。
4. 实现并测试设计的交通信号灯控制系统,验证系统在实际应用中的稳定性和可靠性,以及系统对交通流量的有效控制能力。
5. 对系统性能进行详细分析,包括系统的响应速度、稳定性、功耗等方面的评估,为进一步优化系统性能提供依据。
1.3 研究意义交通灯控制系统在城市交通管理中具有重要的作用,能够有效地引导车辆和行人的通行,减少交通拥堵和交通事故的发生。
基于单片机的交通灯控制系统设计毕业论文
基于单片机的交通灯控制系统设计毕业论文摘要:随着城市交通的日益发展,交通信号灯的控制方式也在不断地更新和优化。
本文基于单片机设计了一种交通灯控制系统,该系统具有高效、稳定和可靠的特点。
首先介绍了交通信号灯的发展背景和现有的控制系统,然后详细介绍了系统的硬件和软件设计,包括信号灯的控制逻辑、硬件电路的设计和单片机程序的编写等。
最后进行了实验测试,验证了系统的性能和可靠性。
实验结果表明,该交通灯控制系统能够有效地提高道路交通的效率和安全性,具有较好的应用前景。
关键词:交通灯控制系统、单片机、硬件设计、软件设计、实验测试第1章绪论1.1研究背景随着社会的不断发展和人口的快速增长,城市道路上的交通流量也在不断增加。
如何保障道路交通的安全和顺畅,成为了一个十分重要的问题。
交通信号灯作为一种重要的交通控制设备,对于减少交通事故和提高道路通行效率具有重要的作用。
传统的交通信号灯控制方式主要基于定时控制,缺乏智能化和动态性。
因此,我们需要开发一种新的交通灯控制系统,以满足现代交通需求。
1.2研究目的与意义本文旨在设计一种基于单片机的交通灯控制系统,提高交通灯的控制精度和灵活性,优化道路通行效率和交通安全性。
该系统具有高效、稳定和可靠的特点,适用于各种道路交通场景,并且可以根据实际情况进行灵活的调整。
第2章系统设计与实现2.1系统框架本系统由三个交通信号灯组成,分别为红灯、黄灯和绿灯。
这三个信号灯通过单片机控制,根据交通情况和车辆流量的变化来调整信号灯的显示状态。
2.2硬件设计本系统的硬件设计包括电源电路、信号灯电路和单片机控制电路等。
其中,电源电路提供系统所需的电源电压和电流;信号灯电路负责控制信号灯的亮灭;单片机控制电路负责接收和处理输入信号,并控制信号灯的显示状态。
2.3软件设计本系统的软件设计主要包括单片机程序的编写。
其中,单片机程序通过交通信号灯的控制逻辑和状态机设计,实现对信号灯的控制和调度。
第3章实验测试与结果分析为了验证系统的性能和可靠性,我们进行了一系列实验测试。
基于51单片机的交通灯控制系统设计
目录一引言 (2)二概要设计 (2)2.1 设计思路 (2)2.2总体设计框图 (2)三硬件设计 (3)3.1LED循环电路设计 (3)3.1.1 89cs51单片机概述 (3)3.1.2 LED循环说明 (5)3.2 倒计时显示电路 (5)3.2.1 74LS164芯片 (5)3.2.2 共阴极数码显示管 (6)3.2.3 倒计时电路 (6)3.2.4 急通车电路 (7)四软件按设计 (7)4.1 程序流程图: (7)4.2 LED红绿灯显示 (8)4.3倒计时显示 (9)4.4 急通车控制 (9)4.5程序代码 (9)五总结 (9)参考文献 (9)附录一: (9)附录二: (10)基于51单片机的交通灯控制系统设计摘要:在日常生活中,交通信号灯的使用,市交通得以有效管理,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。
交通灯控制系统由80C51单片机、键盘、LED 显示、交通灯延时组成。
系统除具有基本交通灯功能外,还具有时间设置、LED信息显示功能,市交通实现有效控制。
关键词:交通灯,单片机,自动控制一引言当今,红绿灯安装在个个道口上,已经成为疏导交通车辆最常见和最有效的手段。
但这个技术在19世纪就已经出现了。
1858年,在英国伦敦主要街头安装了以燃煤气为光源的红、蓝两色的机械般手势信号灯,用以指挥马车通行。
这是世界上最早的交通信号灯。
1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的会议大厦前的广场上,安装了世界上最早的煤气红绿灯。
它由红绿两以旋转方式玻璃提灯组成,红色表示“停止”,绿色表示“注意”。
1869年1月2日,煤气灯爆炸,是警察受伤,遂被取消!电气启动的红绿灯出现在美国,这种红绿灯由红黄绿三色圆形的投光器组成,1914年始装于纽约市5号大街的一座高塔上。
红灯亮表示“停止”,绿灯亮表示“通行”。
信号灯的出现,使得交通得以有效的管理,对于疏导交通流量、提高道路通行能力、减少交通事故有明显效果。
基于51单片机的智能交通灯系统设计说明
十字路口交通灯控制系统的设计1.设计思路近年来,随着科技的飞速发展,电子器件也随之广泛应用,其中单片机也不断深入人民的生活当中。
本模拟交通灯系统利用单片机AT89C51作为核心元件,实现了通过信号灯对路面状况的智能控制。
从一定程度上解决了交通路口堵塞、车辆停车等待时间不合理、急车强通等问题。
系统具有结构简单、可靠性高、成本低、实时性好、安装维护方便等优点,有广泛的应用前景。
本模拟系统由单片机硬/软件系统,两位8段数码管和LED灯显示系统。
和复位电路控制电路等组成,较好的模拟了交通路面的控制。
1.1 电源提供方案采用单片机控制模块提供电源。
1.2显示界面方案采用数码管显示。
这种方案只显示有限的符号和数码字符,简单,方便。
1.3 输入方案:直接在I/O口线上接上按键开关。
由于该系统对于交通灯及数码管的控制,只用单片机本身的I/O 口就可实现,且本身的计数器及RAM已经够用,故选择该方案。
2 单片机交通控制系统总体设计2.1单片机交通控制系统的通行方案设计设在十字路口,分为东西向和南北向,在任一时刻只有一个方向通行,另一方向禁行,持续一定时间,经过短暂的过渡时间,将通行禁行方向对换。
一共可以有四个状态。
通过具体的路口交通灯状态的分析我们可以把这四个状态归纳如下:(1)东西方向红灯灭,同时绿灯亮,南北方向黄灯灭,同时红灯亮,倒计时80秒。
此状态下,东西向禁止通行,南北向允许通行。
(2)东西方向绿灯灭,同时黄灯亮,南北方向红灯亮,倒计时3秒。
此状态下,除了已经正在通行中的其他所以车辆都需等待状态转换。
(3)南北方向红灯灭,同时绿灯亮,东西方向黄灯灭,同时红灯亮,倒计时60秒。
此状态下,东西向允许通行,南北向禁止通行。
(4)南北方向绿灯灭,同时黄灯亮,东西方向红灯亮,倒计时3秒。
此状态下,除了已经正在通行中的其他所以车辆都需等待状态转换。
用图表表示灯状态和行止状态的关系如下:表1交通状态及红绿灯状态灯禁止通行,转绿灯允许通行,之后黄灯亮警告行止状态将变换。
基于单片机的交通灯控制系统的设计
基于单片机的交通灯控制系统的设计交通灯控制系统是城市交通管理的重要组成部分。
它通过控制红、黄、绿三种颜色的交通灯的亮灭,以实现对交通流量的控制和引导,从而保证交通的安全和顺畅。
在本设计中,我们将使用单片机作为控制核心,通过程序对交通灯进行控制。
以下是我们设计的主要步骤:1.硬件设计部分为了简化电路设计和减少硬件成本,我们可以选择使用单片机进行控制。
在本设计中,我们选择采用常用的51单片机。
此外,还需要LED作为交通灯的灯泡,以及适当的电阻进行限流。
2.电路连接我们需要将单片机的IO口连接到LED灯泡上,以控制其亮灭。
在选用LED时,需要根据单片机输出电压和LED的额定工作电压选择适当的电阻进行串联。
同时,还需要外部的电源供电,并将其与单片机进行接地连接。
3.软件设计基于51单片机的交通灯控制程序大致可以分为两个部分:定时器中断和状态切换控制。
在定时器中断部分,我们可以设置一个定时器,例如每隔1秒触发一次中断。
在中断服务函数中,我们可以实现对交通灯状态的切换。
根据交通灯的工作模式,可以将红灯、黄灯和绿灯对应的IO口设置为高电平、低电平和高电平,以实现灯的亮灭。
通过定时器中断的触发,我们可以控制交通灯的切换速度和亮灭时间。
在状态切换控制部分,我们可以使用状态机的思想来实现。
根据不同的交通场景,我们可以定义一组不同的状态,例如红绿灯交替、黄灯闪烁等。
通过设置变量来记录当前状态,并根据状态的变化来控制交通灯的亮灭。
4.仿真和测试在完成硬件设计和软件编写后,我们可以使用仿真工具对整个系统进行模拟测试。
通过观察仿真结果,可以验证硬件设计和软件程序的正确性。
在完成仿真测试后,我们可以将系统部署到实际的硬件平台上进行实际测试。
通过观察交通灯状态切换是否符合预期,并检查灯的亮灭是否正常,可以判断系统的可靠性和稳定性。
在设计交通灯控制系统时,还需要考虑一些其他因素,例如灯的清晰可见性、防水防尘性能、电路的稳定性等。
基于单片机的交通灯控制系统设计与实现
基于单片机的交通灯控制系统需要包含以下组成部分:1.硬件设备组成:单片机、LED 灯、显示屏等硬件设备。
2.设计思路描述:交通灯控制系统的设计思路是基于定时器的,利用计数器和定时器来控制红绿灯的转换,同时通过按键检测实现手动控制。
3.程序设计:程序需要完成按键检测、信号灯控制和定时器计数等功能。
具体实现可以分为以下几步:(1) 根据硬件设备的引脚对应关系,定义各个引脚的控制方式和状态。
(2) 在程序中定义计时器和定时器,用于计时和设置红绿灯状态。
例如,计时器每隔一定时间就会触发定时器,设置红绿灯的状态,并且根据状态判断相应的亮灯和熄灯。
(3) 通过按键检测来实现手动控制,当检测到按键按下时,立即切换灯的状态,当再次按下时,又立即切换回之前的状态。
4.实现代码:下面是一个该系统的简单代码示例,供参考:#include <reg52.h>#define uint unsigned int#define uchar unsigned charsbit KEY1 = P3^0;//按键定义sbit RED = P2^2;//红灯定义sbit YELLOW = P2^1;//黄灯定义sbit GREEN = P2^0;//绿灯定义/*函数声明*/void initTimer0();void delay1ms(uint count);/*主函数*/int main(){initTimer0();/*初始化计时器*/while(1){if(KEY1 ==0){/*按键按下*/delay1ms(5);/*消抖*/if(KEY1 ==0){/*仍然按下*//*绿灯亮10s*/GREEN =1;delay1ms(10000);GREEN =0;/*黄灯亮3s*/YELLOW =1;delay1ms(3000);YELLOW =0;/*红灯亮7s*/RED =1;delay1ms(7000);RED =0;/*黄灯亮2s*/YELLOW =1;delay1ms(2000);YELLOW =0;}}}return0;}/*函数定义*/void initTimer0(){TMOD &=0xF0;TMOD |=0x01;TH0 =0xFC;TL0 =0x18;EA =1;ET0 =1;TR0 =1;}/*1ms延时函数*/void delay1ms(uint count){uint i,j;for(i=0;i<count;i++){for(j=0;j<125;j++){}}}/*计时器中断函数*/void timer0() interrupt 1{TH0 =0xFC;TL0 =0x18;}以上是一个简单的基于单片机的交通灯控制系统设计与实现示例。
单片机课程设计交通灯总结
单片机课程设计交通灯总结在单片机课程设计中设计交通灯控制系统是一个常见而有趣的项目。
以下是一个关于交通灯控制系统单片机课程设计的总结:设计目标:实现一个模拟交通路口的交通灯控制系统,包括红灯、绿灯、黄灯状态的切换,考虑不同方向车辆的通行情况。
硬件与软件要求:1.使用单片机(如AT89C51)作为主控制器。
2.连接LED灯模拟交通灯的红、黄、绿三个状态。
3.设置按钮或传感器来模拟车辆和行人的触发信号。
4.使用编程语言(如C语言)编写单片机程序,实现交通灯的状态切换逻辑。
设计步骤:1.确定交通灯状态:定义红、黄、绿三个状态,确定每个状态的持续时间。
2.设计状态切换逻辑:编写程序逻辑,根据不同的触发条件切换交通灯的状态。
例如,通过按钮触发或设置定时器来模拟车辆和行人的触发。
3.处理不同方向的通行:考虑路口不同方向的车辆通行情况,确保交通灯切换的合理性。
可以设置不同方向的灯的状态互斥。
4.实现程序代码:使用C语言等编写程序代码,并通过编译器将代码烧录到单片机中。
5.调试与优化:在实际硬件上进行调试,确保交通灯的状态切换和触发条件的逻辑正确。
根据实际情况优化代码,提高系统的稳定性和可靠性。
设计成果:成功设计并实现了一个交通灯控制系统,具有良好的交互性和可扩展性。
系统能够模拟真实路口的交通流量情况,通过合理的状态切换实现车辆和行人的有序通行。
学到的知识与技能:1.掌握单片机编程技能,包括IO口控制、定时器使用等。
2.熟悉硬件与软件协同设计的过程。
3.提高了系统设计和调试的能力。
4.学习了如何考虑不同方向车辆通行情况,提高了系统的实用性。
反思与展望:通过这个项目,我更深入地理解了单片机的工作原理和编程技术。
在未来,可以考虑增加更多的功能,如紧急情况下的交通灯切换、LED显示屏显示等,以提高系统的智能化和实用性。
这个课程设计不仅锻炼了我的技术能力,也培养了我对系统设计的整体思考能力。
《2024年基于单片机的智能交通灯控制系统的研究》范文
《基于单片机的智能交通灯控制系统的研究》篇一一、引言随着城市化进程的加快,交通问题日益突出,交通灯作为城市交通管理的重要设施,其性能和智能化程度直接影响到交通的顺畅和安全。
因此,基于单片机的智能交通灯控制系统的研究具有重要的现实意义。
本文将从系统设计、硬件实现、软件编程、性能优化等方面对基于单片机的智能交通灯控制系统进行研究。
二、系统设计1. 系统架构本系统采用单片机作为核心控制器,通过传感器、执行器等设备实现交通灯的智能控制。
系统架构包括单片机、输入设备、输出设备以及通信模块等部分。
其中,输入设备包括车辆检测器、行人检测器等,用于检测交通状况;输出设备为交通灯,用于指示交通;通信模块用于实现系统与上位机的通信。
2. 工作原理系统通过传感器实时检测交通状况,根据检测结果控制交通灯的亮灭。
当检测到有车辆或行人通过时,系统会相应地调整交通灯的亮灯时间,以保证交通的顺畅和安全。
同时,系统还具有自动调节功能,根据实际交通情况自动调整亮灯时间,以适应不同的交通状况。
三、硬件实现1. 单片机选择本系统选用STC12C5A60S2系列单片机作为核心控制器,该单片机具有高速度、低功耗、低成本等优点,适合应用于本系统中。
2. 传感器选择系统采用红外线车辆检测器和CCD行人检测器等传感器实现交通状况的实时检测。
这些传感器具有高灵敏度、低误报率等优点,能够有效地提高系统的性能。
3. 执行器选择执行器采用LED交通灯,具有高亮度、长寿命等优点,能够有效地指示交通。
四、软件编程1. 编程语言选择本系统采用C语言进行编程,C语言具有代码效率高、可移植性强等优点,适合应用于本系统中。
2. 程序设计思路程序设计包括主程序和中断服务程序两部分。
主程序负责初始化系统参数和控制程序的循环执行;中断服务程序负责处理传感器输入的信号和执行相应的控制命令。
在程序设计过程中,应充分考虑系统的实时性和稳定性要求。
五、性能优化1. 算法优化通过对算法进行优化,可以提高系统的响应速度和准确性。
基于单片机的智能交通灯控制系统设计与实现
基于单片机的智能交通灯控制系统设计与实现智能交通灯控制系统是一个基于单片机技术的交通管理系统,通过智能化的控制算法和传感器设备来实现交通信号的自动控制,提高交通效率和安全性。
下面将详细介绍智能交通灯控制系统的设计与实现。
首先,智能交通灯控制系统需要使用一种合适的单片机进行控制。
在选择单片机时,需要考虑处理性能、输入输出接口的数量和类型,以及对实时性的要求。
一般来说,常用的单片机有STM32、Arduino等。
在本设计中,我们选择了STM32作为控制器。
其次,智能交通灯控制系统需要使用多个传感器设备来感知各个方向上的交通情况。
常用的传感器包括车辆识别感应器、红外线传感器和摄像头等。
这些传感器可以通过GPIO和串口等接口与单片机进行连接,并通过单片机的开发板上电路来提供供电和信号转换。
接下来,智能交通灯控制系统需要设计一个合适的算法来根据传感器的输入数据进行交通灯的控制。
在设计算法时,需要考虑各个方向上的交通情况、优先级和交通流量等因素。
一个常见的算法是基于信号配时的方式,通过设置不同的绿灯时间来实现交通流量的优化。
此外,智能交通灯控制系统还需要具备良好的用户界面,方便交通管理员进行参数设置和监控。
可以使用LCD屏幕显示当前的交通灯状态和交通流量等信息,通过按键和旋钮等输入设备进行操作。
在实现智能交通灯控制系统的过程中,需要进行软件和硬件的开发。
软件开发涵盖了单片机程序的编写,包括传感器数据的采集和处理、交通灯状态的控制和显示等。
硬件开发涵盖了电路的设计和制作,包括传感器的接口电路、电源管理电路和输入输出控制电路等。
最后,在实现智能交通灯控制系统后,需要进行测试和调试。
通过对系统进行功能测试和性能测试,检验系统的稳定性和可靠性。
在实际应用中,还需要考虑交通流量的变化和高峰时段的处理,以及与其他系统的接口和数据交互。
综上所述,基于单片机的智能交通灯控制系统设计与实现需要考虑单片机的选择、传感器设备的使用、控制算法的设计、用户界面的设计、软件和硬件开发等环节。
基于单片机的交通灯控制器的设计及实现
基于单片机的交通灯控制器的设计及实现交通灯控制器是一个广泛应用于城市交通系统中的设备,它用于控制交通信号灯的工作,确保交通流畅且安全。
在本篇文章中,将介绍基于单片机的交通灯控制器的设计与实现。
首先,交通灯控制器的设计需要考虑以下几个方面:1.硬件设计:交通灯控制器的硬件设计主要包括选择合适的单片机、电源电路、输入输出接口以及信号灯的电路设计。
合适的单片机应具有足够的输入输出引脚以及处理能力,常用的有51系列和STM32系列单片机。
电源电路需要稳定的直流电源供应,以确保交通灯的正常工作。
2.软件设计:交通灯控制器的软件设计包括控制算法的设计与编程。
控制算法需要根据交通流量和交通情况合理调配信号灯的时间,以实现交通流量的最优化。
通过编程,将控制算法转化为单片机可以执行的指令,以控制信号灯的切换。
3.安全设计:交通灯控制器的安全设计需要考虑各种异常情况的处理,如断电恢复、故障检测等。
在断电后,交通灯控制器应能够自动恢复到正常工作状态。
同时,应设计故障检测机制,及时发现并报警,以保证交通灯的正常工作。
实现基于单片机的交通灯控制器的步骤如下:1.确定交通路口的情况及需求:根据实际情况,确定交通路口的车流量、行人流量等因素,以确定交通灯控制器的设计方案。
2.硬件设计与搭建:选择合适的单片机,设计电源电路、输入输出接口以及信号灯的电路。
根据设计方案,搭建出交通灯控制器的硬件平台。
3.软件开发:编写控制算法的程序,并将其转化为单片机可以执行的指令。
在程序中,根据交通流量和交通情况,合理调配信号灯的时间,以实现交通流量的最优化。
4.测试与调试:将程序烧录到单片机中,并连接相关硬件,进行测试与调试。
通过模拟不同情况下的交通流量,验证交通灯控制器的工作效果。
5.安全设计与优化:加入安全设计机制,处理异常情况,并对交通灯控制器进行优化。
根据实际使用过程中的反馈,对控制算法进行调整,以提升交通流量控制的效果。
总结起来,基于单片机的交通灯控制器的设计与实现包括硬件设计与搭建、软件开发、测试与调试以及安全设计与优化等步骤。
基于单片机的交通灯设计报告
基于单片机的交通灯设计报告交通灯是指示交通流动规则的电子设备,它在道路交叉口上起到了至关重要的作用。
为了更好地控制交通流量,减少交通事故的发生,本文介绍了一个基于单片机的交通灯设计。
首先,整个系统采用STM32单片机作为控制器,具有较强的处理能力和稳定性。
该单片机集成了丰富的外设资源,包括GPIO口、定时器和串口等,能够实现交通灯的各种功能。
系统中的交通灯分为红、黄、绿三种信号灯,分别代表停车、准备出发和通行的指示。
这三种信号灯按照交通信号灯的规定顺序进行切换,使司机和行人能够清晰地知晓当前的交通状态。
为了实现交通灯的控制,系统采用了定时器中断来实现定时切换信号灯。
通过设置定时器,可以控制每种信号灯亮的时间,从而模拟真实道路上的交通流动。
在每个定时器中断中,通过改变GPIO口的电平来控制信号灯的亮灭。
在交通灯系统中,还加入了对交通流量的检测,并根据流量大小来调整信号灯的显示时间。
通过设置红、黄、绿灯的显示时间来平衡各个方向上的交通流量,保证交通流畅和安全。
此外,系统还具备手动控制的功能,可以通过串口或者按键来手动切换信号灯。
这样在特殊情况下,如施工、事故等,交通灯可以手动控制,提高路面的通行效率。
在设计交通灯系统时,还要考虑到系统的稳定性和可靠性。
通过设置合适的硬件电路和软件程序,防止因噪声、干扰和其他因素引起的系统故障和误操作。
总之,基于单片机的交通灯设计可以实现有效的交通流控制,提高交通安全和通行效率。
在实际应用中,还可以加入更多的功能和优化算法来适应不同的交通场景。
这种设计不仅仅可以用于道路交通,还可以应用于地铁、机场、停车场等各种交通场所。
基于单片机的交通灯控制系统的设计方案
设计一个基于单片机的交通灯控制系统可以帮助实现交通信号灯的自动控制,提高交通效率和安全性。
以下是一个简要的设计方案:设计方案概述该系统基于单片机(如Arduino、STM32等)实现交通灯的控制,包括红灯、黄灯、绿灯的切换以及定时功能。
通过传感器检测车辆和行人的情况,系统可以根据实际交通情况智能地调整交通灯的状态。
系统组成部分1. 单片机控制模块:负责接收传感器信号、控制交通灯状态,并实现定时功能。
2. 传感器模块:包括车辆检测传感器和行人检测传感器,用于感知交通情况。
3. LED灯模块:用于显示红灯、黄灯、绿灯状态。
4. 电源模块:为系统提供稳定的电源供电。
工作流程1. 单片机接收传感器信号,监测车辆和行人情况。
2. 根据监测结果,控制交通灯状态的切换:红灯亮时其他灯灭,绿灯亮时红灯和黄灯灭,黄灯亮时其他灯灭或闪烁。
3. 实现交通灯状态的定时切换:设定各个灯的持续时间,保证交通信号的周期性切换。
系统特点1. 智能化控制:根据实时交通情况自动调整交通灯状态,提高交通效率。
2. 节能环保:通过定时控制,减少交通信号灯的能耗。
3. 可靠性:采用单片机控制,系统运行稳定可靠。
可扩展功能1. 远程监控:添加通讯模块,实现对交通灯系统的远程监控和控制。
2. 数据记录:添加存储模块,记录交通流量数据,为交通规划提供参考。
3. 多路控制:扩展系统支持多个交通路口的交通信号控制。
通过以上设计方案,可以实现基于单片机的交通灯控制系统,提升交通管理的效率和智能化水平。
设计时需注意硬件选型、软件编程和系统调试,确保系统正常运行并满足实际需求。
单片机控制的交通灯控制系统设计
单片机控制的交通灯控制系统设计交通灯控制系统是现代城市交通管理的重要组成部分,通过对交通流量的调控,保障道路的交通安全和通行效率。
本文将介绍一个基于单片机的交通灯控制系统的设计。
首先,我们需要确定该交通灯控制系统的基本功能和设计要求。
在设计过程中,我们考虑以下几点:1.确定交通灯的工作模式:根据不同的交通流量,交通灯可以设置为定时模式或感应模式。
2.支持不同交通流量的调节:根据交通流量的变化,交通灯系统需要能够自动调整红绿灯的时间间隔。
3.考虑交通信号的同步问题:为了确保交通流畅,不同路口的交通灯信号需要同步。
4.灯光状态显示:系统需要实时显示交通灯的状态,方便交通参与者了解当前交通情况。
基于以上基本要求,我们可以进行以下设计:1.硬件方案:a.单片机选择:选择适合的单片机作为核心控制器。
一般选择性能较强的ARM单片机,如STM32系列。
b.光电传感器:用于检测车辆和行人的存在,以实现感应模式。
通过光电传感器的输出信号,控制交通灯灯组的切换。
c.信号灯:根据交通需要,设置红、黄、绿三色信号灯。
d.显示屏:用于显示交通灯的状态,实时反馈给交通参与者。
e.供电和保护电路:为系统提供稳定的电源和电路保护。
2.软件方案:a.初始化设置:根据实际道路布局和交通流量情况,设定交通灯的初始调节参数。
b.交通信号控制:根据交通流量和光电传感器的反馈信息,控制交通灯灯组的切换,并实现不同模式的调节。
c.信号同步:通过与其他交通灯系统的交互,实现不同路口的交通信号同步,避免交通拥堵和事故发生。
d.状态显示:通过显示屏实时显示交通灯的状态,方便行人和驾驶员了解道路交通情况。
在完成硬件和软件的设计后,需要进行系统的测试和优化。
通过不断的测试和实验,对交通灯控制系统的参数进行调整和优化,以达到最佳的交通通行效率。
本文提出了一个基于单片机的交通灯控制系统的设计方案,通过硬件和软件的协同工作,能够根据交通流量的变化,自动调节交通灯的时间间隔,实现交通信号的同步,并通过显示屏实时显示交通灯的状态。
基于单片机的智能交通灯控制系统设计
基于单片机的智能交通灯控制系统设计一、本文概述随着城市化进程的加快,交通问题日益严重,如何有效地管理交通流、提高交通效率并保障行车安全成为了亟待解决的问题。
智能交通灯控制系统作为一种重要的交通管理手段,具有实时响应、灵活调控、节能环保等优点,受到了广泛关注。
本文旨在设计一种基于单片机的智能交通灯控制系统,旨在通过智能化、自动化的方式优化交通管理,提升城市交通的效率和安全性。
本文将首先介绍交通灯控制系统的发展历程和现状,分析现有系统存在的问题和不足。
随后,将详细介绍基于单片机的智能交通灯控制系统的设计思路、系统架构和功能模块。
在设计过程中,我们将重点关注系统的实时性、稳定性和可扩展性,并采用先进的控制算法和通信技术,确保系统能够在复杂的交通环境下稳定运行。
本文还将对系统实现过程中的关键技术和难点进行深入探讨,如单片机的选型、传感器数据的采集与处理、通信协议的制定等。
我们将结合实际案例,展示该智能交通灯控制系统在实际应用中的效果,并对其进行性能评估和优化。
本文将对基于单片机的智能交通灯控制系统的前景进行展望,探讨未来可能的改进方向和应用领域。
通过本文的研究和设计,我们期望能够为智能交通领域的发展做出一定的贡献,为城市交通管理提供更为高效、智能的解决方案。
二、单片机基础知识单片机,全称单片微型计算机(Single-Chip Microcomputer),是一种集成电路芯片,它采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O 口和中断系统、定时器/计数器等功能集成到一块硅片上,构成一个小而完善的微型计算机系统。
单片机具有体积小、功耗低、控制功能强、扩展灵活、可靠性高、性价比高、易于产品化等优点,因此在智能交通灯控制系统中得到了广泛应用。
单片机的主要特点包括:集成度高:单片机将CPU、内存、I/O接口等集成在一块芯片上,大大提高了系统的集成度,降低了系统的复杂性和成本。
单片机控制的交通灯设计
单片机控制的交通灯设计
一、引言
交通灯是控制交通流量的有效途径,它能有效减少交通拥堵,提高交
通安全。
现代交通灯基本要求有简单的控制逻辑,因此可以利用单片机来
控制交通灯。
单片机控制的交通灯由单片机、绿灯、黄灯、红灯和控制电
路等组成,可以根据设定的定时、定周期等各种状态开关控制,从而有效
控制交通流量,提高交通安全。
本文重点介绍了单片机控制的交通灯原理、构成、工作原理和应用,为实现对交通灯的自动化控制提供依据。
二、单片机控制的交通灯原理
单片机控制的交通灯是以单片机为核心,由绿灯、黄灯和红灯这三个
部件为标志牌,以及智能控制电路为辅助构成的一套交通灯系统。
其原理
简单说来,就是将一定的信号变成一定的控制信号来控制交通灯的开关信号,以达到自动化控制的效果。
三、单片机控制的交通灯构成
单片机控制的交通灯由单片机、绿灯、黄灯、红灯和控制电路等组成。
单片机作为核心,用于接收输入信号,并将信号转换为相应的控制信号;
绿灯、黄灯和红灯分别为标志牌,用以指示车辆前行、慢行或停止;控制
电路用于控制绿黄红灯的亮灭,实现整套交通灯的控制。
四、单片机控制的交通灯工作原理。
单片机课程设计报告书---交通灯控制电路设计
交通灯控制电路设计一、选题背景交通灯控制系统是城市道路管理中极为重要的一个环节,其在加强道路交通管理,减少交通事故的发生,提高道路使用效率等方面具有不可替代的作用。
近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制技术日益更新。
本文将介绍一种用单片机作为系统的主控单元,通过单片机嵌入软件程序来实现交通信号灯的多重控制方式,整个系统以STC89C52RC单片机为核心加以晶振电路、复位电路、电源电路构成系统的控制枢纽,系统状态显示系统采用7段LED数码管进行倒计时的现实,红、黄、绿三色LED灯作为信号指示。
系统除基本的交通灯功能外,还具有倒计时、紧急情况处理等功能,较好的模拟实现了十字路口出现的状况。
本系统性能稳定,功能完善,实用性强。
二、方案论证(设计理念)1.主要内容用单片机系统设计十字路口交通灯控制电路,要求东西方向的红、黄、绿灯和南北方向的红、黄、绿灯按照下面的工作时序进行工作,黄灯亮时应为闪烁状态:(1)南北和东西车辆交替进行,各通行时间 24 秒(2)每次绿灯变红灯时,黄灯先闪烁 4 秒,才可以变换运行方向。
(3)十字路口要有数字显示作为时间提示,以倒计时按照时序要求进行显示;具体为:当某方向绿灯亮时,置显示器为某值,然后以每秒减 1 计数方式工作,直至减到数为“0”,十字路口红、绿等交换,一次工作循环结束,而进入下一步某方向的工作循环。
(4)可以手动调整和自动控制,夜间为黄灯闪耀状态2.教学要求选择适当元器件设计单片机外围电路、由单片机系统完成二十四进制倒计时、四进制倒计时、显示及模式切换逻辑控制等;仿真实现各电路功能;搭建、调试电路实现设计要求的功能;掌握复杂数字电路的一般设计方法,具备初步的独立设计能力;掌握对电子线路进行仿真调试的方法和技能;掌握实现电路的实验方法和电路的调试方法。
3.方案设计与选择3.1交通信号控制原理交通信号控制原理是按照一定的控制程序,在交叉路口的每个方向上通过红、黄、绿三色灯循环显示,指挥交通流,在时间上实施隔离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长江学院课程设计报告课程设计题目:交通信号灯控制系统制作设计2011年 06月 06日单片机控制交通灯控制系统设计摘要十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。
那么靠什么来实现这井然秩序呢?靠的是交通信号灯的自动指挥系统。
交通信号灯控制方式很多。
本设计是根据我所学习的单片机课程,按照大纲要求对我进行的一次课程检验,是进行单片机课程训练的必要任务,也对我们掌握单片机应用有很大的帮助。
掌握单片机技术是一门不可或缺的技术,对我将来的工作以及生活和学习都有很密切的联系。
当今世界的发展是以科学技术为基础的,微控技术在生产中所占的比重也越来越大。
单片机的出现是近代计算机技术发展史上的一个重要里程碑。
近年来,随着电子技术和微机计算机的迅速发展,单片机的档次不断提高,其应用领域也在不断的扩大,已在工业控制、尖端科学、智能仪器仪表、日用家电、汽车电子系统、办公自动化设备、个人信息终端及通信产品中得到了广泛的应用,成为现代电子系统中最重要的智能化的核心部件。
目录1.引 (4)2.原件型号及参数......................................................... . (5)2.1 MSC-51芯片简介......................................................... .. (5)2.2双色发光二极管.......................................................... . (5)2.3双色灯与数码显示的对应关系 (5)2.4交通灯的状态 (6)2.5硬件连线 (6)2.6 8279使用简介......................................................... .. (6)3 CAD电路原理图与说明......................................................... ...........8 4件设计流程图与源程序清...95实验心得与体会......................................................... . (20)6参考文献......................................................... . (21)1引言当今,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。
大多红绿灯由红绿黄三色圆形投光器组成:“红”灯表示“停止”,“黄”灯表示“注意”,“绿”灯表示“通行”。
本电路设计了一个简易的交通灯控制系统,利用51单片机的定时器产生秒信号,控制十字路口的红绿黄灯交替点亮和熄灭,并且用4只LED数码管显示十字路口两个方向的剩余时间。
并运用按键设置两个方向的通行时间(绿灯点亮的时间),使系统的工作符合一般交通灯控制要求。
2元器件的型号及参数2.1 MSC-51芯片简介AT89S52是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。
AT89S52单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明:2.2 双色发光二极管双色发光二极管是将一个红色LED管芯和一个绿色LED管芯封装在一起、公用负端的一个集成器件。
当红色正端加高电平,绿色正端加低电平时,红灯亮;红色正端加低电平,绿色正端加高电平时,绿灯亮;两端都加高电平时,黄灯亮。
实验中,采用4只双色发光二极管(DLED)分别模拟安装在东、西、南、北4个路口上的4只交通灯,每只双色发光二极管由74LS240反向驱动器驱动,74LS240输入控制端为DR和DG,分别控制DLED红灯和黄灯的工作。
具体控制如下:发光二极管的控制: R 0 G 1 红色R 1 G 0 绿色R 0 G 0 黄色R 1 G 1 不发光2.3 双色灯与数码管显示的对应关系3号数码管(DR4)北2号数码管(DR3)西1号数码管(DR2)南0号数码管(DR1)东2.4交通灯的状态2.5 硬件连线(1)采用P1口输出,P1.0~P1.7分别与DG1,DR1,DG2,DR2,DG3,DR3,DG4,DR4相连;(2)P3.2和P3.3分别与按键开关K1、K2相连,K1的优先级高于K2;(3)在爱迪克实验教学机上,数码管和8279内部已经连接好,不需再连线。
2.6 8279使用简介8279可按其功能分为:键盘功能块;显示功能块;控制功能块;与CPU接口功能块控制功能块包括控制和定时寄存器,定时和控制,扫描计数器三部分。
它主要用来控制键盘和显示功能块工作.控制和定时寄存器:用于存贮来自CPU的编程命令,CPU对8279编程以确定键盘与显示器工作方式和其它工作条件时,先把命令控制数据放到数据总线上,然后使A0=1,WR=0CS=0,并在WR上升沿把命令键存在控制和定时寄存器中,并经译码,建立适当的功能.定时和控制:它含基本的定时计数器,第一个计数器是一个分频系数为2-31的前置定时器,分频系数可由程序预置,使内部频率为100KHz,从而能给出5.1ms键盘扫描时间和10.3ms反跳时间,其它计数器将此基本频率分频后,提供适当的按键扫描.行扫描.键盘阵列扫描.以及显示器扫描次数.本图片为8279引脚图[1]8279 在键盘工作方式时,可设置为双键互锁方式和 N 键循回方式。
双键互锁方式:若有两个或多个键同时按下时,不管按键先后顺序如何,只能识别最后一个被释放的键,并把该键值送入 FIFO RAM 中。
N 键循回方式:一次按下任意个键均可被识别,按键值按扫描次序被送入FIFO RAM 中。
2.5.2 显示方式显示功能块包括:显示寄存器,16X8显示RAM,显示地址寄存器.显示RAM和显示寄存器8279内部有16X8的显示RAM,通过显示寄存器和两个四位端口0UT A0-3,0UT BO-3来刷新显示,显示器可以是白炽灯,也可以是8段数码管,显示RAM可以是16X8的形式,也可以构成两个16x4 的RAM 形式,显示RAM可由CPU进行读写,被读写的RAM字节地址由显示地址寄存器指示.显示地址寄存器保存当前CPU读或写的那个RAM地址,以及正显示着的那两个4位半字节的地址,读写地址由CPU命令编程,也可置为每次读写后地址自动加1的工作方式,在设置了正确的工作方式后,显示RAM可直接由CPU 读出,半字节A和半字节B地址自动由8279更新,以适应由CPU送入的数据,A 和B半字节可独立送入,也可作为一个字送入,随CPU所设置的工作方式而定3 CAD电路原理图与说明4软件设计流程图与源程序清单及注解4.1主程序流程图.主程序.程序注入4.2源程序清单及注解Z8279 EQU 08701H ;8279 状态/命令口地址D8279 EQU 08700H ;8279 数据口地址LEDMOD EQU 00H ;左边输入八位字符显示;外部译码键扫描方式,双键互锁LEDFEQ EQU 2FH ;扫描速率LEDCLS EQU 0C1H ;清除显示 RAMLEDWR0 EQU 80H ;设定的将要写入的显示RAM地址ORG 0000HAJMP STARTORG 0003H ;INT 0 中断入口地址LJMP INT_0ORG 000BH ;INT T0 入口地址AJMP INT_T0ORG 001BH ;INT T1 入口地址AJMP INT_T1ORG 0040HSTART:MOV SP,#60HLCALL INIT8279 ;初始化8279MOV R6,#00HMOV R1,#0H ;南北MOV R2,#0H ;东西MOV 32h,#10MOV 33h,#8MOV TMOD, #10H ;置T1为方式1 SETB EX0 ;INT 0 中断有效SETB IT0SETB PX0MOV TMOD,#11HMOV TL0,#00H ;50 mS 的时间常数MOV TH0,#04CHMOV TL1,#00H ;50 mS 的时间常数MOV TH1,#04CHMOV R0,#20HSETB TR0SETB TF1SETB ET0SETB TR1SETB ET1SETB EA ;开总中断LCALL ST0 ;置初始状态南北东西全红WAIT0: MOV A,R1MOV R2,AMOV R3,ALCALL DISPLAYCJNE R1,#00,WAIT0CIRCLE: LCALL ST1WAIT1: MOV A,R1MOV R2,ALCALL DISPLAYCJNE R1,#02,WAIT1FLASH:LCALL ST2MOV A,R1MOV R2,ALCALL DISPLAYCJNE R1,#00,flashLCALL ST3WAIT3: MOV A,R1MOV R3,ALCALL DISPLAYCJNE r1,#02,WAIT3FLASH1:LCALL ST4MOV A,R1MOV R3,ALCALL DISPLAYCJNE R1,#00,FLASH1LJMP CIRCLEST0:MOV DPTR,#8300hMOV a,#0FH ;东西南北全红MOVX @DPTR,aMOV R1,#05RETST1: MOV DPTR, #8300H ; 东西绿灯南北红灯MOV A, 32hMOV R1, AMOV A, #5AHMOVX @DPTR, ARETST2: MOV DPTR,#8300H;绿灯闪3次MOV A,#5FHMOVX @DPTR,ALCALL DELAY ;调用延时LCALL DELAYLCALL DELAYMOV A,#5AHMOVX @DPTR,ALCALL DELAY ;调用延时LCALL DELAYLCALL DELAYRETST3: MOV DPTR,#8300H ;南北绿灯东西红灯MOV A,33hMOV R1,AMOV A,#0A5HMOVX @DPTR,ARETST4: MOV DPTR,#8300H ;绿灯闪3次MOV A,#0AFHMOVX @DPTR,ALCALL DELAY ;调用延时LCALL DELAYLCALL DELAYMOV A,#0A5HMOVX @DPTR,ALCALL DELAY ;调用延时LCALL DELAYLCALL DELAYRETINT_0:PUSH PSW ;保护现场PUSH 2PUSH 90HCLR EX0MOV P1, #0FH ;南北,东西都亮红灯 MOV R2, #100 ;延时10秒LCALL DISPLAYSETB EX0POP 90H ;恢复现场POP 2POP PSWRETIDELAY: ;延时子程序PUSH 8 ;保存现场PUSH 9MOV 8,#0HDELAY1: MOV 9,#0HDJNZ 9,$DJNZ 8,DELAY1POP 9 ;恢复现场POP 8RETINIT8279: ;8279初始化子程序PUSH DPH ;保存现场PUSH DPLPUSH ACCLCALL DELAY ;延时MOV DPTR ,#Z8279MOV A,#LEDMOD ;置8279工作方式MOVX @DPTR,AMOV A,#LEDFEQ ;置键盘扫描速率MOVX @DPTR,AMOV A,#LEDCLS ;清除 LED 显示MOVX @DPTR,ALCALL DELAY ;延时POP ACC ;恢复现场POP DPLPOP DPHRET;显示字符子程序;输入: R4,位置 R5,值DISLED: PUSH DPH ;保存现场PUSH DPLPUSH ACCMOV A,#LEDWR0 ;置显示起始地址ADD A,R4 ;加位置偏移量MOV DPTR,#Z8279MOVX @DPTR,A ;设定显示位置MOV DPTR,#LEDSEG ;置显示常数表起始位置 MOV A,R5MOVC A,@A+DPTR ;查表MOV DPTR,#D8279MOVX @DPTR,A ;显示数据POP ACC ;恢复现场POP DPLPOP DPHRETINT_T0: ;INT_T1中断服务子程序PUSH DPH ;保护现场PUSH DPLPUSH ACCPUSH PSWCLR TR0MOV TL0,#00H ;50mS 定时常数MOV TH0,#4CHSETB TR0LCALL KEYCAN ;8279键盘扫描MOV A, R6CJNE R6,#00H,LOOP9SJMP EXIT0LOOP9: CJNE A,#30H,NEXT ;判断是否南北绿灯时间重置CLR TR1LOOP8: MOV R6,#00H ;加计数子程序LCALL KEYCANMOV A,R6CJNE A,#31H, LOOPMOV A,32HADD A,#01DA AMOV 32H, AMOV R2, ALCALL DISPLAYSJMP LOOP8LOOP: CJNE A,#32H,EXIT1MOV A,32HSUBB A,#01 ;减计数子程序MOV 32H,AMOV R2,ALCALL DISPLAYSJMP LOOP8EXIT1: CJNE A,#35H,LOOP8SJMP EXIT0NEXT: CJNE A,#37H,EXIT0 ;判断是否东西绿灯时间重置 CLR TR1LOOP7: MOV R6,#00HLCALL KEYCANMOV A, R6CJNE A,#31H,LOOP1MOV A,33H ;加计数子程序ADD A,#01DA AMOV 33H,AMOV R3,ALCALL DISPLAYSJMP LOOP7LOOP1: CJNE A,#32H,EXIT2MOV A,33H ;减计数子程序SUBB A,#01MOV 33H,AMOV R3,ALCALL DISPLAYSJMP LOOP7EXIT2: CJNE A,#35H, LOOP7EXIT0: SETB TR1MOV R6, #00POP PSW ;恢复现场POP ACCPOP DPLPOP DPHRETI ;中断返回INT_T1: ;INT_T1中断服务子程序 PUSH DPH ;保护现场PUSH DPLPUSH ACCPUSH PSWCLR TR1MOV TL1,#00H ;50mS 定时常数MOV TH1,#4CHSETB TR1DJNZ R0,EXIT ;判断是否到1000毫秒 MOV R0,#20 ; 判断是否到1秒DEC R1EXIT: POP PSW ;恢复现场POP ACCPOP DPLPOP DPHRETI ;中断返回DISPLAY: MOV B, #10MOV A, R2DIV AB ;除法指令MOV R4,#1MOV R5,A ;商放在高位LCALL DISLED ;显示秒高位MOV R4,#0MOV R5,B ;余数放在低位LCALL DISLED ;显示秒低位MOV B, #10MOV A, R3DIV ABMOV R4,#7MOV R5,A ;商放在高位LCALL DISLED ;显示秒高位MOV R4,#6MOV R5,B ;余数放在低位LCALL DISLED ;显示秒低位RETKEYCAN: PUSH DPH ;保存现场PUSH DPLPUSH PSWMOV DPTR,#Z8279MOVX A,@DPTR ;读8279状态ANL A,#07H ;屏蔽D7-D3JNZ RD_KB ;判断是否有键输入MOV A,#0H ;置标志(无键输入)SJMP EXIT3RD_KB: MOV A,#40h ;读 FIFO RAM 命令MOVX @DPTR,AMOV DPTR,#D8279MOVX A,@DPTR ;读键ANL A,#3FH ;屏蔽 SHIFT 和 CTRL 键MOV DPTR,#KEYCODE ;键码表起始地址MOVC A,@A+DPTR ;查表MOV R6,AEXIT3: POP PSW ;恢复现场POP DPLPOP DPHRETLEDSEG: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H ;'0,1,2,3,4,5,6,7' DB 7FH,6FH,77H,7CH,39H,5EH,79H,71H ;'8,9,A,B,C,D,E,F' DB 6DH,40H,08H,00H,59H,0FH,76H ;'U,-,_, ,I,O,P, ' KEYCODE:DB 30H,31H,32H,33H,34H,35H,36H,37H ;'1,2,Q,W,A,S,+,Z' DB 38H,39H,3AH,3BH,3CH,3DH,3EH,3FH ;'3,4,E,R,D,F,X,C' END5实验心得与体会本次实习设计了交通灯控制系统,设计了一个简易的交通灯控制系统,利用51单片机的定时器产生秒信号,控制十字路口的红绿黄灯交替点亮和熄灭,并且用4只LED数码管显示十字路口两个方向的剩余时间。