圆的对称性1
圆的认识(二)知识点总结
圆的认识(二)知识点总结一、圆的对称性。
1. 轴对称性。
- 圆是轴对称图形,其对称轴是任意一条经过圆心的直线。
圆有无数条对称轴。
- 例如,我们可以将一个圆形纸片沿着任意一条通过圆心的直线对折,对折后的两部分都能完全重合,这就体现了圆的轴对称性。
2. 中心对称性。
- 圆也是中心对称图形,对称中心为圆心。
- 把一个圆绕着圆心旋转任意一个角度后,都能与原来的图形重合。
在圆形的转盘游戏中,转盘绕着圆心旋转后,其位置虽然改变了,但形状和大小不变,这就是圆的中心对称性的体现。
二、弧、弦、圆心角的关系。
1. 定义。
- 圆心角:顶点在圆心的角叫做圆心角。
例如在圆O中,∠ AOB的顶点O 是圆心,所以∠ AOB是圆心角。
- 弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A、B为端点的弧记作overset{frown}{AB}。
- 弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆内最长的弦。
例如在圆O中,线段AB是弦,若AB经过圆心O,则AB是直径。
2. 关系定理。
- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
- 例如,在圆O中,如果∠ AOB=∠ COD,那么overset{frown}{AB}=overset{frown}{CD},AB = CD。
3. 推论。
- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
三、圆周角。
1. 定义。
- 顶点在圆上,并且两边都与圆相交的角叫做圆周角。
例如在圆O中,∠ACB的顶点C在圆上,且AC、BC都与圆相交,所以∠ ACB是圆周角。
2. 圆周角定理。
- 一条弧所对的圆周角等于它所对的圆心角的一半。
- 例如,在圆O中,弧overset{frown}{AB}所对的圆周角∠ ACB和圆心角∠ AOB,则∠ ACB=(1)/(2)∠ AOB。
教育部参赛_5.2圆的对称性(1)课件 苏科版_伏贵芹
O和
O’
AOB,A’O’B’
3.将 张 明 片 在 起 使 两 透 纸 叠 一 ,
B
O与
B'
O重 。 合
O
O'
A'
A
A’
O
B
O’
B’
AOB= A’O’B’
AB = A’B’
AB=A’B’
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
AB = A’B’ AOB=A’O’B’
3.
AB=A’B’
练习:
1.如 , 图 在
C D O
O中 AC =BD ,AOB=50, COD的 数 , 求 度 。 A
B A
O B C
2.如 , 图 在
O中 AB =AC,A=40, ABC的 数 , 求 度 。
3.如 , 同 中 若 图 在 圆 , ( A) AB > CD 2
O
A
A’
B
O’
B’
AB=A’B’
AB = A’B’
AOB= A’O’B’
在同圆或等圆中, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。
1.
AOB=A’O’B’
AB=A’B’ AB = A’B’
2.
AB = A’B’
AB=A’B’ AOB=A’O’B’
C
A
O
D
课后小结:
1.圆是中心对称图形,圆心是它的对称中心。
2.在同圆或等圆中, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。
圆的对称性(1)
讨论:如何将 一个圆3等 分?n等分呢?
探究三:
如图,如果在圆形纸片上任意画 一条直径CD,过直径上一点P作弦 AB,弦AB与直径CD一定垂直吗?
1.请同学们将图1沿着直径CD对折, 你能发现什么结论?
·
图1
在⊙O中,如果直径CD 弦AB,垂足为P, 那么弦 AP BP、 AD BD、AC=BC
2
O
你会做吗?
如图,在⊙O中,AC=BD, 1 45 ,求∠2的度数。 解: ∵ AC=BD (已知)
∴ AC-BC=BD-BC (等式的性质) ∴ AB=CD
图 23.1.5
∴ ∠1=∠2=45° (在同圆中,相等的弧 所对的圆心角相等)
探究二: 动手操作:
如何将圆两等分?四等分?八等分?
2、请同学们将图2沿着直径CD对 折,你能发现什么结论?
图2
结论:(垂径定理)
垂直于弦的直径, 平分这条弦 并且平分弦所对的两条弧。
C
· O
P
B D
在⊙O中,如果CD是直径, CD ΑΒ于 P ,
那么:AP=BP, AD=BD,
A
AC=BC
1.如图,在⊙O中,AB=AC,∠B=70°. 求∠C度数.
如果 AOB =AOB 那么
AB=AB、
AB =AB
结论:
以上三句话如没 (或等圆) 2.在同一个圆 中,如果弧相等,那 有在同圆或等圆 相等 。 么所对的圆心角_____ ______ 相等、所对的弦 中,这个结论还 会成立吗?
(或等圆) 1.在同一个圆 中,如果圆心角相等, 那么它所对的弧相等、所对的弦相等。
23.1圆的认识
(一)
回顾:
1、圆是对称图形吗?它有哪些对称性? 2、能否用手中的圆演示出它的各种对
《圆的对称性》圆心角优秀自己总结
在半径为5cm的圆O中,弦AB的长为6cm,则弦AB的弦心距是多少?
已知圆O的半径为5cm,弦AB的长为8cm,P是弦AB上的一个动点,则点P到圆心O的最短距离是多少?
思考题
练习题
感谢观看
THANKS
01
02
利用圆的对称性解题技巧
04
CHAPTER
利用对称性简对称性可以简化计算过程。例如,计算圆心角所对的弧长或面积时,只需考虑圆心角的一半或特定部分,然后利用对称性得到完整的结果。
对称性简化计算
利用圆的镜像对称性,可以将问题转化为更容易处理的形式。例如,在处理与弦或切线相关的问题时,可以通过作垂线或构造相似三角形等方法,利用镜像对称简化计算。
镜像对称
利用对称性判断图形性质
判定等腰三角形
在圆内接三角形中,如果两个角所对的弧相等,则这两个角相等,从而可以判定该三角形为等腰三角形。
判定直角三角形
如果圆内接三角形的一个角所对的弧是另一个角所对弧的两倍,则该三角形为直角三角形。这一性质可以通过圆的对称性和相似三角形的性质来证明。
利用对称性解决实际问题
01
圆的对称性定义
圆是中心对称图形,任意一点关于圆心的对称点仍在圆上。
02
圆心角性质
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
拓展延伸相关知识点
一条弧所对的圆周角等于它所对圆心角的一半。 圆周角定理 弦切角等于它所夹弧所对的圆周角。 弦切角定理 相交两圆的连心线垂直平分两圆的公共弦。 圆的幂定理
圆上任一点绕圆心旋转任意角度后,仍然位于圆上。
对于圆上任意两点,如果它们关于圆心对称,则它们的连线段通过圆心且被圆心平分。
中心对称性
3.2 圆的对称性 (共16张PPT)
●
o
圆心角 顶点在圆心的角(如∠AOB). ※如图,在圆O中,分别作相等的圆心角和∠AOB 和∠A′OB′, 将其中的一个旋转一个角度,使 得OA和O′A′重合.
A
B
●
A′
O
B A
A′
A
B′
●
O
B B′
●
O
你能发现那些等量关系?说一说你的理由.
※如图 , 如果在两个等圆⊙O和⊙O′中 , 分别作相 等的圆心角∠AOB和∠A′O′B′,将两圆重叠,并 固定圆心 , 将其中的一个圆旋转一个角度 , 使得 OA 和O′A′重合.
A B′ A′ A′ A
B
●
O
●
O′
B′ B
●
O
你又能发现那些等量关系?说一说你的理由.
用心想一想
圆心角, 弧,弦之间的关系?
圆心角, 弧,弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧 相等,所对的弦相等.
A B A′
●
数学符号: ∵∠AOB=∠A′OB′
O
⌒ ⌒ ∴ AB=A′B′
(2)在同圆或等圆中,如果两 条弦相等,你能得出什么结论? O
B A D
C
在同圆或等圆中,两个圆心角、两个圆心
角所对的弧、两个圆心角所对的弦中如果有一组量相等, 它们所对应的其余各组量也相等。
针对训练
填一填: 如图,AB、CD是⊙O的两条弦. ∠AOB= ∠COD AB=CD ,____________ (1)如果AB=CD,那么_________ . ( AB=CD , ∠ AOB= ∠COD (2)如果 AB=CD ,那么_________ _____________ . ( AB=CD (3)如果∠AOB=∠COD,那么_____________ , AB=CD . _________
圆的对称性
条弦中有一组量相等,那么它们所对应的其余各组量
都分别相等。 符号语言: ∵⊙O 和⊙O′是等圆 AB=A′B′ ∴∠AOB=∠A′O′B′ AB= A′B′
O′ A′ B
O
A B′
1、如图,AB、ED是⊙O的直径,C是⊙O上的一点, 且AD=CE. BE与CE的大小有什么关系?为什么?
解:BE=CE. 理由如下
3、如图,AB是⊙O的直径,OD∥AC. CD与BD的大小有什么关系?为什么? 解:CD=BD. 理由如下
连接OC
∵OD∥AC
●
∴ ∠1=∠2
∵OA=OC ∴ ∠1=∠4 ∴ ∠2=∠3 ∴CD=BD
∠3=∠4
4 ●1
3
●●
2
4、如图,在⊙O中,AB,CD是两条弦, OE⊥AB,OF⊥CD,重足分别为E,F. ⑴如果∠AOB=∠COD,那么OE与OF的 大小有什么关系?为什么? ⑵如果OE=OF,那么AB与CD的大小有什么
第二节 圆的对称性
1、点与圆的位置关系: 点在圆外 d>r 点在圆上 d=r
点在圆内
2、什么叫轴对称图形?
d<r
把一个图形沿着某条直线对折,直线两旁的部分 能够完全重合,那么这个图形叫做轴对称图形。
3、我们是用什么方法研究轴对称图形的? 折叠
1、圆是轴对称图形吗?
2、它的对称轴是什么?
3、你能找到多少条对称轴?
O B
∵⊙O 和⊙O′是等圆
∠AOB=∠A′O′B′
A
′
想一想
1、在同圆或等圆中,如果两个圆心角所对的弧相等, 那么它们所对的弦相等吗?这两个圆心角相等吗? 2、在同圆或等到圆中,如果两条弦相等,那么它们
所对的圆心角相等吗?它们所对的弧相等吗?
圆的对称性(1)
3.垂径定理和勾股定理相结合,构造 直角三角形,可解决弦长、半径、弦 心距等计算问题.
2020/2/6
[例一心]段)如,圆右其弧图中(所即C示D图=,中60一C0⌒m条D,,公点E路为O的是C⌒转DC⌒上弯D的一处圆点是, 且OE⊥CD,垂足为F,EF=90 m.求 这段弯路的半径.
想一想:
1、如下图示,AB是⊙O的弦(不是直径),作一条平 分AB的直径CD,交AB于点M.同学们利用圆纸片 动手做一做,然后回答:
4.将纸打开,新的折痕与圆交于另一点B,如图.
问题:(1)右图是轴对称图形吗?
如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?
2020/2/6
说一说你的理由。
总结得出垂径定理:
垂直于弦的直径平分这条弦,并且 平分弦所对的弧。
推理格式:如图所示
∵∴CAMD⊥=BAMB,,A⌒CDD=为⌒B⊙D,O的A⌒C直=径B⌒C.
2.弦:连接圆上任意两点的线段叫做弦。 如图, 弦AB,弦CD
3.直径:经过圆心的弦叫直径。
如图,直径CD
2020/2/6
做一做:按下面的步骤做一做
1.在一张纸上任意画一个⊙O,沿圆周将圆剪下, 把这个圆对折,使圆的两半部分重合.
2.得到一条折痕CD.
3.在⊙O上任取一点A,过点A作CD折痕 的垂线, 得到新的折痕,其中,点M是两条折痕的交点,即 垂足.
(1)此图是轴对称图形吗?如果是,其对称轴是什么 ?
(2)你能发现图中有哪些等量关系?说一说你的理 2.由总。结得出垂径定理的逆定理:平分弦(不是直 径)的直径垂直于弦,并且平分弦所对的弧。
推理格式:如图所示
5.2圆的对称性(1)
5
学生踊跃发言,气氛 生认识到原来
(2)我们采用的是什么方法来研究中 热闹
生活中处处有
心对称图形的呢?
数学,从而激
(3)出示投影片 1(轮子转动)
学生想象儿时的摩天 发学生学习数
二、探索活动:
轮
学的兴趣。
活动一:尝试与交流
师:请同学们拿出课前准备好的两张透明
白纸,并出示投影片 2
(1)分别作半径都为 5 ㎝的⊙O、⊙O';
苏教版九年级数学上册第五章第二节第一课时教学设计
5.2 圆的对称性(1)
江苏省赣榆县初级中学 陈庆霞 邮编:222100
一、教材简解:
本节内容是学生在小学学过的一些圆的知识及学习本册教材第五章第一节
圆的有关概念的基础上,进一步探索和圆有关的性质。本究过程中通过师生动手
n 度的圆心角
n 度的弧
关键:将顶点在圆心的周角分成 360 份,
每一份的圆心角是 1º的角,于是,整个圆
也被等分成 360 份。我们把 1º的圆心角所
对的弧叫做 1º的弧。
【板书二】
(二)、弧的大小:
圆心角的度数与它所对的弧的度数相等。
注意:1.圆心角的度数与它所对的弧的度
数相等,不是角与弧相等;
分组讨论后,学生板 演,教师加以讲评, 及时纠正一些解题规 范。
学生解答,并板演, 教师点评。
拓宽学生的知 识面,让学生 对圆心角与弧 有进一步的了 解。同时又培 养了学生用类 比的思想去解 决一些问题。
4.1 圆的对称性(第1课时) 课件 (青岛版九年级上)
C
.O
A E 件 ①② ①③ ①④ ①⑤ ②③ 结论 命题
A
C M └
●
B
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. D . ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧 ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 另一条弧. ②③④ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
圆是旋转对称图形,圆是中心对称图形,圆是 轴对称图形,每一条直径所在的直线都是它的对称轴。
探究垂径定理
如图,AB是⊙O的弦,作直径CD, 使CD⊥AB,垂足为E. 因为直径CD,CD⊥AB, 所以:AE=EB, ⌒ ⌒ ⌒ ⌒ AC=BC AD=BD
C
.O
A E D B
垂径定理: 垂直于弦的直径平分这条弦,并且平 分弦所对的两条弧。
4.1 圆的对称性
复习回顾
弦
连接圆上任意两点的线段(如图AC) 叫做弦,
经过圆心的弦(如图中的AB)叫做直径.
B O
·
C
A
弧
圆上任意两点间的部分叫做圆弧,简称弧.以A、B为 ⌒ 端点的弧记作 AB ,读作“圆弧“AB”、“BA”或“弧 AB”.
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
②④
②⑤
①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且 ①③④ 平分弦和所对的另一条弧. ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ①②④ 弦,并且平分弦所对的另一条弧.
①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
③④
③⑤ ④⑤
练一练:
1.如图,AB是⊙O的直径,弦DC⊥AB. 已知 BC =1 cm, AC =4 cm,那
圆的对称性
知识点3.圆的对称性
圆的对称性包括:轴对称性、中心对称性、旋转不变性。
圆的轴对称性:圆是轴对称图形,它的任意一条直径所在的直线都是它的对称轴。
圆的中心对称性:圆是以圆心为对称中心的中心对称图形。
旋转不变性:圆围绕着圆心旋转任意一个角度,都能够与原来的图形重合。
提醒:(1)圆的对称轴是一条直线,所以不能说“直径就是圆的对称轴”,而是要注意强调“直径所在的直线”是圆的对称轴。
(2)圆的对称轴有无数条。
例1如图所示的是两个相等的圆相交形成的图形,下列结论
正确的是()
A、它既是中心对称图形,又是轴对称图形。
B、它是中心对称图形,但不是轴对称图形。
C、它是轴对称图形,但不是中心对称图形。
D、它既不是中心对称图形,也不是轴对称图形。
提醒:
应用上面的结论时应注意以下几点:
①因为给出一个已知能够得出三个结论,所以在具体运用时,可以根据需要选择结论中的有关部分,如“在等圆中,相等的弧所对的圆心角相等”。
②千万不能忽略了“在同圆或等圆中”这个前提条件,如果没有这个前提条件,
即使圆心角相等,所对弧、弦也不一定相等,如图所示,两个圆的圆心
相同,AB与对应同一个圆心角,但AB与不是等弧,AB≠。
③因为一条弦所对的弧有两条,所以由“弦相等”得出“弧相等”时,
这里的“弧相等”指的是对应劣弧与劣弧与劣弧相等,优弧与优弧相等。
例:如图所示⊙O的直径BC为一边作等边三角形ABC,AB,AC分别交⊙O于D,E两点。
求证BD=DE=EC 。
§5.2圆的对称性(1)
初三数学教学案课题:§5.2圆的对称性(1) 课型:新授 时间:〖学习目标〗1.经历探索圆的对称性及有关性质的过程.2.理解圆的对称性及有关性质.3.会运用圆心角、弧、弦之间的关系、垂径定理等解决有关问题.〖学习过程〗一、创设情境:(1) 什么是中心对称图形?(2) 我们采用什么方法研究中心对称图形?二、探索活动:活动一、按照下列步骤进行小组活动:1、在两张透明纸片上,分别作半径相等的⊙O 和⊙O '2、在⊙O 和⊙O '中,分别作相等的圆心角∠AOB 、∠'''B O A ,连接AB、''B A .3、将两张纸片叠在一起,使⊙O 与⊙O '重合(如图).4、固定圆心,将其中一个圆旋转某个角度,使得OA 与OA '重合.在操作的过程中,你有什么发现,请与小组同学交流._______________________________________________ 活动二、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考?请与小组同学交流.你能够用文字语言把你的发现表达出来吗?2、圆心角、弧、弦之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.’ ’试一试:如图,已知⊙O 、⊙O '半径相等,AB 、CD分别是⊙O 、⊙O '的两条弦.填空: (1)若AB=CD ,则 ,(2)若,则 ,(3)若∠AOB=∠CO 'D ,则 , .活动三、在圆心角、弧、弦这三个量中,角的大小可以用度数刻画,弦的大小可以用长度刻画,那么如何来刻画弧的大小呢?弧的大小:圆心角的度数与它所对的弧的度数相等.三、例题分析:例:如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC.∠ABC 与∠BAC 相等吗?为什么?四、课堂小结:通过本节课的学习.你对圆的对称性有什么认识?五、随堂练习:1.如图,在⊙O 中,AC=BD ,∠AOB=50°,求∠COD 的度数.2. 如图,在⊙O 中,AB=AC A=40°,求∠B 的度数.C3.如图,在△ABC中, ∠C=90°, ∠B=28°,以C为圆心,CA为半径的圆交AB于点D,交BC与点E,求AD的度数.4.如图,AD、BE、CF是⊙O的直径,且∠AOF=∠BOC=∠DOE。
5.2 圆的对称性(1)
5.2 圆的对称性(1)备课时间:2007年 月 日 主备人:孙祥课时计划:第3课时学习目标1、经历利用旋转变换探索圆的中心对称性的过程,理解圆的中心对称性及其相关性质;2、利用圆的旋转不变性研究圆心角、弧、弦之间的关系定理及其简单应用;3、通过观察、比较、操作、推理、归纳等活动,发展学生的空间观念、推理能力等等。
学习重、难点1、 重点:圆心角、弧、弦之间的关系定理及其简单应用;2、 难点:圆心角、弧、弦之间的关系定理及其简单应用;重难点及突破方法:突破方法:让学生通过观察、比较、操作、推理、归纳等活动抓住重点、突破难点学习过程:一、情境创设1、什么是中心对称图形?2、我们采用什么方法研究中心对称图形?二、探索新知1、让学生拿出事先准备好的能够旋转的圆形物体,绕着它们的圆心旋转任意角度,问:旋转后的图形能与原来的图形重合吗?结论:圆是中心对称图形,圆心是它的对称中心。
2、尝试与交流见第111页:尝试与交流方法:要让学生切实行动起来,真正去操作、观察,然后对自己的发现、猜想进行推理论证。
——利用旋转变换结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
符号语言:(在同圆或等圆中)(1)∠AOB=∠'''A O B ''AB A B =,''AB A B =(2) ''AB A B = ⇒''AB A B =,∠AOB=∠'''A O B(3)''AB A B = ⇒ ''AB A B = ,∠AOB=∠'''A O B3、圆心角的度数与它所对的弧的度数相等。
关键:将顶点在圆心的周角分成360份,每一份的圆心角是10的角,于是,整个圆也被等分成360份。
我们把10的圆心角所对的弧叫做10的弧。
圆的对称性
圆的对称性
圆的对称性是一个复杂的概念,它可以从几个不同方面来解释。
从几何学的角度,圆形具有完全的对称性,它具有完美的连续对称性,即其边界线对中心满足180度对称。
以及,该圆形在特定的视觉区域
内完成了回旋,同样,依据它的定义,圆形具有非常接近的对称性,
半径和直径总是相等,产生一致的外观。
哲学家也认为,圆的对称性
代表着真理、完美以及和平的概念,可以用以表达社会中的公平性和
平等。
它被认为是社会中一个重要依据,其定义本质上暗示着圆的对
称性是一种折中的方法,使一方不失太多,另一方也不会因获得的过
多收益而受到影响。
圆的对称知识点总结
圆的对称知识点总结一、基本概念圆是平面上所有点到一个固定点的距离都相等的集合。
这个固定点叫做圆心,相等的距离叫做半径。
圆通常用一个大写字母表示圆心,用一个小写字母r表示半径。
二、对称性圆具有很强的对称性,主要表现在以下几个方面:1. 中心对称:圆的中心是对称轴,圆上的每一个点关于圆心都有对称点。
2. 旋转对称:以圆心为中心,任意角度旋转圆都不变。
3. 轴对称:圆上的任意一条直径都是圆的轴对称线,即圆上的任意一点与圆心连线的垂直平分线。
三、对称性的运用圆的对称性在数学、几何学和物理学等领域都有着广泛的应用。
在几何学中,圆的对称性在解题过程中经常发挥重要作用,可以帮助我们简化问题、找到解题的突破口。
在建筑设计和艺术创作中,圆的对称性也常被运用,可以创造出和谐美观的作品。
四、圆的对称性性质圆的对称性具有以下性质:1. 对称轴上的任意两点的对称点也在对称轴上。
2. 对称轴上的点到对称轴的距离相等。
3. 对称变换保持了图形的大小和形状不变。
五、圆的对称性的应用圆的对称性在日常生活中也有着广泛的应用。
如镜子、会旋转的木马等等都具有对称性,因此在制作这些用具时,需要考虑图形的对称性,这样会使产品更加美观,使用起来也更加安全。
六、圆的对称图形圆拥有非常丰富的对称图形,例如:1. 圆形2. 半圆形3. 扇形4. 弧形5. 弦形这些对称图形在实际生活中都有着广泛的应用,如构造街道的拱门、钟表的表盘等。
七、圆的对称性的研究圆的对称性不仅仅在几何学中有重要的应用,在现代数学中也有着广泛的研究。
在拓扑学中,圆是一个最基本的几何图形,对称性是研究圆的基本属性的重要内容之一。
在几何结构、代数结构等领域中,圆的对称性也有着深入的研究和运用。
八、总结圆是一个非常特殊的几何图形,具有很强的对称性,对称性在数学、几何学和现实生活中都有着广泛的应用。
圆的对称性性质以及对称图形的研究都是数学领域的重要内容,对于学生来说,深入理解圆的对称性有助于提高他们的数学素养和数学思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章圆
2.圆的对称性(一)
一、学生知识状况分析
学生的知识技能基础:学生在七、八年级已经学习过轴对称图形以及中心对称图形的相关概念及性质,以及本节定理的证明要用到三角形全等的知识等。
学生的活动经验基础:在平时的学习中,学生逐步适合应用多种手段和方法探究图形的性质。
同时,在平时的教学中,我们都鼓励学生独立探索和四人小组互相合作交流,使学生形成一些数学活动的经验基础,具备一定探求新知的水平。
二、教学任务分析
圆是一种特殊图形,它既是轴对称图形,又是中心对称图形。
该节内容分为2课时。
本节课是第1课时,学生通过前面的学习,能用折叠的方法得到圆是一个轴对称图形。
其对称轴是任一条过圆心的直线。
具体地说,本节课的教学目标是:
知识与技能:
1.理解圆的轴对称性及其相关性质;
2.利用圆的轴对称性研究垂径定理及其逆定理.
过程与方法:
1.经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的各种方法。
情感态度与价值观:
1.培养学生独立探索,相互合作交流的精神。
2.通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。
教学重点:利用圆的轴对称性研究垂径定理及其逆定理.
教学难点:和圆相关的相关概念的辨析理解。
三、教学过程分析
本节课设计了六个教学环节:课前准备(制作实验器材、完成预习提纲)、创设问题情境引入新课、讲授新课、课堂小结、创新探究、课后作业。
第一环节课前准备
活动内容:(提前一天布置)
1.每人制作两张圆纸片(最好用16K打印纸)
2.预习课本P88~P92内容
活动目的:通过第1个活动,希望学生能利用身边的工具去画图,并制作图纸片,培养学生的动手水平;在第2个活动中,主要指导学生展开自学,培养良好的学习习惯。
实际教学效果:
1.学生在制作图纸片时,有时可能没有将圆心标出来,老师要对其实行启
发引导,找出圆心。
2.预习提纲,要简明扼要,学生基本上能通过阅读教材就能较好完成。
第二环节创设问题情境,引入新课
活动内容:
教师提出问题:轴对称图形的定义是什么?我们是用什么方法研究了轴对称图形?学生回忆并回答。
活动目的:通过教师与学生的互动,一方面使学生能较快进入新课的学习状态,另一方面也提升学生的学习的兴趣,让他们带着问题去学习,揭开了探究该节课内容的序幕。
实际教学效果:
1.因为学生在七年级学习了轴对称图形的内容。
部分学生可能遗忘了定义,
所以教师要通过一些学生熟悉的轴对称图形来引导同学准确叙述其定
义,比如通过矩形。
教师作出演示,学生会更容易表达。
2.通过几何图形去记忆或理解几何概念性质定理,是学生学好几何知识的
有效途径。
第三环节讲授新课
活动内容:
(一)想一想圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?你是用什么方法解决上述问题的?
(二)理解弧、弦、直径这些与圆相关的概念。
(三)探索垂径定理。
做一做
1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对
折使圆的两半部分重合.
2.得到一条折痕CD.
3.在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.
4.将纸打开,新的折痕与圆交于另一点B,如右图
问题:(1)观察右图,它是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有那些等量关系?说一说你的理由。
总结得出垂径定理:垂直于弦的直径平分这条弦,并且
平分弦所对的弧。
(四)讲解例题及完成随堂练习。
[例1]如右图所示,一条公路的转弯处是一段圆弧(即图中
CD,点O是CD的圆心),其中CD=600m,E为CD上一点,
且OE⊥CD,垂足为F,EF=90 m.求这段弯路的半径.
练习:完成课本P92随堂练习:1
(五)探索垂径定理逆定理并完成随堂练习。
想一想:
如下图示,AB 是⊙O 的弦(不是直径),作一条平分AB 的直径
CD ,交AB 于点M .
同学们利用圆纸片动手做一做,然后回答:(1)上图是轴对称
图形吗?如果是,其对称轴是什么?(2)你能发现图中有那些等量关系?说一说你的理由。
总结得出垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
练习:完成课本P92随堂练习:2
活动目的:内容(一)的主要目的就是通过学生动手实验,采用折叠的方法理解圆是轴对称图形,其对称轴是任意一条过圆心的直线;内容(二)的主要目的就是让学生弄清和圆相关的这些概念,便于以后内容的学习研究;内容(三)的主要目的就是通过学生做一做,观察,猜想,验证等的过程得到新知,同时也培养学生合作交流的水平,以及再次体会研究图形的多种方法。
内容(四)的主要目的让学生应用新知识构造直角三角形,并通过方程的方法去解决几何问题。
内容(五)的主要目的与内容(三)相似。
实际教学效果:
对于活动(一),学生在探索圆是轴对称图形时,应该把机会留给学生,让他们相互交流,发表自己的想法;对于活动(二),要注意让学生借助图形去理解,并弄清他们之间的联系和区别,还应该注意补充一些概念,如半圆,劣弧,优弧等;对于活动(三),师生要按四个步骤共同操作,逐步引导学生通过观察,猜想到理论验证垂径定理,并协助学生去理解和记忆垂径定理,
如推理格式:如图所示 CO ⊥AB ,CD 为⊙O 的直径 AM=BM ,AD=BD ,AC=BC 。
另外在证明垂径定理时,学生对如何证明平分弦所对的弧
会较难表述。
教师要使用轴对称性启发引导。
对于活动(四),
教师要引导学生如何应用垂径定理去更好衔接上,至于这个逆
O A B C
D
E
定理的探索过程与前面垂径定理的探索过程类似,在完成随堂练习
时,教师要提示学生,符合条件图形有三种情况:圆心在平行弦外,在其中一条弦上、在平行弦内,但说理的思路都是一样。
第四环节课堂小结
活动内容:师生互相交流总结:
1.本节课我们探索了圆的轴对称性;
2.利用圆的轴对称性研究了垂径定理及其逆定理;
3.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半
径、弦心距等问题。
活动目的:通过回顾本节课经历的各个环节,鼓励学生畅谈自己的收获和感想,培养学生良好的学习习惯。
实际教学效果:学生在互相交流中,对于归纳出来的内容,会有各种表述,只要合理,教师都应该鼓励。
第五环节课后作业
1.课本习题3.2,1,2。
试一试1
2.预习课本P94~97内容。
四、教学反思
1.本教学设计会侧重学生对新知识形成过程的理解和理解,采用通过实验、
观察、猜想、验证的手法去探求几何定理。
对培养学生的动手水平,直
觉思维、逻辑思维有较大的协助。
2.较好体现了学为主体,教为主导的教学策略,师生在该节课的教与学互
动性会得到充分的展示,学生也会得到充分的发挥机会;另外通过创新
探索的内容,会使学生进一步体会数学在生活中的应用,培养学生探索
精神。
3.本教学设计在实试过程中,时间会较为紧迫,所以,相对应的练习安排
得较少,这样可能会影响了学生对新定理的应用的训练,同时教师要鼓
励学困生敢于发表自己的看法,并协助他们去记忆和使用垂径定理及其逆定理。