博弈论(整理过名词解释和简答)

合集下载

博弈论名词解释

博弈论名词解释

博弈论名词解释博弈论是一种研究冲突和合作决策的数学理论。

在博弈论中,玩家通过制定决策来实现自己的利益,同时也要考虑其他玩家的决策对自己利益的影响。

博弈论的研究对象是在有限的资源和信息条件下,决策制定者之间的相互作用。

以下是一些常见的博弈论名词解释:1. 纳什均衡(Nash equilibrium):是指在博弈过程中,每个玩家依据其他玩家的行为选择自己的最佳策略,而没有动机单方面改变策略。

纳什均衡是一种稳定状态,即每个玩家的策略都是最优的。

2. 零和博弈(zero-sum game):是指一个玩家的收益与另一个玩家的损失完全相等,总收益为零。

在零和博弈中,一个玩家的利益的增加必然导致另一个玩家的利益的减少,双方利益存在完全的对立关系。

3. 非零和博弈(non-zero-sum game):是指一个玩家的利益的增加不一定导致另一个玩家的利益减少。

在非零和博弈中,玩家之间的利益可以相互协调、互利互惠。

4. 博弈树(game tree):是博弈论中常用的一种图形表示方式,用于展示博弈过程中的决策步骤和可能的结果。

博弈树由顶点和边组成,顶点表示玩家的决策点,边表示不同的行动选择。

5. 最优策略(optimal strategy):在博弈论中,最优策略是指玩家的最佳选择,使得在对手的任何策略下,自身获得最大利益。

最优策略可能根据玩家的目标和信息不同而变化。

6. 合作与背叛(cooperation and defection):博弈论中常涉及到的两个关键概念。

合作指玩家之间通过协调行动来获得共同利益,背叛指玩家为了自身利益而选择对方不合作。

7. 博弈矩阵(game matrix):是一种表示博弈参与者和策略选择关系的表格。

博弈矩阵以参与者为行,以策略选择为列,用数字表示参与者在不同策略下的收益情况。

8. 支配策略(dominant strategy):在博弈论中,一种策略如果在所有可能的对手策略下都能带来最佳结果,则被称为支配策略。

博弈名词解释

博弈名词解释

一、名词解释:1、零和游戏——游戏者有输有赢,但整个游戏的总成绩永远为零。

2、纳什均衡——只有在这一点上,任何一人单方面改变选择,他只会得到较差的结果。

这一点就是纳什均衡。

3、帕累托最优——指资源分配的一种状态,在不使任何人境况变坏的情况下,不可能再使某些人的处境变好。

说得更经济学点,群体所有的社会资源的配置已将整个群体的效用最大化了,没人能够在不减损别人的利益的同时改善自己的利益。

二、简答题1.博弈的四个要素是什么?1.博弈要有2个或2个以上的参与者(Player)。

2.博弈要有参与各方争夺的资源或收益(Resources或Payoff)。

3. 参与者有自己能够选择的策略(Strategy)。

4. 参与者拥有一定量的信息(Information)。

2.什么是触发策略?触发策略有何优点如果一方采取不合作的策略另一方随即也采取不合作策略并且永远采取不合作策略,在博弈论里面称之为触发策略(Trigger strategy),或称冷酷策略好的策略必须具有的一个特点是“清晰性”,针锋相对策略就有很好的清晰性,让对方很快发现规律,从而不得不采取合作的态度。

如果对方知道你的策略是触发策略,那么对方将不敢采取不合作策略,因为一旦他采取了不合作策略,双方便永远进入不合作的困境。

因此,只要有人采取触发策略,那么双方均愿意采取合作策略。

3.请描述“囚徒困境”的案例。

两个嫌疑犯(甲和乙)作案后被警察抓住,隔离审讯;警方的政策是“坦白从宽,抗拒从严”:如果两人都坦白则各判8年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判15年;如果都不坦白则各判1年。

从表面上看,他们应该互相合作,保持沉默。

但他们不得不仔细考虑对方可能采取什么选择。

甲、乙两个人都十分精明,而且都只关心减少自己的刑期,并不在乎对方被判多少年(人都是有私心的嘛)。

甲会这样推理:假如乙不招,我只要一招供,马上可以获得自由,而不招却要坐牢1年,显然招比不招好;假如乙招了,我若不招,则要坐牢15年,招了只坐10年,显然还是以招认为好。

博弈论名词解释

博弈论名词解释

博弈论名词解释博弈论名词解释1、博弈:是指代表不同利益主体的决策者,在⼀定的环境条件和规则下,同时或先后、⼀次或多次从各⾃允许选择的⾏动⽅案中加以选择并实施。

从⽽取得各⾃相应结果的活动。

2、参与⼈:也称局中⼈或博弈⽅。

是指博弈中能独⽴决策、独⽴⾏动并承担决策结果的利益主体。

3、⾏动:是参与⼈在博弈的某个时点的决策变量。

4、博弈信息:是参与⼈在博弈中的知识,包括博弈的环境条件、博弈的规则、⾃然的“安排”、其他参与⼈的特征及⾏为、博弈的结果、进程等等。

5、策略:是指各博弈⽅可选择的⾏动⽅案,亦称战略。

6、纯策略:指⼀个策略规定参与⼈在每⼀个给定的信息情况下只选择⼀种特定的⾏动。

7、混合策略:指⼀个策略规定参与⼈在给定信息情况下以某种概率分布随机地选择不同的⾏动。

8、⽀付函数:也称得益。

是指博弈⽅(参与⼈)策略实施后所获得的效⽤⽔平。

9、结果:是指博弈分析者所探寻的各种要素的集合,⽐如策略组合、⽀付向量等。

10、纳什均衡:是指在对⽅策略确定的情况下,每个参与⼈的策略都是最好的。

此时没有⼈愿意单独改变⾃⼰的策略。

11、两⼈博弈:就是参与⼈是两⽅的博弈。

12、多⼈博弈:是参与⼈有三个或三个以上的博弈。

13、零和博弈:每个⽀付向量的“总和”始终等于零的博弈称为零和博弈。

14、常和博弈:我们把每个⽀付向量的“总和”始终等于某个常数的博弈称为常和博弈。

15、变和博弈:我们把每个⽀付向量的“总和”并不相同的博弈称为变和博弈。

16、静态博弈:我们把所有参与⼈同时或可看作同时选择策略的博弈称为静态博弈。

17、动态博弈:我们把各参与⼈不是同时,⽽是先后、依次进⾏选择、⾏动。

⽽且后选择⾏为的参与⼈通常能观察到先进⾏选择、⾏为的参与⼈的选择、⾏为的博弈称为动态博弈。

18、重复博弈:就是同样结构的博弈重复进⾏多次。

19、完全信息博弈:如果所有策略组合下的⽀付向量都是共同知识,我们就说这⼀博弈是“完全信息”的,称为完全信息博弈。

博弈论考试重点

博弈论考试重点

一、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。

博弈论 研究决策主体的行为及其相互决策和均衡问题的学科。

在经济学中 博弈论是研究经济主体的二、博弈论基本要素博弈参与者、各博弈方各自可选择的全部策略或行为的集合、进行博弈的次序、博弈方的利益、博弈行为、博弈信息、结果、均衡三、名词解释静态博弈:同时决策或者同时行动的博弈属于静态博弈—田忌赛马、猜硬币、古诺模型动态博弈:先后或序贯决策或者行动的博弈属于动态博弈—弈棋、市场进入、领导完全信息博弈:所有博弈方都清楚其他博弈方的得益状况不完全信息博弈(贝叶斯博弈):至少有一个博弈方不完全清楚其他博弈方的得益或得益函数囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。

非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈纳什均衡:在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的冷酷战略:重复博弈中,任何博弈方的一次性不合作将引起其他博弈方的永远不合作,从而导致的所有博弈方的收益减少。

针锋相对战略:参与人在博弈开始时选择合作;在时期t选择对方在时期t-1期所采用的战略,即如果对方在t-1期背叛(不合作),则自己在t期也选择背叛重复博弈:静态或动态博弈的重复进行,即重复进行的博弈过程聚点均衡:在理论上一个博弈中可能有多个纳什均衡点,这时在现实生活中,行为人往往利用在理论上省略掉的那些信息,找到一个大家都感兴趣的点,这个点往往成为现实世界中博弈的最终解。

当参与人之间没有正式的信息交流时,他们存在于其中的“环境”往往可以提供某种暗示,使得参与人不约而同地选择与各自条件相称的策略(聚点),从而达到均衡卡尔多-希克斯标准:一种变革使得受益者的所得足以弥补受损者的所失,这种变革就是卡尔多-希克斯改进。

博弈论知识点总结完整版

博弈论知识点总结完整版

博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。

即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。

1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。

1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。

两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。

倘若不能,则称非合作博弈(Non-cooperative game)。

合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。

目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。

博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。

把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。

博弈论复习题及答案完整版

博弈论复习题及答案完整版

博弈论复习题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】一、名词解释(每题7分,共28分)1、逆向选择:逆向选择源于事前的信息不对称,经典例子就是“柠檬市场”——二手车市场,它使得市场资源逐渐流向低质量的产品或要素,最后形成劣货驱逐良货的局面,这种现象称之为“逆向选择”。

2、策略互动:所谓策略互动,就是参与人之间的策略相互影响、相互作用和相互制约。

用策略性思维来分析问题,从中找出合理策略,实现目标最优。

3、纳什均衡:对于博弈方而言,互为最优的策略选择就是纳什均衡。

4、信号发送:是指信息优势方不断发出信息的行为,就叫信号发送。

5、博弈论:研究人们如何进行决策,以及这种决策如何达到均衡(合理策略)的问题。

每个博弈者在决定采取何种行动时,不但要根据自身的利益和目的行事,还必须考虑到他的决策行为对其他人的可能影响,以及其他人的反应行为的可能后果,通过选择最佳行动计划,来寻求收益或效用的最大化。

二、简要回答问题(每题10分,共40分)1、博弈的基本要素有哪些?基本特点是什么?答:博弈的基本要素有:参与人、策略、行动顺序、信息、收益等五个要素。

博弈的基本特点则是需尽可能考虑到博弈对方的决策选择以及对自身的影响,并从中选择出对自身最有利的方案决策,从而达到收益和效用最大化。

2、什么是性别战博弈?请求出其中的纳什均衡?答:性别战博弈是不可调和的博弈,双方只有一方选择满足另外一方的要求才能达成均衡,也就是混合策略纳什均衡;故性别战博弈的纳什均衡会有两种情况,分别是:男生陪女生看电影以及女生陪男生看足球的两种选择。

3、猎鹿博弈反映的基本思想是什么?答:反应的基本思想是需要沟通和互相协调,因为只有合作才能猎到所需猎物。

4、什么是道德风险?有什么办法可以解决道德风险问题?答:道德风险是指委托-代理框架中,由于委托人无法直接观察代理人行动,造成信息不对称,从而出现代理人选择不利于委托人的行为的一种现象;解决道德风险的方法可以用签订合同、派人监督,以及采用激励等方式来进行解决,约束和激励机制。

博弈论基础复习

博弈论基础复习

《博弈论基础》主要知识点一、名词解释(5×2=10分)策略型博弈它是由三个部分组成,即局中人、策略和各种策略组合中所得到的利益。

纳什均衡指参与博弈的每一局中人在给定其他局中人策略的条件下选择上策所构成的一种策略组合。

混合策略局中人的混合策略是其纯策略空间上的一种概率分布,表示局中人实际博弈时根据这种概率分布在纯策略中随机选择加以实施。

扩展型博弈博弈存在着局中人行动的先后次序,是对具有动态结构的决策形式进行研究的规范分析工具。

博弈树对于任何一种双人完备博弈,都可以用一个博弈树来描述,并通过博弈树搜索策略寻找最佳解。

博弈树类似于状态图和问题求解搜索中使用的搜索树。

完美信息博弈是指一次只有一个局中人在行动,而且他在行动时知道博弈的所有以往行动历史的一类特殊博弈。

子博弈指由原扩展型博弈中的一个决策节点与它的所有后续节点组成的博弈。

行为策略是指每一个参与人在每一个信息集上随机的选择行动。

逆向归纳法逆向归纳法是求解子博弈精炼纳什均衡的最简便方法。

在求解子博弈精炼纳什均衡时,从最后一个子博弈开始逆推上。

冷酷策略又称触发策略。

指参与人在开始时选择合作,在接下来的博弈中,如果对方合作则继续合作,而如果对方一旦背叛,则永远选择背叛,永不合作。

类型:一般地,将一个参与人所拥有的所有私人信息称为他的类型。

信号博弈是研究具有信息传递作用的信号机制的一般博弈模型,其基本特征是两个博弈方,分别称为信号发出方和信号接收方。

分离均衡信号博弈中的完美贝叶斯均衡之一,这种均衡中不同类型的发送者以概率1选择不同的信号,接收者完全可以通过信号来准确判断出发送者的类型。

混同均衡信号博弈中的完美贝叶斯均衡之一,这种均衡中不同类型的发送者选择了相同的信号,接收者无法从信号中得到新的信息,无法对先验信念进行修正。

特征函数特征函数型博弈对每一种可能联盟给出相应的联盟总和收益,也就是给出了一种集合函数,称为特征函数。

联盟二、选择题(5×2=10分)三、简答题(28-30分)1.博弈的分类及相关概念。

博弈论知识点总结完整版

博弈论知识点总结完整版

博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。

即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。

1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。

1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。

两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。

倘若不能,则称非合作博弈(Non-cooperative game)。

合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。

目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。

博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。

把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。

博弈论(名词解释和简答)

博弈论(名词解释和简答)

博弈论名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。

2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。

3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。

4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。

在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。

7、均衡:所有参与人的最优战略组合。

8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。

9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。

10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。

11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。

12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。

13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。

博弈论名词解释(修改)

博弈论名词解释(修改)

博弈论名词解释(修改)1.有限博弈:一个博弈中每个博弈方的策略数都是有限的。

常见的是数种策略。

无限博弈:一个博弈中至少有某些博弈方的策略有无限多个。

零和博弈:一方的得益必定是另一方的损失,博弈方之间利益始终对立,偏好通常不同。

两人零和博弈也称为“严格竞争博弈”。

2.常和博弈:博弈方之间利益的总和为常数。

博弈方之间的利益是对立的且是竞争关系。

3.变和博弈:零和博弈和常和博弈以外的所有博弈。

合作利益存在,博弈效率问题的重要性。

可以站在社会利益的立场对其效率进行评价。

4.静态博弈:所有博弈方同时或可看作同时选择策略的博弈。

5.动态博弈:各博弈方的选择和行动有先后次序且后选择、后行动的博弈方在自己选择、行动之前可以看到其他博弈方的选择和行动。

6.重复博弈:同一个博弈反复进行所构成的博弈,提供了实现更有效略博弈结果的新可能。

7.完全信息博弈:各博弈方都完全了解所有博弈方各种情况下的得益8.不完全信息博弈:至少部分博弈方不完全了解其他博弈方得益的情况的博弈,也称“不对称信息博弈”9.完美信息博弈:每个轮到行为的博弈方对博弈的进程完全了解的博弈10.不完美信息博弈:至少某些博弈方在轮到行动时不完全了解此前全部博弈的进程的博弈11.完全理性:有完美的分析判断能力和不会犯选择行为的错误12.有限理性:博弈方的判断选择能力有缺陷13.个体理性:以个体利益最大为目标;集体理性:追求集体利益最大化14.上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果,上策均衡不是普遍存在的。

15.严格下策反复消去法:反复寻找策略之间两两比较意义上的“严格下策”,并将它们消去的方法。

16.反应函数:对于厂商2的每一个可能的产量,厂商1的最佳对策产量的计算公式,它是厂商2产量的一个连续函数,我们称这个连续函数为厂商1对厂商2产量的一个“反应函数”。

17.帕累托上策均衡:博弈中存在多个纳什均衡,如这些纳什均衡存在明显的优劣差异,所有博弈方都偏好其中同一个纳什均衡,该纳什均衡给所有博弈方带来的得益都大于其他纳什均衡。

博弈论考试题

博弈论考试题

名词解释( 每小题4 分,20 分)1. 参与人(player) 指的是博弈中选择行动以最大化自己效用( 收益) 的决策主体,参与人有时也称局中人,可以是个人,也可以是企业、国家等团体;2. 策略(strategy) 是参与人选择行动的规则,如“以牙还牙”是一种策略;3. 信息(information) 是指参与人在博弈中的知识,尤其是有关其他参与人的特征和行动的知识;4. 支付(payoff) 函数是参与人从博弈中获得的效用水平,它是所有参与人策略或行动的函数,是每个参与人很关心的东西;5. 结果(outcome) 是指博弈分析者感兴趣的要素的集合,常用支付矩阵或收益矩阵来表示;6. 均衡(equilibrium) 是所有参与人的最优策略或行动的组合。

7. 静态博弈指参与人同时选择行动或虽非同时但后行动者并不知道先行动者采取什么样的行动;8. 动态博弈指参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。

9. 博弈就是一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。

10. 零和博弈:也称“严格竞争博弈”。

博弈方之间利益始终对立,偏好通常不同(夫妻博弈) 一对新婚夫妻为晚上看什么电视节目争执不下,丈夫(记为I 方)要看足球比赛节目,而妻子(记为U方)要看戏曲节目•他们新婚燕尔,相亲相爱,所以若这方面的行动不一致,则是很伤感情的. 因此,这对夫妻间的争执是一次非零和对策。

11. 完全信息静态博弈即各博弈方同时决策,且所有博弈方对各方得益都了解的博弈。

12. 上策:不管其它博弈方选择什么策略,一博弈方的某个策略给他带来的得益始终高于其它的策略,至少不低于其他策略的策略13. 上策均衡:一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,必然是该博弈比较稳定的结果纳什均衡14. 纳什均衡:纳什均衡是指这样一种策略组合,这种策略组合由所有参与人的最优策略组成,即给定别人策略的情况下,没有任何单个参与人有积极性选择其他策略,从而没有任何参与人有积极性打破这种均衡。

博弈论(整理过名词解释和简答)

博弈论(整理过名词解释和简答)

一、名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。

2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。

3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。

4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。

在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。

7、均衡:所有参与人的最优战略组合。

8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。

9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。

10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。

11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。

12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。

13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。

博弈论专业名词解释

博弈论专业名词解释

博弈论战略分析1.博弈论的研究对象是理性的战略选择。

2.相机战略:仅在不确定事件发生时才会采取的战略。

3.占优战略:无论对方采取何种战略,其都是最优反应战略。

4.占优战略均衡:每个参与者都有占优战略。

5.劣战略:如果无论对手采取何种战略,一个战略的收益总是高于另一个战略,我们就说,第二个战略被第一个占优,第二个战略被称为劣战略。

6.均衡:稳定可预测的行为模式被称作均衡。

7.社会两难:社会两难是一种存在占优战略均衡的博弈,并且参与者采用这种均衡的战略收益比采用采用非均衡战略的收益要差。

8.合作解:不管是通过协议还是其他形式的强制手段,只要参与者们都能履行协调后的战略,他们所选战略及其收益就是一个博弈的合作解。

9.占优战略的存在以及它与合作解相悖的事实是导致社会两难问题的根本原因。

10.博弈论分析的目标之一就是找到参与者之间稳定的、可预测的互动行为模式。

11.占优战略均衡作为非合作解的优点与缺点。

{答案待定}12.纳什均衡:全部参与者所选战略的一个组合,在这个战略组合组合中,每个人的战略都是针对其他人战略的最优反应13.纳什均衡战略:如果有两个战略(或者更一般的,有多个战略,每个战略都对应着一个参与者),并且每个战略都是另一个战略(或者其他参与者的战略)的最优反应,我们就称这一战略组合为纳什均衡战略。

14.纳什均衡与占优战略均衡一样,都是非合作均衡。

15.社会两难问题是一种特殊的占优战略均衡,占优战略均衡是一种特殊的纳什均衡,而纳什均衡又是一种特殊的非合作均衡。

16.纳什均衡的启发寻找方法:1.确定最优战略的一个简单方法,就是将收益矩阵中,与每一战略的最优反应战略相对应的收益数字标注下划线。

2.如果在其他参与者保持原来的战略不变时,一个参与者能够通过改变战略获得更多的收益,那么这个参与者就会调整他的战略。

为了直观地表达这一点,我们可以画一个箭头,从初始的方向指向新的方向。

17.谢林点:人们把这种以线索为基础选择的均衡称为谢林点或焦点。

经济博弈大赛知识点总结

经济博弈大赛知识点总结

经济博弈大赛知识点总结一、博弈论基本概念1.博弈论的定义博弈论是研究决策者之间相互影响的一种数学分析方法。

在该理论中,参与者的每一种决策都会影响到其他参与者的收益,因此需要在多方利益中进行权衡和选择。

2.博弈论的基本概念(1)参与者:指参与决策的一方或多方。

(2)策略:指参与者的行动选择。

(3)效用:指参与者从某种行动选择中得到的收益。

(4)收益矩阵:指博弈过程中不同参与者在不同策略组合下得到的收益组合。

3.博弈论的基本分类(1)合作与非合作博弈:合作博弈是指参与者之间可以进行合作协商,共同选择最优策略;非合作博弈是指参与者之间没有合作协商,各自选择最优策略。

(2)零和博弈与非零和博弈:零和博弈是指参与者的利益总和为零,一方得利即另一方受损;非零和博弈是指参与者的利益总和不为零,可以互惠互利或共同受益。

二、博弈论的基本模型1.纳什均衡纳什均衡是指在博弈论中,参与者的策略选择达到一种平衡状态,任何一个参与者都没有动机改变自己的策略。

纳什均衡是博弈理论的核心概念,对于非合作博弈中的理性参与者来说,最终会达到纳什均衡状态。

2.囚徒困境囚徒困境是博弈论中的一个经典模型,描述了两名囚犯被捕后面临的选择。

在这种情况下,即使两名囚犯都采取自己最佳的策略,他们最终都会面临到一种不利的结果。

这个模型的实质是说明了在自利最大化的前提下,最终可能导致共同损失的结果。

3.拍卖博弈拍卖博弈是指卖家和买家之间进行的策略与竞争。

在这种场景下,卖家需要选择出售物品的方式,而买家需要决定出价的高低。

这种博弈的结构包括英国拍卖、封闭式拍卖、荷兰拍卖等不同的竞争方式。

4.博弈树博弈树是一种博弈模型的图形表示方式,以树状的形式展现参与者的策略选择和结果。

博弈树有助于分析博弈的决策过程和可能的结果,帮助参与者制定最优策略。

5.拉力博弈拉力博弈是指在博弈中的一种竞争形式,即参与者面对的是关于资源的竞争和纷争。

这种博弈模型常见于市场竞争和企业之间的竞争,对于提高市场份额和竞争力有重要意义。

博弈论名词简答论述

博弈论名词简答论述

名词解释:01、参与人:指的是博弈中选择行动以最大化自己效用(收益)的决策主体,参与人有时也称局中人,可以是个人,也可以是企业、国家等团体。

02、策略:是参与人选择行动的规则,如“以牙还牙”是一种策略。

03、结果:是指博弈分析者感兴趣的要素的集合,常用支付矩阵或收益矩阵来表示。

04、均衡:是所有参与人的最优策略或行动的组合。

05、博弈:一些个人、队组或其他组织,面对一定的环境条件,在一定的规则下,同时或者先后,一次或者多次,从各自允许选择的行为或战略进行选择并加以实施,各自取得相应结果或收益的过程。

06、静态博弈:指参与人同时选择行动或虽非同时但后行动者并不知道先行动者采取什么样的行动。

07、动态博弈:指参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。

08、零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零。

09、上策均衡:如果一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,那么这个策略组合肯定是所有博弈方都愿意选择的,必然是该博弈比较稳定的结果,我们称这样的策略组合为该博弈的一个上策均衡。

10、重复博弈:指同样结构的博弈重复多次,其中的每次博弈称为“阶段博弈”。

11、纳什均衡:纳什均衡是指这样一种策略组合,这种策略组合由所有参与人的最优策略组成,即给定别人策略的情况下,没有任何单个参与人有积极性选择其他策略,从而没有任何参与人有积极性打破这种均衡。

12、子博弈:由一个动态博弈第一阶段以外的某阶段开始的后续博弈阶段构成的,有初始信息集合和进行博弈所需要的全部信息,能够自成一个博弈的原博弈的部分,称为原动态博弈的一个子博弈。

13、有限理性博弈:存在有限理性博弈方的博弈可称为有限理性博弈。

14、完美信息的动态博弈:动态博弈中在轮到行为时对博弈的进程完全了解的博弈方,称为具有完美信息的博弈方,如果动态博弈的所有博弈方都有完没信息,则称为完美信息的动态博弈。

博弈论名词解释

博弈论名词解释

博弈名词解释1.博弈论: 根据信息分析及能力判断,研究多决策主体之间行为相互作用及其相互平衡,以使收益或效用最大化的一种对策理论;2.参与人局中人players:在一场竞赛或博弈中,每一个有决策权的参与者成为一个局中人;只有两个局中人的博弈现象称为“两人博弈”,而多于两个局中人的博弈称为“多人博弈”;3.策略strategies:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略;如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”;4.信息information:参与人有关博弈的知识,特别是有关自然的选择,其他参与人的特征和行动的知识;5.支付payoff函数:,参与人从博弈中获得的效用水平,它是所有参与人取定的一组策略的函数;6.结果outcome:博弈者感兴趣的要素的集合;7.静态博弈:在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;8.动态博弈:在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动;9.零和游戏零和博弈:属非合作博弈,指参与博弈的各方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加总和永远为“零”;双方不存在合作的可能;零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分;两个人下棋、或是打;10.常和博弈:又叫非零和博弈,是指各博弈方的得益之和是一个非零的常数;自己的所得并不与他人的所失的大小相等,连自己的幸福也未必建立在他人的痛苦之上,即使伤害他人也可能“损人不利己”,所以博弈双方存在“双赢”的可能,进而合作;在恋爱中一方受伤的时候,对方并不是一定得到满足;也有可能双方一起能得精神的满足;也有可能双方一起受伤;通常,彼此精神的损益不是零和的;11.变和博弈:也称非常和博弈,则是指随着博弈参与者选择的策略不同,各方的得益总和也不同;如在同一个,面对同样的大盘走势,伴随着投资者的不同,有可能大部分人赚钱而小部分人亏钱,也有可能小部分人赚而大部分人亏,甚至还有可能所有人都赚或都亏;12.占优策略:占优均衡dominant equilibrium,指不论其他参与者做何种策略选择,每个参与者的最佳策略都是唯一的,其结果为占优均衡;每一个博弈中的企业通常都拥有不止一个竞争策略,其所有策略的集合构成了该企业的策略集;在企业各自的策略集中,如果存在一个与其他竞争对手可能采取的策略无关的最优选择,则称其为占优策略,与之相对的其他策略则为劣势策略;13.合作博弈:合作博弈亦称为正和博弈,是指博弈双方的利益都有所增加,或者至少是一方的利益增加,而另一方的利益不受损害,因而整个社会的利益有所增加;14.帕累托最优状态:资源分配的一种理想状态,即假定固有的一群人和可分配的资源,从一种分配状态到另一种状态的变化中,在没有使任何人境况变坏的前提下,也不可能再使某些人的处境变好;换句话说,就是不可能再改善某些人的境况,而不使任何其他人受损;15.聚点均衡:在理论上一个博弈中可能有多个纳什均衡点,这时在现实生活中,行为人往往利用在理论上省略掉的那些信息,找到一个大家都感兴趣的点,这个点往往成为现实世界中博弈的最终解;当参与人之间没有正式的信息交流时,他们存在于其中的“环境”往往可以提供某种暗示,使得参与人不约而同地选择与各自条件相称的策略聚点,从而达到均衡;16.重复博弈:是指同样结构的博弈重复许多次,其中的每次博弈称为“阶段博弈”;重复博弈是动态博弈中的重要内容,它可以是完全信息的重复博弈,也可以是不完全信息的重复博弈;17.阶段博弈:每个阶段博弈中,参与人可能同时行动,也可能不同时行动;因为其他参与人过去的行动的历史是可以观测的,因此在重复博弈中,每个参与人可以使自己在每个阶段选择的策略依赖于其他参与人过去的行为;18.触发战略Trigger Strategy:又称为“冷酷战略”,它是指参与人在开始时选择合作,在接下来的博弈中,如果对方合作则继续合作,而如果对方一旦背叛,则永远选择背叛,永不合作;19.二级密封价格拍卖法:即维克里拍卖,在这种拍卖中,竞买者同样以密封的形式独立出价,商品也出售给出价最高的投标者;但是,获胜者支付的是所有投标价格中的第二高价,所以它被称为第二价格密封拍卖;纳什均衡:在一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的;占优策略均衡一定是纳什均衡,而纳什均衡不一定是占优策略均衡;。

博弈论博弈论

博弈论博弈论

博弈论博弈论?
答:博弈论,又称为对策论(Game Theory)、赛局理论等,既是现代数学的一个新分支,也是运筹学的一个重要学科。

博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

在博弈论中,有几个重要的术语和概念:
1.参与人:指的是博弈中选择行动以最大化自己利益的决策主体(可能是个人或团体)。

2.行动:是参与人在博弈的某个时点的决策变量。

3.信息:是参与人有关博弈的知识,特别是有关“自然”的选择、其他参与人的特征和行动的知识。

4.策略:是参与人在给定信息集的情况下的行动规则,它规定参与人在什么时候选择什么行动。

5.收益:在博弈论中,收益或者支付是指在特定的策略组合下参与人得到的确定效用水平,或者是指参与人得到的期望效用水平。

6.均衡:是所有参与人的最优策略组合,通常记为s*=(s1*,…,si*,…,sn*)。

此外,博弈论的基本假设包括认知理性和行为理性。

认知理性要求人是自我利益的判断者,具有偏好的完备性和传递性;行为理性则要求人是自我利益的追求者,追求利益最大化。

博弈论的应用非常广泛,不仅应用于经济学的标准分析工具之一,还在金融学、证券学、生物学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有重要的应用。

博弈论知识点总结完整版

博弈论知识点总结完整版

博弈论(一):基本知识1.1定义:博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。

即,博弈论是研究决策主体在给定信息结构下如何决策以最大化自己的效用,以及不同决策主体之间的均衡。

1.2基本要素:参与人、各参与人的策略集、各参与人的收益函数,是博弈最重要的基本要素。

1.3博弈的分类:博弈论根据其所采用的假设不同而分为合作博弈理论和非合作博弈理论。

两者的区别在于参与人在博弈过程中是否能够达成一个具有约束力的协议(binding agreement)。

倘若不能,则称非合作博弈(Non-cooperative game)。

合作博弈强调的是集体主义,团体理性,是效率、公平、公正;而非合作博弈则主要研究人们在利益相互影响的局势中如何选择策略使得自己的收益最大,强调个人理性、个人最优决策,其结果有时有效率,有时则不然。

目前经济学家谈到博弈论主要指的是非合作博弈,也就是各方在给定的约束条件下如何追求各自利益的最大化,最后达到力量均衡。

博弈的划分可以从参与人行动的次序和参与人对其他参与人的特征、战略空间和支付的知识、信息,是否了解两个角度进行。

把两个角度结合就得到了4种博弈:a、完全信息静态博弈,纳什均衡,Nash(1950)b、完全信息动态博弈,子博弈精炼纳什均衡,泽尔腾(1965)c、不完全信息静态博弈,贝叶斯纳什均衡,海萨尼(1967-1968)d、不完全信息动态博弈,精炼贝叶斯纳什均衡,泽尔腾(1975)Kreps, Wilson(1982) Fudenberg, Tirole(1991)1.4课程主要内容:完全信息静态博弈完全信息动态博弈不完全信息静态博弈机制设计合作博弈1.5博弈模型的两种表示形式:策略式表述(Strategic form), 扩展式表述(Extensive form)1.6占优均衡:a、占优策略:在博弈中如果不管其他参与人选择什么策略,一个参与人的某个策略给他带来的支付值始终高于其他策略,或至少不劣于其他策略,则称该策略为该参与人的严格占优策略或占优策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。

2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。

3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。

4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。

在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。

7、均衡:所有参与人的最优战略组合。

8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。

9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。

10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。

11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。

12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。

13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。

14、子博弈精炼纳什均衡:如果一个纳什均衡中的各个子博弈的战略在每一个子博弈中都是最优的,即构成纳什均衡,则称该博弈为子博弈精炼纳什均衡。

15、静态博弈:指博弈中的参与人同时选择行为,或者虽非同时但后行动者并不知道前行动者采取了什么具体行动;动态博弈:指参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。

16、重复博弈:给定一个标准博弈G(动态/静态)重复进行T次,并且每次重复G之前,以前的博弈的结果各个博弈方都能观察到,这样的博弈过程成为“G的T次重复博弈”,记为G(T),G称为G(T)的博弈阶段。

同样结构的博弈重复多次,其中的每次博弈称为阶段博弈。

17、不可置信的威胁:在纳什均衡中,不可置信的均衡战略,在博弈的规则下,使自己的支付变小的不理性的选择。

18、完全信息博弈:每一个参与人对所有其他参与人的特征,战略空间以及支付函数有准确知识的博弈。

19、类型:一个参与人所拥有的私有信息,是其个人特征的完备描述,博弈人知道,其他人不知道。

20、博弈的战略式表述:(1)参与人集合(2)每个参与人的战略集合(3)参与人的支付函数博弈的扩展式表述:(1)参与人集合(2)参与人的行动顺序(3)参与人的行动机构(4)参与人的信息集(5)参与人的支付函数(6)外生事件的概率分布21、信息集:每次行动时,参与人知道什么;参与人在决策结上所拥有的信息的集合,拥有同样信息的决策结属于同一个信息集,即信息集包含的决策结拥有同样的信息。

22、颤抖手均衡:在任何一个博弈中,每一个博弈方都有一定的概率出现错误,一个战略组合,只有当其在允许所有博弈方都可能犯错误时,仍然是每一个博弈方的最优策略时,才是一个颤抖手均衡。

23、序贯理性:在每一个信息集中,应该行动的参与人对于给定该参与人在此信息集上的推断,以及其他参与人随后的战略必须是最优反应,即在任何后续博弈中都是理性的。

24、推断理性:在处于均衡路径和非均衡路径的信息集上,推断由贝叶斯法则及参与人的均衡战略决定。

25、海萨尼转换:在处理不完全信息博弈问题中,引入一个虚拟的参与人“自然”,自然首先行动决定参与人的特征,参与人知道自己的特征,其他参与人不知道。

26、不完全信息博弈:在博弈中至少有一个博弈方不完全清楚其他博弈方的得益函数。

27、后续博弈:每一个信息开始的博弈的剩余部分。

28、贝叶斯纳什均衡:是一种类型依从战略组合,在给定自己类型和其他参与人的类型的概率分布情况下,每一个类型依存战略使得每个参与人的期望效用最大,也就是说,没有人有积极性选择其他战略。

29、逆向归纳法:从博弈树行动的相反顺序,从后往前依次求得各自博弈的纳什均衡。

30、信号传递博弈:31、机制设计激励相容约束:给定委托人不知道代理人类型的情况下代理人在所设计的机制下必须有积极性选择委托人希望他选择的行为,也就是说,只有当代理人选择委托人所希望的行为时得到的期望效用不小于他选择其他行为时得到的期望效用时,代理人才会有积极性选择委托人所希望的行动。

32、机制设计参与约束:如果要一个理性的代理人有任何兴趣接受委托人设计的机制(从而参与博弈)的话,代理人在该机制下得到的期望效用必须不小于他在不接受这个机制时得到的最大希望效用。

33、间接机制:参与人声明自己的类型依附战略,战略是除类型以外的信号,如拍卖中的声明报价。

34、直接机制:参与人直接声明自己的类型,而所声明的类型可能不同于真实类型,如拍卖中声明对拍卖品的估价。

二、简答题(1) 将博弈的信息特征和行为时间特征结合,博弈分为哪几类,并分析几种类型博弈的特点?答:将博弈的信息特征和行为时间特征结合,可以把博弈细分为下面四种类型的非合作博弈:静态博弈:是指所有博弈方同时或可看作同时选择策略、采取行动的博弈。

动态博弈:是指博弈方的选择、行动有先有后,而且后选择、后行动的博弈方在自己进行选择、行动之前可以看到在他之前选择、行动的博弈方的选择、行动的博弈。

完全信息博弈:是指每一参与者都拥有所有其他参与者的特征、策略集及得益函数等方面的准确信息的博弈。

不完全信息博弈:是指参与者只了解上述信息中的一部分的博弈。

(2)博弈论博弈论产生与发展过程?答:1、萌芽阶段(1944年以前):古诺(Cournot,1838,法国经济学家)模型(同时决策的产量博弈);斯坦克尔伯格(1934,Stackelberg,德国经济学家) (不同时决策的产量博弈)2、产生阶段(1944年-1959年):·诺依曼和摩根斯特恩合著《博弈论与经济行为》(1944年),博弈模型的解的概念和分析方法,理论基础,主要合作博弈,非合作零和博弈;纳什均衡(完全信息静态)(1950,1951),论文“N人博弈中的均衡”点(50年),“非合作博弈”(51年),提出了非合作博弈均衡解,并证明了均衡解的存在,纳什均衡基本思想:在解集中所有博弈者的策略都是对其他博弈者所用策赂的最佳对策3、发展阶段(1960年-1979年):精练纳什均衡(完全信息动态)(泽尔腾,1965),1965年论文《一个具有需求惯性的寡头博弈模型》,德国波恩大学教授,数学家、经济学家;贝叶斯纳什均衡(不完全信息静态,海萨尼,1967)与贝叶斯精练纳什均衡(不完全信息动态,海萨尼,1975),美国加州大学教授,经济学家4、繁荣阶段(1980年以后):纳什,泽尔腾和海萨尼共同获得诺贝尔经济学奖(1994);维克里和莫里斯获诺贝尔经济学奖(1996),2001,2005,2007年诺贝尔经济学奖,不对称信息下激励理论。

(3)博弈论成为经济学主要课程的成因是什么?答:1)博弈论在经济学中的应用越来越广泛. 博弈论许多成果也是借助于经济学的例子来发展的, 相比其他领域来说,在经济领域应用最为成功的,已经形成了一套完整的经济博弈理论,并且发挥了巨大经济效益。

2)经济学和博弈论的研究模式是一样的,这就是强调个人理性.也就是在给定的约束条件追求效用最大化。

在这一点上,博弈论与经济学是完全一样的,使得博弈论分析方法在经济分析中发挥着重要作用。

3)传统经济学研究个人行为时,总是假设其外部环境是给定的。

现代经济学越来越转向人与人关系的研究,特别是人与人之间行为的相互影响和作用,这与博弈论研究容相一致,所以,随着现代经济学的发展,博弈论显得更加重要。

4) 经济学越来越重视对信息的研究,特别是信息不对称对个人选择及制度安排的影响。

而博弈论不完全信息博弈模型正是解决这类问题的有效工具。

5) 博弈论和信息经济学专家获得了诺贝尔经济学奖,凸现了“博弈论”在主流经济学中日益重要的地位。

(4)博弈有哪几大要素,并解释几大要素的涵?答:规则:规定博弈各方的行动顺序、方式、以及最终的结果等。

局中人(Player, 选手,玩家):博弈参与人战略:一整套的行动方案,规定了各种情况下的行动。

如人不犯我,我不犯人;人若犯我,我必犯人。

行动:局中人行为。

信息:在行动时所掌握的信息。

报酬(payoffs, 支付):博弈结束时,各方得到的收益。

(5)混合策略和不完全信息博弈联系与区别答:共同点:博弈参与人不能够确切知道其他博弈参与人的选择行为,只知道选择行动的概率分布;不同点:前者的不确定性只是因为各博弈方为了不让其他博弈方占任何先机而必须故意随机选择行动,后者的不确定性源于其他博弈方的类型,即类型的不确定性,按照期望支付选择最优战略(纯战略)。

(6)战优均衡、重复剔除劣战略的战优均衡和纳什均衡相互之间的关系是什么?答:几个均衡之间的关系如图:在重复剔除的占优策略均衡中.最后剩下的惟一策略组合,一定是在重复剔除劣战略过程中无法被剔除的战略组合。

因此,重复剔除的占优战略均衡也一定是纳什均衡。

(7)简述子博弈精练纳什均衡的理性要求答:逆向归纳法理论要求的“所有参与人是理性的,并且要求参与人知道其后续参与人是理性的;参与人知道其后续参与人知道其后续参与人是理性的”,等等。

上述理性要求大大高于静态博弈中的理性要求。

在动态博弈中有时不能满足理性要求导致子博弈精炼纳什均衡不存在。

(8)信息经济学与博弈论不同点答:信息经济学是非对称信息博弈论在经济学上的应用,非对称信息指的是某些参与人拥有但是另一些参与人不用有的信息。

1)博弈论是方法论导向的,而信息经济学是问题导向的。

2)博弈论研究目的:结定信息结构,均衡结果是什么;信息经济学研究的目的:给定信息结构,契约安排是什么。

3)博弈论研究方法涉及经济、军事、政治、日常生活等,信息经济学只研究经济领域方面的问题。

4)博弈论包括完全信息和不完全信息模型,而信息经济学重点研究非完全信息博弈问题。

相关文档
最新文档