不等式概念和基本性质
不等式的有关概念
不等式的有关概念1、不等式定义:用符号“<”、“≤”、“>”、“≥”、“≠”连接而成的数学式子,叫做不等式。
这5个用来连接的符号统称不等号。
只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。
2、列不等式:步骤如下(1)根据所给条件中的关系确定不等式两边的代数式;(2)选择与题意符合的不等号将表示不等关系的两个式子连接起来。
3、用数轴表示不等式(1)a<x: 表示小于a 的全体实数,在数轴上表示a 左边的所有点,不包括a 在内。
(2)a≥x: 表示大于或等于a 的全体实数,在数轴上表示a 右边的所有点,包括a 在内。
(3)b<x<a: 表示大于b 而小于a 的全体实数。
4、不等式的基本性质(1)基本性质1:若a<b,b<c,则a<c。
(不等式的传递性)(2)基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立。
①若a>b>c,则a+c>b+c,a-c>b-c ;②若a<b<c,则a+c<b+c ,a-c<b-c。
(3)基本性质3:①不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立; 若a>b ,且0>c ,则ac>bc.②不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。
若a>b ,且0<c ,则ac<bc .要点诠释:(1)不等式基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握.(2)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”.5、一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:【(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.】(1)求分解,分别解不等式组中的每一个不等式,并求出它们的解;(2)画公解,将每一个不等式的解集画在同一数轴上,并找出它们的公共部分;(3)写组解,将(2)步中所确定的公共部分用不等式表示出来,就是原不等式组的解集。
不等式的性质、解不等式
不等式的基本性质、解不等式【基础知识】一、不等式的概念及基本性质注意:①不等式的基本性质,没有减法和除法。
如果遇到减法和除法,可以转化乘加法 和乘法,如:求a b -的范围可以转化成求()a b +-的范围,求a b 的范围可以转化成求1a b⨯的范围。
②方程和不等式的两边不能随便乘除,必须先研究这个数的性质,再乘除。
三、分式不等式和高次不等式 1、分式不等式的解法 把分式不等式通过移项、通分、因式分解等化成()0()f xg x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集。
温馨提示:解分式不等式一定要考虑定义域。
2、高次整式不等式的解法(序轴标根法)先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集。
实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集。
四、绝对值不等式 1、解绝对值不等式 方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴。
方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法。
注意小分类求交大综合求并。
方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以用平方法。
2、绝对值三角不等式a b a b a b -≤±≤+绝对值三角不等式的运用主要体现在直接利用绝对值三角不等式证明不等式和求函数的最值。
【例题精讲】例1 已知不等式 的解集为 ,求 、 的值。
不等式的基础知识讲解
不等式的基础知识讲解不等式是数学中非常重要的一个概念,它可以用来描述两个数之间的大小关系。
在实际生活和学习中,不等式经常会被用到,例如求解方程、证明定理、最优化等。
本文将介绍不等式的基础知识,包括不等式的定义、不等式的性质、不等式的解法以及不等式在实际中的应用等。
一、不等式的定义及常见符号不等式是一个数学语句,用来描述两个数之间的大小关系。
通常用符号“<、>、≤、≥、=”来表示不等式,其中“<”表示小于,“>”表示大于,“≤”表示小于或等于,“≥”表示大于或等于,“=”表示相等。
对于一个不等式:a < ba和b都是实数。
其中,a称为不等式的左边,b称为不等式的右边。
符号“<”表示a小于b,读作“a小于b”。
二、不等式的性质和等式类似,不等式也有一些基本性质。
1. 反对称性如果a≥b,且b≥a,那么a=b。
这个性质叫做反对称性。
2. 传递性如果a≤b,且b≤c,那么a≤c。
这个性质叫做传递性。
3. 加法性如果a≤b,那么a+c≤b+c。
如果a≥b,那么a+c≥b+c。
这个性质叫做加法性。
4. 减法性如果a≤b,那么a-c≤b-c。
如果a≥b,那么a-c≥b-c。
这个性质叫做减法性。
5. 乘法性如果c>0,那么乘以c不改变大小关系。
如果c<0,那么乘以c 会改变大小关系。
这个性质叫做乘法性。
6. 等价性如果两个不等式左右两边分别相等,那么它们是等价的,可以互相替换。
三、不等式的解法不等式的解法有两种常见方法:代数法和图形法。
1. 代数法代数法就是利用数学基本运算法则将不等式的未知数从不等式中解出来,从而确定其范围。
以不等式x-3>2为例:首先利用加法法则将式子变形,得到x-3+3>2+3,即x>5。
因此,x的范围是大于5的所有实数,即x∈(5,+∞)。
2. 图形法图形法就是将不等式用图形的方式表示出来,进而确定合法的范围。
以不等式x-3>2为例:首先将不等式化为等式x-3=2,即x=5。
不等式的性质和解法
不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。
2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。
(2)同向相加:如果a>b且c>d,那么a+c>b+d。
(3)同向相减:如果a>b,那么a-c>b-c。
(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。
二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。
(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。
(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。
(4)合并同类项:将不等式两边同类项合并。
(5)化简:将不等式化简到最简形式。
2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。
(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。
3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。
(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。
三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。
2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。
3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。
不等式及其性质
不等式及其性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 理解不等式的基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于等于”即“不小于”,表示左边的量不小于右边的量(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的基本性质不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).不等式的基本性质4:如果a>b,那么b<a.不等式的基本性质5:如果a>b,b>c,那么a>c.要点诠释:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.(2015春•辽阳校级期中)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A.18<t<27 B.18≤t<27 C.18<t≤27 D.18≤t≤27举一反三:【变式】aa 的值一定是().A.大于零B.小于零C.不大于零D. 不小于零2.下列叙述:①a是非负数则a≥0;②“a2减去10不大于2”可表示为a2-10<2;③“x的倒数超过10”可表示为1x>10;④“a,b两数的平方和为正数”可表示为a2+b2>0.其中正确的个数是().A.1个B.2个C.3个D. 4个3.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且下图是将糖果与砝码放在等臂天平上的两种情形,判断下列正确的情形是( ).举一反三:【变式】设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( ).A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■类型二、不等式的基本性质4.判断以下各题的结论是否正确(对的打“√”,错的打“×”). (1)若 b-3a <0,则b <3a ; (2)如果-5x >20,那么x >-4;(3)若a >b ,则 ac 2>bc 2;(4)若ac 2>bc 2,则a >b ;(5)若a >b ,则 a (c 2+1)>b (c 2+1). (6)若a >b >0,则1a <1b.5.如果a >b ,c <0,那么下列不等式成立的是( ). A .a+c >b+c B .c-a >c-b C .ac >bc D .a b c c>举一反三: 【变式】(2015•乐山)下列说法不一定成立的是( ) A .若a >b ,则a+c >b+c B .若a+c >b+c ,则a >bC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b6.下面四个命题:(1)22ac bc >,则a b >;(2)a b >,则ac bc >;(3)若a b >,则1ba<;(4)若0a >,则b a b -<.其中正确的个数是( ). A. 1个 B.2个 C. 3个 D. 4个7. (2015春•十堰期末)若2a+b=12,其中a≥0,b≥0,又P=3a+2b.试确定P的最小值和最大值.8.若关于x、y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围是________.举一反三:【变式1】(2015春•沙河市期末)若关于x的不等式(1﹣a)x>3可化为,则a 的取值范围是.【变式2】a、b是有理数,下列各式中成立的是( ).A.若a>b,则a2>b2; B.若a2>b2,则a>bC.若a≠b,则|a|≠|b| D.若|a|≠|b|,则a≠b【基础练习】一、选择题1. (2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( )A .1个B .2个C .3个D .4个 2.下列不等式表示正确的是( ).A .a 不是负数表示为a >0B .x 不大于5可表示为x >5C .x 与1的和是非负数可表示为x+1>0D .m >n ,n >4,则m >43.式子“①x+y=1;②x >y ;③x+2y ;④x-y ≥1;⑤x <0”属于不等式的有( ) A .2个 B .3个 C .4个 D .5个 4.已知a <b ,则下列不等式一定成立的是( )A .a+3>b+3B .2a >2bC .-a <-bD .a-b <05.若图示的两架天平都保持平衡,则对a 、b 、c 三种物体的重量判断正确的是( ).A.a >cB.a <cC.a <bD.b <c 6.下列变形中,错误的是( ).A .若3a+5>2,则3a >2-5B .若213x ->,则23x <- C .若115x -<,则x >-5 D .若1115x >,则511x >二、填空题7.用“>”或“<”填空:(1)-10.8________10.4; (2)327-________2(2)--;(3)15-________16- ; (4)32________8; (5)(-2)3________3|2|- ; (6) -1.11________119-; (7)当a >0,b_____0 时,ab <0 ; (8) 当a >0,12-a_____0. 8.用不等式表示下列各语句所描述的不等关系: (1)a 的绝对值与它本身的差是非负数________; (2)x 与-5的差不大于2________;(3)a 与3的差大于a 与a 的积________; (4)x 与2的平方差是—个负数________. 9.(2015春•玉田县期末)如果a <b .那么3﹣2a 3﹣2b .(用不等号连接)10.假设a >b ,请用“>”或“<”填空(1)a-1________b-1; (2)2a______2b ;(3)12a -_______12b -; (4)a+l________b+1.11.已知a >b ,且c ≠0,用“>”或“<”填空. (1)2a________a+b (2)2a c _______2bc (3)c-a_______c-b (4)-a|c|_______-b|c|12. k 的值大于-1且不大于3,则用不等式表示 k 的取值范围是_______.(使用形如a ≤x ≤b 的类似式子填空.)三、解答题 13.我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?请完成下列填空(填“>”或“<”),探索归纳得到一般的关系式: (1)已知5321>⎧⎨>⎩可得5+2______3+1,已知3512->-⎧⎨->-⎩可得-5-2_____-3-1; 已知2314-<⎧⎨<⎩可得-2+1_____3+4,…,一般地,如果a bc d >⎧⎨>⎩,那么a+c____b+d .(2)应用不等式的性质证明上述关系式.14. (2015春•睢宁县校级月考)用等号或不等号填空: (1)比较2x 与x 2+1的大小:当x=2时,2x x 2+1当x=1时,2x x 2+1当x=﹣1时,2x x 2+1(2)任选取几个x 的值,计算并比较2x 与x 2+1的大小;15.已知x <y ,比较下列各对数的大小. (1)8x-3和8y-3; (2)516x -+和516y -+; (3) x-2和y-1.【提高练习】一、选择题1.下列不等式中,一定成立的有( ).①5>-2;②21a >;③x+3>2;④a +1≥1;⑤22(1)(1)0a b ++>. A .4个 B .3个 C .2个 D .1个2. 若a+b >0,且b <0,则a ,b ,-a ,-b 的大小关系为( ).A .-a <-b <b <aB .-a <b <-b <aC .-a <b <a <-bD .b <-a <-b <a 3.(2015•怀化)下列不等式变形正确的是( ) A .由a >b 得ac >bc B .由a >b 得﹣2a >﹣2b C .由a >b 得﹣a <﹣b D .由a >b 得a ﹣2<b ﹣24.若0<x <1,则x ,1x,x 2的大小关系是( ). A .21x x x << B .21x x x << C .21x x x << D .21x x x<<5.已知a 、b 、c 、d 都是正实数,且a b <cd,给出下列四个不等式:①a c a b c d <++;②c a c d a b <++;③d b c d a b <++;④b da b c d<++ 其中不等式正确的是( ).A. ①③ B .①④ C .②④ D .②③ 6.如果a >b ,那么下列不等式一定成立的是( ).A .a+c >b-cB .a-c <b-cC .11a b< D .-a <-b 二、填空题 7.(2015春•盐城校级期中)给出下列表达式:①a (b+c )=ab+ac ;②﹣2<0;③x ≠5;④2a >b+1;⑤x 2﹣2xy+y 2;⑥2x ﹣3>6,其中不等式的个数是 . 8.(1)若22a b c c <,则a_________b ; (2)若m <0,ma <mb ,则a_________b .9.已知2|312|(2)0x x y m -+--=,若y <0,则m________.10.已知关于x 的方程3x-(2a-3)=5x+(3a+6)的解是负数,则a 的取值范围是________.11.下列结论:①若a >b ,则ac 2>bc 2;②若ac >bc ,则a >b ;③若a >b ,且c =d ,则ac >bd ;④若ac 2>bc 2,则a >b ,其中正确的有_________.(填序号)12.如果不等式3x-m ≤0的正整数解有且只有3个,那么m 的取值范围是________.三、解答题13.(2015.保定期末)用适当的符号表示下列关系:(1)x的与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.14.已知-2<a<3,化简|a-3|-|3a+6|+4(a-1).15.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法.若A-B>0,则A >B;若A-B=0,则A=B;若A-B<0,则A<B.这种比较大小的方法称为“作差法比较大小”,请运用这种方法尝试解决下列问题.(1)比较3a2-2b+1与5+3a2-2b+b2的大小;(2)比较a+b与a-b的大小;(3)比较3a+2b与2a+3b的大小.【答案与解析】 一、选择题 1.【答案】B . 2. 【答案】D ;【解析】a 不是负数应表示为a ≥0,故A 错误; x 不大于5应表示为x ≤5,故B 错误; x 与1的和是非负数应表示为x+1≥0,故C 错误;故D 正确. 3.【答案】B. 4.【答案】D ;【解析】从不等式a <b 入手,由不等式的性质1,不等式a <b 的两边都加上3后,不等号的方向不变,得a+3<b+3,故选项A 不成立;由不等式的性质2,不等式a <b 的两边都乘以2后,不等号的方向不变,得2a <2b ,故选项B 不成立;由不等式的性质3,不等式a <b 的两边都乘以-1后,不等号的方向改变,得-a >-b ,故选项C 也不成立;由不等式的性质1,不等式a <b 的两边都减去b 后,不等号的方向不变,得a-b <0.故应选D . 5.【答案】A. 6.【答案】B ;【解析】B 错误,应改为:213x ->,两边同除以23-,可得:32x <-. 二、填空题7.【答案】 (1)< (2)< (3)> (4)> (5)< (6) > (7)< (8)<; 【解析】根据大小进行判断.8.【答案】 (1)|a|-a ≥0 (2)x-(-5)≤2 (3)23a a -> (4)2220x -<;9.【答案】>.【解析】∵a <b ,两边同乘﹣2得:﹣2a >﹣2b ,不等式两边同加3得:3﹣2a >3﹣2b. 10.【答案】(1)> (2)> (3)< (4) >; 11.【答案】 (1)> (2)> (3)< (4)<; 【解析】利用不等式的性质进行判断. 12.【答案】-1<k ≤3. 三、解答题 13.【解析】 解:(1)由题意得,5+2>3+1;-5-2<-3-1;-2+1<3+4;a+c >b+d ; (2)令c=d+1,则可得a+d >b+d ,a+d+1>b+d , ∴a+c >b+d . 14.【解析】解:(1)比较2x 与x 2+1的大小:当x=2时,2x <x 2+1当x=1时,2x=x 2+1当x=﹣1时,2x <x 2+1, 故答案为:<,=,<;(2)当x=3时,2x <x 2+1,当x=﹣2时,2x <x 2+1.15.【解析】解: (1)∵ x <y ∴ 8x <8y , ∴ 8x-3<8y-3.(2)∵ x <y ,∴ 55y 66x ->-, ∴ 551166x y -+>-+.(3)∵ x <y ,∴ x-2<y-2,而y-2<y-1,∴ x-2<y-1.【答案与解析】 一、选择题 1. 【答案】B ;【解析】一定成立的是:①④⑤; 2. 【答案】B. 3.【答案】C .【解析】∵a >b ,∴①c >0时,ac >bc ;②c=0时,ac=bc ;③c <0时,ac <bc , ∴选项A 不正确;∵a >b ,∴﹣2a <﹣2b ,∴选项B 不正确;∵a >b ,∴﹣a <﹣b , ∴选项C 正确;∵a >b ,∴a ﹣2>b ﹣2,∴选项D 不正确. 4. 【答案】C ;【解析】∵0<x <1,∴ x 2≤x ≤1x. 5.【答案】A ; 【解析】∵a b <cd,a 、b 、c 、d 都是正实数, ∴ad <bc ,∴ac+ad <ac+bc ,即a (c+d )<c (a+b ),∴a ca b c d <++,所以①正确,②不正确; ∵a b <cd,a 、b 、c 、d 都是正实数, ∴ad <bc ,∴bd+ad <bd+bc ,即d (a+b )<b (d+c ), ∴d bc d a b<++,所以③正确,④不正确. 故选A . 6.【答案】D ; 二、填空题 7.【答案】4.8. 【答案】(1)<, (2)>;【解析】(1)两边同乘以2c (20c ≠);(2)两边同除以(0)m m <. 9. 【答案】>8;【解析】由已知可得:x =4,y =2x-m =8-m <0,所以m >8.10.【答案】35a >-; 11.【答案】④ .12.【答案】9≤m <12;【解析】3x-m ≤0,x ≤3m ,3≤3m <4,∴ 9≤m <12. 三、解答题13.【解析】解:(1)x+2x ≤0;(2)设炮弹的杀伤半径为r ,则应有r ≥300;(3)设每件上衣为a 元,每条长裤是b 元,应有3a+4b ≤268;(4)用P 表示明天下雨的可能性,则有P ≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,则应有a≥b .14.【解析】解: ∵ -2<a <3,∴ a-3<0.当3a+6≥0,即a ≥-2时,3a+6就为非负数.又∵ -2<a <3,3a+6≥0.∴ 原式=-(a-3)-(3a+6)+4a-4=-715.【解析】解:(1)222232153240a b a b b b -+--+-=--<.∴ 222321532a b a b b -+<+-+.(2)a+b-(a-b)=a+b-a+b =2b ,当b >0时,a+b-(a-b)=2b >0,a+b >a-b ;当b =0时,a+b-(a-b)=2b =0,a+b=a-b ;当b <0时,a+b-(a-b)=2b <0,a+b <a-b .(3)3a+2b-(2a+3b)=a-b 当a >b 时,3a+2b >2a+3b ;当a =b 时,3a+2b =2a+3b ;当a <b ,3a+2b <2a+3b .。
5不等式和它的基本性质
不等式和它的基本性质一、考点扫描:1.了解不等式的意义。
2.掌握不等式的三条基本性质,并会运用这些基本性质将不等式变形。
二、名师精讲:1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。
2.不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
用式子表示:如果a>b,那a+c>b+c(或a–c>b–c)(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
用式子表示:如果a>b,且c>0,那么ac>bc(或> )(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
用式子表示:如果a>b,且c<0,那么ac<BC(< SPAN>或< )3.不等式的基本性质是对不等式变形的重要依据。
不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。
在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。
三、例题分析第一阶梯[例1]我们已经学过的等式,方程是用"="连接式子,它表示数量间的相等关系,例如2+3=5,3x-1=2x+7, a+b=b+a等。
事实上,在实际生活中,同类量之间具有不相等关系的例子是大量的,普遍的,例如:某天的气温最低是-2℃,最高是3℃说明气温不相等,两个同学们体重分别是95斤和87斤,也不相等,上述两个例子我们可以分别表示成-2<3,95>87,像这种用不等号表示不等关系的式子,叫做不等式,常用的不等号有">""<"">""≥""≤""≠"。
根据不等式的概念,请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4提示:什么叫做不等式?常用的不等号有哪些?参考答案:②③④⑤是不等式。
基本不等式-概念解析
解代数不等式
基本不等式是解代数不等 式的重要工具,通过比较 不同项的大小,可以得出 不等式的解集。
代数运算的优化
在解决一些代数问题时, 使用基本不等式可以优化 计算过程,提高解题效率。
几何应用
几何图形的性质
基本不等式可以用来推导 几何图形的性质,例如三 角形的边长关系、平行四 边形的对角线性质等。
等。
代数证明方法通常需要一定的代 数技巧和推理能力,是数学竞赛 和数学研究中的常见证明方法。
几何证明
几何证明是通过几何图形和几 何性质来证明基本不等式的方 法。ቤተ መጻሕፍቲ ባይዱ
常用的几何性质包括三角形不 等式、平行四边形不等式、圆 的不等式等。
几何证明方法直观易懂,能够 帮助学生更好地理解基本不等 式的几何意义和应用。
几何不等式的证明
基本不等式是证明几何不 等式的重要手段,例如 Cauchy-Schwarz不等式、 Minkowski不等式等。
几何问题的求解
在解决一些几何问题时, 如求最值、面积等,基本 不等式可以提供有效的解 题思路。
函数应用
函数的单调性
基本不等式可以用来判断函数的 单调性,例如一元函数的导数与
应用
切比雪夫不等式在概率论、统计学等领域有广泛的应用,它可以用来估计概率 分布的性质和参数,也可以用来解决一些数学问题。
05 基本不等式的实际应用案 例
金融领域
投资组合优化
基本不等式可以用于确定投资组 合的最优配置,以实现风险和收
益之间的平衡。
保险精算
在保险精算中,基本不等式可用 于评估风险和制定合理的保费策
它通常表示为两个数 的和、差、积或比的 不等式。
性质
基本不等式具有传递性
初中数学知识点必备:不等式
初中数学知识点必备:不等式学校数学学问点:不等式1用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的`方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向转变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
不等式(组)1、不等式:用不等号(“”、“≤”、“”、“≥”、“≠”)表示不等关系的式子。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向转变。
3、不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含有未知数的不等式的全部解,组成这个不等式的解集。
提示大家:解不等式指的是求不等式解集的过程叫做解不等式。
学校数学学问点:不等式21.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有很多个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)留意:推断如何解简洁是关键。
5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
高考数学一轮复习 7.1不等式的概念和性质、基本不等式
(2) a ≥b a(ba,b≥0).
2
(3) ba +ba ≥ 2 (a,b同号).
(4)ab≤
a
2
b
2(a,b∈R).
(5) a2≥ b2 2
ab
≥2
≥
ab(a,b∈R2+).
11
(6)绝对值不等式
ab
||a|-|b||≤|a±b|≤|a|+|b|,
ab
③实函数y= 2(x2的最3) 小值是4; x2 2
④若x,y是正数,且 1 +4 =1,则xy有最小值16.
xy
其中正确命题的序号是
.
答案 ②④
解析 ①不正确.反例:若a=1,b=2,则满足a<b,而ab2=4,a2b=2,显然不满足
ab2<a2b.
②正确.③不正确.因为y= 2(x2= 3) =22 (x+2 2)≥42,当且x仅2 2
课标版 理数 § 7.1 不等式的概念和性质、基本不等式
知识梳理
1.不等式的定义 在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符 号>、<、≥、≤、≠连接两个数或代数式以表示它们之间的不等关系, 含有这些符号的式子,叫做不等式. 2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,有a-b>0⇔a>b;a-b=0⇔a
a
A.(-∞,-4]∪[4,+∞) B.(-∞,-4]
C.[4,+∞)
D.[-4,4]
答案 A ∵M= a2a=a4+ ,∴a4 当a>0时,M≥4;当a<0时,M≤-4,∴M的取
值范围为(-∞,-4]∪[4,+∞),故选A.
1.1.1不等式的基本性质
性质 6 开方性质 如果 a>b>0,那么n a > n b(n∈N,n≥2)
【练习】 判断下列命题是否正确,并说明理由. (1)若 a>b,则 ac2>bc2; (2)若ca2>cb2,则 a>b; (3)若 a>b,ab≠0,则1a<1b; (4)若 a>b,c>d,则 ac>bd. [自主解答] (1)错误.当 c=0 时不成立. (2)正确.∵c2≠0 且 c2>0,在ca2>cb2两边同乘以 c2, ∴a>b. (3)错误.a>b⇒1a<1b成立的条件是 ab>0. (4)错误.a>b,c>d⇒ac>bd,当 a,b,c,d 为正数时成立.
即α+β∈
-π,π 22
,α-β∈
-π2,0
.
2
2
利用性质证明简单不等式
【例 3】 已知 c>a>b>0,求证:c-a a>c-b b. [精彩点拨] 构造分母关系 → 构造分子关系 → 证明不等式
[自主解答] ∵a>b,∴-a<-b. 又 c>a>b>0, ∴0<1.c-在a<证c-明b本,例∴时c-,1 a连>c续-1用b>到0.不等式的三个性质,一是不等式的 乘法性质:a>b,则-a<-b;二是不等式的加法性质:c>a>b>0,又 -又a∵<-a>bb,>则0,0∴<c-a a<>c-b b;. 三是倒数性质.最后再次用到不等式的 乘法性质.
五、不等式的基本性质的应用
比较大小
【例 1】 设 A=x3+3,B=3x2+x,且 x>3,试比较 A 与 B 的
【精品初一复习课件】不等式的定义及性质
不等式的定义及性质知识集结知识元不等式的判定知识讲解1.不等式:用不等号表示不相等关系的式子,叫做不等式.例如:等都是不等式.2.常见的不等号有种:“”、“>”、“<”、“≥”、“≤”.注意:不等式3≥2成立;而不等式3≥3也成立,因为成立,所以不等式3≥3成立.3.不等号“>”和“<”称为互为相反方向的符号,所谓不等号的方向改变,就是指原来的不等号的方向改变成与其相反的方向,如:“>”改变方向后,就变成了“<”.例题精讲不等式的判定例1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x﹣1;⑤x+2≤3,其中不等式有().【解析】题干解析:解:①3>0;②4x+3y≠0;⑤x+2≤3是不等式,故选:B.例2.下列各式:(1)﹣x≥5;(2)y﹣3x<0;(3)+5<0;(4)x2+x≠3;(5)+3≤3x;(6)x+2<0是一元一次不等式的有().【解析】题干解析:(1)﹣x≥5,是;(2)y﹣3x<0,不是;(3)+5<0,是;(4)x2+x≠3,不是;(5)+3≤3x,不是;(6)x+2<0,是. 故选B例3.如果5a﹣3x2+a>1是关于x的一元一次不等式,则其解集为.【答案】x<﹣2【解析】题干解析:根据一元一次不等式的定义,可得a,的值,由题意,得2+a=1,解得a=﹣1,5a﹣3x2+a>1﹣5﹣3x>1,解得x<﹣2,故答案为:x<﹣2.列不等式知识讲解1.根据已知条件列不等式,实际上就是用不等式表示代数式间的不等关系,重点是抓住关键词,弄清不等关系.2.步骤:①正确列出代数式;②正确使用不等号3.掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.如:某人至少有10元钱,是说这个人的钱数多于或等于10元.(3)正数、负数、非负数、非正数等概念.如:a是非正数,应写成:a≤0.例题精讲列不等式例1.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量.若设原来每天最多能生产x辆,则关于x的不等式为().A.15x>20(x+6)B.15(x+6)≥20x【解析】题干解析:首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.例2.按商品质量规定:商店出售的标明500g的袋装食盐,其实际克数与所标克数相差不能超过5g,设实际克数是x g,则x应满足的不等式是.【答案】495≤x≤505【解析】题干解析:由题意,得x应满足的不等式是495≤x≤505,故答案为:495≤x≤505.例3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售但要保证利润率不低于5%,问至多可以打几折?若设可以打x折,则列出的不等式是.【答案】1200×﹣800≥800×5%【解析】题干解析:利润率不低于5%,即利润要大于或等于800×5%元,设至多打x折则1200×﹣800≥800×5%,故答案为:1200×﹣800≥800×5%由实际问题抽象出一元一次不等式组知识讲解根据题意列出一元一次不等式(组)例题精讲由实际问题抽象出一元一次不等式组例1.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,则宽的长度xcm应满足的不等式组为().【解析】题干解析:由于长方形的相片框架的长为25cm,而长总大于宽,由此得到x<25,又面积不小于500,根据面积公式可以得到25x≥500,联立两个不等式组成不等式组,解不等式组即可求解.不等式的解、解集及表示方法知识讲解不等式的解和解集:使不等式成立的未知数的值或未知数的取值范围去判断此类题型.例题精讲不等式的解、解集及表示方法例1.下列4种说法:①x=是不等式4x﹣5>0的解;②x=是不等式4x﹣5>0的一个解;③x>是不等式4x﹣5>0的解集;④x>2中任何一个数都可以使不等式4x﹣5>0成立,所以x>2也是它的解集.其中正确的有()。
不等式-基本性质
总结:不等式5大基本性质
1)传递性 2)加法性质 3)乘法性质 符号障碍 4)乘方性质 5)开方性质 其他问题处理技巧 减法问题:变减为加 负数乘法问题:变负为正 除法问题,倒数问题:变除为乘,化分为整
eg3.已知:a>b>0,c<d<0,e<o e e 用不等式性质证明 a-c b d
eg1.比较下列两数的大小 1)(a+3)(a-5)和(a+2)(a-4) 2)a 4b 和2a-4b-2
2 2
Байду номын сангаас
3)x 8和 2 x( x 2)
3
比差法的基本步骤: 1.做差 2.将差因式分解为几个因式的乘积或 平方和的形式 3.比较各因式和0的关系,判断符号
eg 2.a克糖水中有b克糖(a>b>0)在添上m克糖 (m>0)糖水变甜了,是根据这个事实提炼一个 不等式并证明
2
二实数a与b的大小关系的确定。
1)a为正数 a 0 b为负数 b 0 a 0, b 0则a>b a>0 -a<0 2)运算: b<0 -b>0 a, b同号 ab 0 a, b异号 ab 0
3)设a , b R, 则a b, a b, a b三种关系必 居且只居其一 a b a b 0, a b ab 0 a b ab 0
a eg 5.1) 2 a 3, 2 b 1, 求a b, a b, 的 b 取值范围 2) 1 a b 2, 求a b和2a -b的取值范围 3)A={y|y=x 2 x 2, x R} 1 求 ( x A)的取值范围 x+1
不等式概念及性质知识点详解与练习
不等式的概念及性质知识点详解及练习一、不等式的概念及列不等式不等式⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→≤≥≠→→表示出不等关系列出代数式设未知数步骤列不等式””、“”、“”、“”、““不等号概念πφ 1、不等式的概念及其分类(1)定义:用“>”、“﹤”、“≠”、“≥”及“≤”等不等号把代数式连接起来,表示不等关系的式子。
a-b>0a>b, a-b=0a=b, a-b<0a<b 。
(2)分类:①矛盾不等式:不等式只是表示了某种不等关系,它表示的关系可能在任何条件下都不成立,这样的不等式叫矛盾不等式;如2>3,x 2﹤0②绝对不等式:它表示的关系可能在任何条件下都成立,这样的不等式叫绝对不等式; ③条件不等式:在一定条件下才能成立的不等式叫条件不等式。
(3)不等号的类型:①“≠”读作“不等于”,它说明两个量之间关系是不等的,但不能明确两个量谁大谁小; ②“>”读作“大于”,它表示左边的数比右边的数大;③“﹤”读作“小于”, 它表示左边的数比右边的数小;④“≥”读作“大于或等于”, 它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”, 它表示左边的数不大于右边的数;注意:要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
(4)常见不等式基本语言的含义:①若x >0,则x 是正数;②若x ﹤0,则x 是负数;③若x ≥0,则x 是非负数;④若x ≤0,则x 是非正数;⑤若x-y >0,则x 大于y ;⑥若x-y ﹤0,则x 小于y ;⑦若x-y ≥0,则x 不小于y ;⑧若x-y ≤0,则x 不大于y ;⑨若xy >0(或yx >0),则x ,y 同号;⑩若xy ﹤0(或yx ﹤0),则x ,y 异号; (5)等式与不等式的关系:等式与不等式都用来表示现实中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
不等式的基本概念与性质
不等式的基本概念与性质不等式是数学中一种重要的关系表达式,描述了两个或多个数之间的大小关系。
不等式与等式不同,它表示两个数之间的大小关系,可以是大于、小于、大于等于、小于等于等。
一、不等式的基本概念1. 不等式符号不等式符号是表示数之间大小关系的符号,常见的不等式符号有以下几种:- 小于号:<,表示小于的关系,如a < b表示a小于b。
- 大于号:>,表示大于的关系,如a > b表示a大于b。
- 小于等于号:≤,表示小于等于的关系,如a ≤ b表示a小于等于b。
- 大于等于号:≥,表示大于等于的关系,如a ≥ b表示a大于等于b。
- 不等号:≠,表示不等的关系,如a ≠ b表示a不等于b。
2. 不等式的解集不等式的解集是满足不等式条件的数值范围。
解集可以表示为一个区间或多个不等式的交集或并集。
例如,不等式x > 3的解集可以表示为(3, +∞),表示 x 的取值范围大于3,不包括3本身。
3. 不等式的性质- 不等式的传递性:如果 a < b 且 b < c,那么有 a < c,这是不等式的传递性质。
例如,如果 x < y 且 y < z,则可以推断出 x < z。
- 不等式的加法性:如果 a < b,那么有 a + c < b + c,其中 c 是任意实数。
例如,如果 x < y,则可以推断出 x + 1 < y + 1。
- 不等式的乘法性:如果 a < b 且 c > 0,那么有 ac < bc,其中 c 是正实数;如果 a < b 且 c < 0,那么有 ac > bc,其中 c 是负实数。
例如,如果 x < y 且 z > 0,则可以推断出 xz < yz。
- 不等式的取反性:如果 a < b,则有 -a > -b。
例如,如果 x < y,则可以推断出 -x > -y。
不等式的基本性质知识点总结
4.2 实例分析 以一道具体的不等式问题为例,详细分析其 解题过程和思路,展示如何运用不等式的性 质进行解题。通过实例分析,加深对不等式 基本性质的理解和掌握
不等式的常见题型与解题技巧
如何激发对不等式学习的兴趣
A
学习不等式 需要耐心和
毅力
B
当我们遇到困 难时,不要轻 易放弃,而是 要坚持下去, 相信自己能够
解决问题
C
通过不断练习 和反思,我们 可以逐渐提高 自己的解决问
题的能力
总结与展望未来
12.1 总结
01
本文总结了不等式的基本性质、解法与变形、常见题型 与解题技巧等方面的知识点,并探讨了如何进一步提高 不等式问题的解决能力以及学习不等式的重要性和意义。 同时,也提出了一些激发对不等式学习兴趣的方法
不等式在实际生 活中的应用
7.1 经济学中的应用:在经济学中,不等式常被用来描述和解决资 源分配、市场供需、成本与收益等问题。例如,通过比较不同投资 方案的收益与成本,利用不等式来选择最优的投资方案
7.2 物理学中的应用:在物理学中,不等式被广泛应用于力学、 热学、电磁学等领域。例如,牛顿第二定律中的力与加速度的 关系就可以用不等式来描述
10.4 提高综合素质
学习不等式不仅可以提高我 们的数学能力,还可以培养 我们的耐心、毅力和创新精 神
通过解决复杂的问题,我们 可以锻炼自己的意志品质, 提高自己的综合素质
如何激发对不等式学习的兴趣
了解不等式在实际生活中的应用,可以激发我们对不等式学 习的兴趣。当我们知道所学知识能够解决实际问题时,自然 会产生学习的动力 参加数学竞赛和活动,可以让我们更好地了解数学的魅力, 提高解决数学问题的能力。在竞赛和活动中,我们可以结交 志同道合的朋友,共同探讨数学问题,分享解决问题的乐趣 寻找合适的学习资源,如教材、网络课程、学习 app 等, 可以帮助我们更好地学习不等式。同时,也可以通过参加学 习小组或找老师请教等方式,获取更多的学习帮助和支持
专题2.1-2.3 不等关系、不等式的基本性质、不等式的解集(教师版)
专题2.1-2.3 不等关系、不等式的基本性质、不等式的解集1.理解不等式的意义,能用不等关系符号刻画现实世界中的数量关系;2. 掌握不等式的三条基本性质,并能简单应用;3.认识不等式解集的概念并会在数轴上表示解集。
知识点01 不等式与不等式的基本性质【知识点】1、不等式的概念:一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.注意:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.2、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【知识拓展1】不等式的辨别例1.(2022·浙江·八年级练习)下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有()个.A.1B.2C.3D.4【答案】B【分析】依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0;③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.【即学即练】1.(2022·黑龙江·哈尔滨市八年级期中)下列式子①15xx<+;②1>2;③3m-1≤4;④a+2≠a-2中,不等式有()A.1个B.2个C.3个D.4个【答案】D【分析】根据不等式的定义:“用不等号表示不相等关系的式子叫做不等式”分析即可.【详解】根据不等式的定义:“用不等号表示两个量间的不等关系的式子叫做不等式”分析可知,上述四个式子都是不等式.故选D.【点睛】本题考查了不等式的定义,理解不等式的定义是解题的关键.2.(2022·浙江余杭·八年级阶段练习)下列选项正确的是()A.a不是负数,表示为0a>B.a不大于3,表示为3a<C.x与4的差是负数,表示为40x-<D.x不等于34,表示为34x>【答案】C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A.a不是负数,可表示成0a…,故本选项不符合题意;B.a不大于3,可表示成3a…,故本选项不符合题意;C.x与4的差是负数,可表示成40x-<,故本选项符合题意;D.x不等于34,表示为34x≠,故本选项不符合题意;故选:C.【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.【知识拓展2】不等式应用例2.(2021·北京市八年级期中)2020年,一直活跃在全球公众视线中的新冠疫苗,成为人类对抗新冠疫情的“关键先生”.然而,研发只是迈出了第一步,疫苗运输的第一关考验,在于温度.作为生物制品,疫苗对温度极其敏感.一般来说,疫苗冷链按照温度的不同,有如下分类:类型深度冷链冻链冷藏链温度(t℃)t≤﹣70﹣70<t≤﹣202≤t≤8常见疫苗埃博拉疫苗水痘、带状疱疹疫苗流感疫苗我国研制的新型冠状病毒灭活疫苗,冷链运输和储存需要在2℃﹣8℃范围内,属于以下哪种冷链运输( )A.深度冷链B.冻链C.冷藏链D.普通运输【答案】C【分析】直接根据不等式的定义,观察表中t的范围可得答案.【详解】解:根据图表中t的取值范围得:冷链运输和储存需要在2℃—8℃范围内,属于冷藏链运输.故选:C.【点睛】此题考查的是不等式的概念,掌握不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式是解决此题关键.【即学即练】1.(2022·浙江嘉兴·八年级期末)根据数量关系“x的3倍小于4”,列不等式为______.【答案】34x<【分析】根据题意,表示出x的3倍,即可求解.【详解】解:“x的3倍小于4”,可表示为34x<x<故答案为:34【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.2.(2022·广东·八年级期末)在新冠肺炎疫情防控期间,体温T超过37.3C°的必须如实报告,并主动到发热门诊就诊.体温“超过37.3C °”用不等式表示为( )A .37.3CT >°B .37.3C T <°C .37.3C T £°D .37.3CT £-°【答案】A【分析】超过37.3C °即大于37.3C °,用不等式表示出来即可.【详解】解:A 、表示超过37.3C °,选项正确;B 、表示低于37.3C °,选项错误;C 、表示不高于37.3C °,选项错误;D 、表示不高于37.3C -°,选项错误.故选:A【点睛】本题考查不等式的概念,根据定义解题是关键.【知识拓展3】不等式的性质例3.(2022·湖南汉寿·八年级期末)下列不等式变形中不正确的是( )A .由a b >,得11a b ->-B .由12a b -<,得2a b >-C .由1123a b >,得32a b >D .由31a ->,得13a >-【答案】D【分析】根据不等式的性质,比较每一个选项变形是否符合不等式的性质,选出正确答案即可.【详解】A 、a b >,得11a b ->-,根据不等式两边同时加上或减去同一个数,不等式仍然正确,可知A 正确,不符合题意;B 、由12a b -<,得2a b >-,根据不等两边同时乘一个负数,不等号方向改变,可知B 正确,不符合题意;C 、由1123a b >,得32a b >,根据不等两边同时乘一个正数,不等号方向不变,可知C 正确,不符合题意;D 、由31a ->,得13a <-,根据不等两边同时除以一个负数,不等号方向改变,可知D 错误,符合题意;故选:D .【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解决本题的关键.【即学即练】1.(2022·浙江新昌·八年级期末)如果a b >,那么下列结论一定正确的是( )A .33a b +<+B .22a b <C .34a b +>+D .33a b ->-【答案】D【分析】根据不等式的基本性质求解即可.【详解】解:A 、如果a b >,则33a b +>+,错误,不符合题意;B 、如果a b >,则22a b >,错误,不符合题意;C 、如果a b >,则34a b +>+,不一定正确,不符合题意;D 、如果a b >,则33a b ->-,正确,符合题意,故选:D .【点睛】本题考查不等式的基本性质,熟练掌握不等式的基本性质是解答的关键.2.(2022·山东·八年级专项训练)根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)15x -<;(2)413x -³;(3)1142x -+³;(4)410x -<-.【答案】(1)6x <(2)1³x (3)6x £-(4)52x >【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答;(3)先根据不等式的性质1,再根据不等式的性质3解答;(4)根据不等式的性质3解答即可;【解析】(1)解:15x -<,两边加上1得:1151x -+<+,解得:6x <;(2)解:413x -³,两边加上1得:41131x -+³+,即44x ³,两边除以4得:1³x ;(3)解:1142x -+³,两边减去1得:111412x -+-³-,即132x -³,两边除以12-得:6x £-;(4)解:410x -<-,两边除以4-得:52x >.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.【知识拓展4】不等式性质的实际运用例4.(2022·山东·八年级期末)如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定【答案】A【分析】设A ,B 两人的体重分别为a ,b ,根据题意列出等式和不等式,即可得出答案.【详解】解:设A ,B 两人的体重分别为a ,b ,根据题意得:a +m =n +b ,a >b ,∴m <n ,故选:A .【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.【即学即练】1.(2022·湖南汉寿·八年级期末)甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b + 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( )A .a b =B .a b >C .a b <D .与a b 、大小无关【答案】C【分析】分别求出买5只羊的总费用和卖掉5只羊的总收入,再利用不等式的性质比较大小即可【详解】解:由题意,甲买羊共付出(32a b +)元,卖羊的共收入5()2a b +元,∵甲赚了钱,∴32a b +<5()2a b +,解得:a b <,故选:C .【点睛】本题考查列代数式、不等式的基本性质,理解题意,正确列出代数式和不等式是解答的关键.【知识拓展5】根据不等式性质求参数例5.(2022·浙江缙云·八年级期末)若x y <,且()()33->-a x a y ,则a 的取值范围是( )A .3a <B .3a >C .3a ³D .3a £【答案】A【分析】根据不等式的性质求解即可.【详解】解:∵x y <,且()()33->-a x a y ,∴a -3<0,∴a <3,故选A .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.【即学即练】1.(2022·浙江西湖·八年级期末)已知x y >.(1)比较3x -与3y -的大小,并说明理由.(2)若33ax ay +>+,求a 的取值范围.【答案】(1)3−x <3−y (2)a >0【分析】(1)根据不等式的基本性质解答即可;(2)根据不等式的基本性质解答即可.【解析】(1)解:∵x>y,∴−x<−y,∴3−x<3−y;(2)∵x>y,3+ax>3+ay,∴a>0.【点睛】本题考查的是不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变,解题关键是掌握不等式的基本性质.知识点02 不等式的解集【知识点】1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:注意:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a 而言,x<a或x≤a向左画.【知识拓展1】不等式的解例1.(2022·河北·八年级专题练习)下列说法中,正确的是()A.x=3是不等式2x>1的解B.x=3是不等式2x>1的唯一解C.x=3不是不等式2x>1的解D.x=3是不等式2x>1的解集【答案】A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A、当x=3时,2×3>1,成立,故A符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.【即学即练1】1.(2022·遂宁市八年级期中)下列各数中,是不等式x >3的解的是( )A .﹣3B .0C .3D .5【答案】D【分析】根据不等式解的定义判断即可.【详解】5是不等式x >3的解.故选:D .【点睛】此题考查了不等式的解集,弄清不等式解的定义是解本题的关键.2.(2022·北京顺义·八年级期中)x =3是下列不等式( )的一个解.A .x +1<0B .x +1<4C .x +1<3D .x +1<5【答案】D【分析】直接将x=3代入各个不等式,不等式成立的即为所选.【详解】解:A 、3+1=4>0,故A 不成立;B 、3+1=4,故B 不成立;C 、3+1=4>3,故C 不成立;D 、3+1=4<5,故D 成立;故选:D.【点睛】本题主要考查不等式的的解(集),使不等式成立的的未知数的值,就是不等式的解,由所有不等式的解组成的集合就是不等式的解集.【知识拓展2】不等式的解集例2.(2022·山西忻州·八年级期末)下列说法错误的是( )A .不等式32x ->的解集是5x >B .不等式3x <的整数解有无数个C .不等式33x +<的整数解是0D .0x =是不等式23x <的一个解【答案】C【分析】解出不等式的解集,根据不等式的解的定义,是能使不等式成立的未知数的值,就可以作出判断.【详解】解:A 、不等式x −3>2的解集是x >5,正确,不符合题意;B 、由于整数包括负整数、0、正整数,所以不等式x <3的整数解有无数个,正确,不符合题意;C 、不等式x +3<3的解集为x <0,所以不等式x +3<3的整数解不能是0,错误,符合题意;D 、由于不等式2x <3的解集为x <1.5,所以x =0是不等式2x <3的一个解,正确,不符合题意.选:C .【点睛】本题考查了不等式的解集,解答此题关键是掌握解不等式的方法,及整数的分类.【即学即练】1.(2022·广东·八年级课时练习)下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式﹣2x <8的解集是x <﹣4C .不等式x >﹣5的负整数解是有限个D .﹣40是不等式2x <﹣8的一个解【答案】B【分析】先求解不等式,然后根据不等式解集的定义进行判断.【详解】A 、小于5的整数有无数个,正确;B 、不等式﹣2x <8的解集是x >﹣4,错误;C 、不等式x >﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1,正确;D 、不等式2x <﹣8的解集是x <﹣4,因而﹣40是不等式2x <﹣8的一个解,正确.故选B .【点睛】本题考查不等式的解集,求出不等式的解集是解题的关键.【知识拓展3】用数轴表示不等式的解集例1.(2022.山东八年级)将下列不等式的解集在数轴上表示出来.(1)1x >- (2)2x -≤ (3)0x ³ (4)1x <-【分析】(1)先将数轴画出来,然后找到-1这一点,然后大于向右画,在-1处为空心圆点;(2)先将数轴画出来,然后找到-2这一点,然后小于向左画,在-2处为实心圆点;(3)先将数轴画出来,然后找到0这一点,然后大于向右画,在0处为实心圆点;(4)先将数轴画出来,然后找到-1这一点,然后小于向左画,在-1处为空心圆点.解:如图所示.【点拨】本题主要考查用数轴表示不等式的解集,掌握数轴的知识及大于向右画,小于向左画,有等号画实心圆点,没有等号画空心圆点是解题的关键.【即学即练】1.请用不等式表示如图的解集.【答案】(1)x <﹣1;(2)x ≥1;(3)x ≤﹣1;(4)x >3.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,可得答案.解:(1)由数轴表示的不等式的解集,得1x <-;(2)由数轴表示的不等式的解集,得1³x ;(3)由数轴表示的不等式的解集,得1x £-;(4)由数轴表示的不等式的解集,得3x >.【知识拓展4】根据不等式的解集求参数例4.(2022·浙江龙湾·八年级期中)已知不等式(a ﹣1)x >a ﹣1的解集是x <1,则a 的取值范围为______.【答案】a <1【分析】根据不等式的性质3,可得答案.【详解】解:∵(a ﹣1)x >a ﹣1的解集是x <1,不等号方向发生了改变,∴a ﹣1<0,∴a <1.故答案为:a <1.【点睛】本题考查了不等式的性质,不等式的两边都除以同一个负数,不等号的方向改变.【即学即练】1.(2022·浙江·温州八年级期中)若不等式(m ﹣3)x >m ﹣3,两边同除以(m ﹣3),得x <1,则m 的取值范围为_____.【答案】3m <【分析】根据不等式的性质可知30m -<,求解即可.【详解】解:∵不等式(m ﹣3)x >m ﹣3,两边同除以(m ﹣3),得x <1,∴30m -<,解得:3m <,故答案为:3m <.【点睛】本题考查了不等式的基本性质,熟知不等式两边同时乘或除一个负数,不等式的符号要改变,是解本题的关键.2.对于x≥1的一切实数,不等式()1x-a 2≥a 都成立,试求a 的取值范围.【答案】13a £【分析】将x=1先带入不等式()1x-a 2≥a 中,解不等式即可得到答案.解:不等式可得x≥3a,由题意知3a≤1,即a≤13.【点拨】此题重点考查学生对不等式解法的理解,把握不等式的解法是解题的关键.题组A 基础过关练1.(2022·北京市昌平区八年级期中)在 ① 1x y +=;② x y >;③ 2x y +;④ 21x y -³;⑤ 0x < 中,属于不等式的有 ()A .1 个B .2 个C .3 个D .4 个【答案】C【分析】用不等号连接而成的式子叫不等式,根据不等式的定义即可完成.【详解】①是等式;③是代数式;②④⑤是不等式;即属于不等式的有3个故选:C【点睛】本题考查了不等式的概念,理解不等式的概念是关键.2.(2022·江苏高邮·七年级期末)小明花整数元网购了一本《趣数学》,让同学们猜书的价格.甲说:“至少15元”,乙说“至多13元”,丙说:“至多10元”.小明说:“你们都猜错了.”则这本书的价格为( )A .12元B .13元C .14元D .无法确定【答案】C【分析】根据题目中的说法,可以利用排除法,求得《趣数学》的价格,从而可以解答本题.【详解】解:由题意可得,甲、乙、丙的说法都是错误的,甲的说法错误,说明这本书的价格少于15元,乙、丙的说法错误,说明这本书的价格高于13元,又因为明花整数元网购了一本《趣数学》,所以这本书的价格是14元,故选:C .【点睛】本题考查推理与论证,解答本题的关键是明确题意,利用排除法得到书的价格.3.(2022·江苏·靖江外国语学校模拟预测)下列说法不正确的是( )A .若a b <,则22ax bx <B .若a b >,则44a b -<-C .若a b >,则11a b -<-D .若a b >,则a x b x+>+【答案】A【分析】利用不等式的性质逐项判断,得出答案即可.【详解】解:A 、若a b <,则22ax bx <,0x =时不成立,此选项错误,符合题意;B 、若a b >,则44a b -<-,此选项正确,不符合题意;C 、若a b >,则11a b -<-,此选项正确,不符合题意;D 、若a b >,则a x b x +>+,此选项正确,不符合题意.故选:A .【点睛】此题考查不等式的性质,解题关键是熟记不等式的性质:性质1、不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质2、不等式两边都乘(或除以)同一个正数,不等号的方向不变.性质3、不等式两边都乘(或除以)同一个负数,不等号方向改变.4.(2022·全国·八年级专题练习)对于不等式4x+7(x-2)>8不是它的解的是()A.5B.4C.3D.2【答案】D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键. 5.(2022·全国·八年级)如果a<b,c<0,那么下列不等式成立的是( )A.a+c<b B.a﹣c>b﹣c C.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)【答案】A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,6.(2022·山东·聊城市八年级阶段练习)如果a>b,c<0,则ac3_____bc3(>或<或=).【答案】<【分析】根据不等式的基本性质(不等式的两边同时乘以或除以同一个负数不等号的方向改变)判断即可得到答案.【详解】解:∵c<0,∴c3<0,∵a>b,∴ac3<bc3.(不等式的两边同时乘以或除以同一个负数不等号的方向改变)故答案为:<.【点睛】本题主要考查了不等式的基本性质;(1)不等式的两边同时加上或者减去同一个数活等式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.7.(2022·北京市八年级期中)以下是两位同学在复习不等式过程中的对话:小明说:不等式a>2a永远都不会成立,因为如果在这个不等式两边同时除以a,就会出现1>2这样的错误结论!小丽说:如果a>b,c>d,那么一定会得出a﹣c>b﹣d.你认为小明的说法 (填“正确”、“不正确”);小丽的说法 (填“正确”、“不正确”),并选择其中一个人判断阐述你的理由(若认为正确,则进行证明;若认为不正确,则给出反例)【答案】不正确;不正确;理由见解析【分析】根据不等式的性质进行解答.【详解】解:小明和小丽的说法都不正确,理由如下:选择小明的说法:当a=0时,a=2a;当a<0时,由1<2得a>2a.选择小丽的说法:当a=c,b=d时,a﹣c>b﹣d不成立;故答案为:不正确;不正确.【点睛】本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.8.(2022·全国·八年级课前预习)利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x-7>26(2)3x<2x+1【答案】(1)x>33,见解析(2)x<1,见解析【详解】(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:x-7+7>26+7,x>33.这个不等式的解集在数轴上的表示如图:(2)3x<2x+1;解:(2)根据不等式的性质1,不等式两边减2x,不等号的方向不变,所以:3x-2x<2x+1-2x,x<1.这个不等式的解集在数轴上的表示如图:9.(2022·全国·八年级课时练习)若x y <,试比较下列各式的大小并说明理由.(1)31x -与31y -;(2)263x -+与263y -+.【答案】(1)3131x y -<-.理由见解析;(2)226633x y -+>-+.理由见解析.【分析】(1)先在x <y 的基础上,利用不等式性质2,同乘以3,不等号方向不变,再在此基础上,利用不等式性质1,同减去1,不等号方向不变,故3x-1<3y-1;(2)先在x <y 的基础上,利用不等式形式3,同乘以-23-,不等号方向改变,再在此基础上,利用不等式性质1,同加上6,不等号方向不变,故226633x y -+>-+.【详解】解:(1)3131x y -<-.理由如下:x y <Q ,33x y \<(不等式的性质2),3131x y \-<-(不等式的性质1).(2)226633x y -+>-+.理由如下:x y <Q ,2233x y \->-(不等式的性质3),226633x y -+>-+(不等式的性质1).【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.题组B 能力提升练1.(2022·全国·八年级专题练习)下列说法正确的是( )A .x =﹣3是不等式x >﹣2的一个解B .x =﹣1是不等式x >﹣2的一个解C .不等式x >﹣2的解是x =﹣3D .不等式x >﹣2的解是x =﹣1【答案】B【分析】根据不等式解集和解的概念求解可得.【详解】解:A 、∵32-<- ,∴x =﹣3不是不等式x >﹣2的一个解,此选项不符合题意;B .∵12->- ,∴x =﹣1是不等式x >﹣2的一个解,此选项符合题意;C .不等式x >﹣2的解有无数个,此选项不符合题意;D .不等式x >﹣2的解有无数个,此选项不符合题意;故选B .【点睛】本题主要考查不等式的解集,不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示,不等式的每一个解都在它的解集的范围内.2.(2022·湖南·永州市八年级阶段练习)关于x 的不等式(m -1)x >m -1可变成形为x <1,则( )A .m <-1B .m >-1C .m >1D .m <1【答案】D【分析】根据不等式的基本性质3求解即可.【详解】解:∵关于x 的不等式(m -1)x >m -1的解集为x <1,∴m -1<0,则m <1,故选:D .【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3.3.(2022·全国·八年级)已知8x +1<-2x ,则下列各式中正确的是( )A .10x +1>0B .10x +1<0C .8x -1>2xD .10x >-1【答案】B【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x +1<-2x 的两边同加上2x ,不等号的方向不变,即10x +1<0.故选:B .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.4.(2022·江西·景德镇八年级期中)以下说法正确的是:_______.①由ab bc >,得a c >;②由22ab cb >,得a c >;③由b a b c -<-,得a c >;④由20212021a c >,得a c >;⑤n a -和()n a -互为相反数;⑥3x >是不等式21x +>的解【答案】②③④【分析】根据不等式的基本性质得出结论即可.【详解】解:①由ab bc >,当0b <时,得a c <,故结论①错误;②由22ab cb >,得a c >,故结论②正确;③由b a b c -<-,得a c >;故结论③正确;④由20212021a c >,得a c >;故结论④正确;⑤n a -和()n a -互为相反数,当n 为奇数时,()n n a a -=-,故结论⑤错误;⑥1x >-是不等式21x +>的解,故结论⑥错误;故正确的结论为:②③④.【点睛】本题考查了不等式的基本性质,熟知不等式的基本性质是解本题的关键.5.(2022·广东·八年级期中)(1)若a <0,则a 2a ;(用“>”“<”“=”填空)。
不等式的基本概念与性质
不等式的基本概念与性质不等式是数学中常见的一种关系表示形式,用于描述数值的大小关系。
与等式不同的是,不等式中的符号表示的是不等关系,包括大于(>)、小于(<)、大于等于(≥)和小于等于(≤)等。
一、基本概念1. 不等式的定义:不等式是数学中一种描述数值大小关系的表达式,由一个或多个代数式组成,用不等号连接。
例如:a > b、x + y ≤ 102. 不等式的解:满足不等式的数值范围即为不等式的解。
与等式一样,不等式的解也可以是一个数、一组数或数的区间。
例如:不等式 x > 3 的解为 x > 3,不等式2x ≤ 10 的解为0 ≤ x ≤ 53. 不等式中的常见符号:不等式中常见的符号有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。
符号的意义如下:- 大于(>):表示左侧的数大于右侧的数。
- 小于(<):表示左侧的数小于右侧的数。
- 大于等于(≥):表示左侧的数大于或等于右侧的数。
- 小于等于(≤):表示左侧的数小于或等于右侧的数。
二、不等式的性质1. 加减法性质:对不等式两侧同时加减一个数,不等式的大小关系保持不变。
例如:若 a > b,则 a + c > b + c,a - c > b - c(其中 c 为任意实数)2. 乘法性质:对不等式两侧同时乘以一个正数,不等式的大小关系保持不变;对不等式两侧同时乘以一个负数,则不等式的大小关系反转。
例如:若 a > b,则 ac > bc(其中 c > 0);若 a > b,则 ac < bc(其中 c < 0)3. 不等式的翻转:不等式两边同时取负号,则不等式的大小关系发生翻转。
例如:若 a > b,则 -a < -b4. 绝对值不等式性质:- 若 |a| < c,则 -c < a < c- 若 |a| > c,则 a < -c 或 a > c5. 平方不等式性质:- 若 a > b(a、b 非负数),则 a^2 > b^2- 若 a < b(a、b 非负数),则 a^2 < b^26. 合并与分离不等式:两个不等式通过“且”或“或”连接,可以合并成一个不等式;一个复合不等式可以分离成两个不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的概念和基本性质重点:不等式的基本性质难点:不等式基本性质的应用主要内容:1.不等式的基本性质(1)a>b b<a(2)a>b,b>c a>c(3)a+b<c a<c-ba>b a+c>b+c(4)a>b2.不等式的运算性质(1)加法法则:a>b,c>d a+c>b+d(2)减法法则:a>b,c>d a-d>b-c(3)乘法法则:a>b>0,c>d>0ac>bd>0(4)除法法则:a>b>0,c>d>0>>0(5)乘方法则:a>b>0,a n>b n>0 (n∈N, n≥2)(6)开方法则:a>b>0,>>0(n∈N, n≥2)3.基本不等式(1)a∈R,a2≥0 (当且仅当a=0时取等号)(2)a,b∈R,a2+b2≥2ab(当且仅当a=b时取等号)(3)a,b∈R+,≥(当且仅当a=b时取等号)(4)a,b,c∈R+,a3+b3+c3≥3abc(当且仅当a=b=c时取等号)(5)a,b,c∈R+,≥(当且仅当a=b=c时取等号)(6)|a|-|b|≤|a±b|≤|a|+|b|4.不等式的概念和性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,弄清每条性质的条件与结论,注意条件与结论之间的关系。
基本不等式可以在解题时直接应用。
例1.对于实数a,b,c判断以下命题的真假(1)若a>b, 则ac<bc;(2)若ac2>bc2, 则a>b;(3)若a<b<0, 则a2>ab>b2; (4)若a<b<0, 则|a|>|b|;(5)若a>b, >, 则a>0, b<0.解:(1)因为c的符号不定,所以无法判定ac和bc的大小,故原命题为假命题。
(2)因为ac2>bc2, 所以c≠0, 从而c2>0,故原命题为真命题。
(3)因为所以a2>ab①又所以ab>b2②综合①②得a2>ab>b2故原命题为真命题.(4)两个负实数,绝对值大的反而小.故原命题为真命题.(5)因为所以所以从而ab<0又因a>b所以a>0, b<0.故原命题为真命题.例2.已知f(x)=ax2-c且-4≤f(1)≤-1,-1≤f(2)≤5, 求f(3)的范围.解:由题意可知:∴∴f(3)=9a-c=f(2)-f(1)∴运算可知-1≤f(3)≤20错解:依题设有①消元,得②∵f(3)=9a-c∴-7≤f(3)≤26错因:根源在于不等式组①与不等式组②并不等价,不等式组②扩大了不等式组①的解的范围,同向不等式在多次相加时要谨慎,一定要检查其同解性.例3.设a,b是不相等的正数:A=, G=, H=, Q=, 试比较A、G、H、Q的大小.解:由于a,b为不相等的正数.所以:G-H=-=-===>0从而H<GA-G=-==>0 从而G<AQ-A=-=->-=0从而A<Q综上所述,当a, b为不相等的正实数时,H<G<A<Q.评述:本题直接比较G、H;A、G;Q、A的原因在于由特殊值可对四者排序,令a=1, b=3则A=2, G=,H=, Q=,这为我们解题指明了方向.例4.设a, b∈N+ s(1)求证:在与之间;(2)问与哪一个更接近?证明:(1)由于(-)(-)=-(*)∵a≠b所以(*)式的值小于0从而在与之间解(2)由于|-|=|a-b|||=|a-b|∵>>∵|a-b|>|a-b| 故而更接近例5.船在流水中在甲地和乙地间来回驶一次平均速度和船在静水中的速度是否相等,为什么?解:设甲、乙两地的距离为S,船在静水中的速度为u,水流速度为v(u>v>0)则船在甲、乙两地行驶的时间t为:t=+=平均速度==∵-u=-u==<0∴<u从而船在流水中来回一次的平均速度小于船在静水中的速度.练习1.若a,b,c为实数,判断下列命题的真假(1)若a>b, 则ac2>bc2;(2)若a<b<0,则<;(3)若a<b<0,则>;(4)若a<b<0,则<1;(5)若c>a>b>0,则>.2.设x,y∈R,判定下列两题中,命题甲与命题乙的充分必要条件.(1)命题甲命题乙(2)命题甲命题乙3.a∈R,试比较3(1+a2+a4)与(1+a+a2)2的大小.4.a>1, m>n>0,比较a m+和a n+的大小.5.已知函数y=f(x), x∈R满足(1)对x∈R,都有f(x)≥2;(2)对x1∈R,x2∈R, 都有f(x1+x2)≤f(x1)f(x2)求证:对任意实数x1, x2,都有:lgf(x1+x2)≤lgf(x1)+lgf(x2)参考答案1.解(1)∵c2≥0,当c=0时ac2=bc2=0故原命题为假命题(2)举特例-2<-1<0但->-1故原命题为假命题(3)由于a<b<0所以所以∴故原命题为假命题(4)∵a<b<0∴|a|>|b|>0∴<1∴<1故原命题为真命题.(5)∵c>a>b>0∴∴c-b>c-a>0∴>>0又∵a>b>0 ∴>故原命题为真命题.2.解(1)当x>0, y>0时,很明显x+y>0, xy>0当xy>0时,x,y同号;又x+y>0,可知x, y同正,即x>0, y>0.因此:命题甲是命题乙的充要条件.(2)∵x>2>0,y>2>0∴x+y>4, xy>4但是:反例如下:x=5, y=1, 这时x+y=6>4, xy=5>4, 但x>2, y<2因此:命题甲是命题乙的充分但不必要条件.3.解:3(1+a2+a4)(1+a+a2)2=3+3a2+3a4-(1+a2+a4+2a+2a3+2a2)=2a4-2a3-2a+2=2(a-1)2(a2+a+1)≥0∴3(1+a2+a4)≥(1+a+a2)24.解:∵(a m+)-(a n+)=(a m-a n)+()=由a>1, m>n>0可知a m>a n,a m+n>1∴(a m+)-(a n+)>0即:a m+>a n+5.证明:设x1∈R,x2∈R.∵f(x1)f(x2)-[f(x1)+f(x2)]=f(x1)[-1]+f(x2)[-1]∵对任意x∈Rf(x)≥2 ∴-1≥0-1≥0∴f(x1)f(x2)≥f(x1)+f(x2)再由条件(2)f(x1+x2)≤f(x1)+f(x2)∴对任意实数x1∈R x2∈R有:f(x1+x2)≤f(x1)·f(x2)∴lgf(x1+x2)≤lgf(x1)f(x2)=lgf(x1)+lgf(x2)从而对任意实数x1∈R,x2∈R有:lgf(x1+x2)≤lgf(x1)+lgf(x2)不等式综合能力测试一、选择题:1.设I=R,集合M={x|lg(x+1)≤0},则等于()A、(-∞,-1)∪(0,+∞)B、(-∞,0]C、(-∞,-1)∪[0,+∞)D、(-∞,0)2.若函数y=lg[1+(1+log2x)]的值域为R+,则其定义域为()A、R+B、(1,+∞)C、(,+∞)D、(,1)3.使方程cos2x+sinx=a有实数解的a的取值范围是()A、(-∞,B、[-1,]C、[0,]D、[-2,]4.已知函数:(1) y=x+(x≠0), (2)y=cosx+(0<x<),(3)y=(x+8x+)(x>0), (4) y=(1+cotx)(+2tgx)(0<x<).这四个函数中以4为最小值的个数为()A、0B、1C、2D、35.如果a>b>c,则有()A、|a|>|b|>|c|B、|a|<|b|<|c|C、|a-c|>|c-b|D、|a+b|>|b+c|6.不等式≥x+1的解集是()A、{x|-1≤x≤1}B、{x|0≤x≤1}C、{x|x≤-1}D、{x|-1≤x≤0)二、填空题7.已知a、b、c∈R+,且a+b+c=1, 则的最小值是____________.8.log a(1+a)与log a(1+) (a>0且a≠1)的大小关系是____________.9.设x>0, 则函数y=+x2, 当x=_______时,有最小值__________.10.不等式lg(x2+2x+2)<1的解集是______________.11.函数y=+arcsin(2x-3)的定义域为___________.12.不等式x>|2-|的解集是___________.三、解答题13.解不等式<0.14.如果0<a<1, 0<b<1, 0<c<1, 试证:(1-a)b, (1-b)c, (1-c)a不能同时大于.15.解不等式+>0.16.已知|a|<1, |b|<1, |c|<1, 求证:||<1.17.若xy=100, x≥, y≥, 求lg(y lgx)的最大值和最小值.18.轮船航行的费用分为两部分,第一部分是轮船的折旧费或其它服务费用,每小时480元;第二部分为燃料费,它与速度的立方成正比.并且当速度为10公里/小时时,燃料费为每小时30元.问航行速度为多少时,才能使航行每公里的费用最小?并求出这个最小值,此时每小时的费用总和多少?答案:1.A2.D3.D4.A5.C6.D7.9 8. log a(1+a)>log a(1+) 9.10. {x|-4<x<2} 11. [1, ] 12. {x|x<}13. 由或解得原不等式的解集为{x|x<0或1<x<2或2<x<3或x>4}.14.假设(1-a)b, (1-b)c, (1-c)a同大于,∴ abc(1-a)(1-b)(1-c)>()3 (1)又a(1-a)≤()2=, 即a(1-a)≤,同理b(1-b)≤, c(1-c)≤,∴ abc(1-a)(1-b)(1-c)≤()3 (2)(1)与(2)矛盾,所以结论成立.15.设x=tanα (-90︒<α<90︒),则=sinα, =cos2α,原不等式化为sinα+cos2α>0,即2sin2α-sinα-1<0, ∴ -<sinα<1.-<α<, ∴x=tanα>-.故原不等式的解集是(-,+∞).16.||<1⇔<1⇔a2+b2+c2+a2b2c2<1+a2b2+b2c2+c2a2⇔(1-a2)(1-b2)(1-c2)>0,即原不等式成立.17.设M=lg(y lgx)=lgx·lgy,∵x≥, y≥, ∴ lgx>0, lgy>0∴ M≤()2=()2=1,当x=y=10时等号成立,又xy=100, ∴ lgx+lgy=2∴M=-(lgx-1)2+1,由x≥, y≥,得lgx≥, lgy≥,∴ lgx∈[, ] 当lgx=或lgx=时,M有最小值,故lg(y lgx)的最大值为1,最小值为.18.设每小时的费用总和为t元,航行速度为x公里/小时,∴t=kx3+480(x≥0),由已知得103k=30得k=, 即t=x3+480,设每公里的航行费用为y元,得y=(x3+480)=x2++≥3=36,当x=20时取等号,答(略).。