量子力学习题解答第2章
量子力学第2章习题
![量子力学第2章习题](https://img.taocdn.com/s3/m/7182264080eb6294dc886c26.png)
240
n6 6
,
n = 1, 2, 3L
n 为偶 n 为奇
能量平均值
E
a
Hˆ
dx
0
a c2 x(a
0
x)(
h2 2μ
)
d2 dx 2
x(a
x)dx
h2 30 a
5h2
x(a x)dx
μ a5 0
μa 2
能量平方的平均值
E 2
a
Hˆ
2
dx
0
a c2 x(a
0
x)(
h2 )2 2μ
a
2
讨论:显然 M 0, N 0,且N M > 0
令:
N M =n N nM
= n ,
a
En
2h2 2a2
n2 ,
n 1, 2,L
( x) = Asin( 1 n x + 1 n + M )
a
2
Asin n x + a
a2
(2.4)题
先归一化
1 a dx a A2 x2 ( x a)2 dx
(
z
)
=
0
2 3
2 μE3 h2
方程的解:
1( x) = A1sin(1 x) + B1cos(1 x) 2( y) = A2sin(2 y) + B2cos(2 y) 3(z) = A3sin(2z) + B3cos(3z)
( x, y, z) =1( x) 2( y) 3(z) = [ A1sin(1 x) + B1cos(1 x)] [ A2sin(2 y) + B2cos(2 y)] [ A3sin(2z) + B3cos(3z)]
量子力学解答(1-2 章)
![量子力学解答(1-2 章)](https://img.taocdn.com/s3/m/1b47d1db6f1aff00bed51e50.png)
ψ (0) = 0, ψ ( a ) = 0,
B ≠ 0, ⇒ k =
⇒ A=0 ⇒ B sin ka = 0
归一化,
答
案
i ⎧ 2 nπ − h E n t sin xe , ⎪ 得: ψ n ( x, t ) = ⎨ a a ⎪ 0, ⎩
网
ww
∫
a
0
B 2 sin 2
nπx dx = 1, ⇒ B = a
&dx = ∫ mx & ∫ pdq = ∫ mx
后
3 h 2 k 2 n 2 1/ 3 ( ) , n = 1,2,3... 2 m v v kr ) 证明: 注意到 F = − = − kr , 径向牛顿力学方程为 r k k = ma n = mrω 2 , 即 rω 2 = m 0 0 v ˆ ⋅ dr = ∫ − kdr = kr 选取 r=0 为势能零点, 势能为 E p = ∫ − kr
ww
对全空间积分并注意可与对时间求导交换,得:
//
w.
∂ * h2 h2 * 2 2 * ih (ψ 1ψ 2 ) = − (ψ 1 ∇ ψ 2 − ψ 2 ∇ ψ 1 ) = − ∇ ⋅ (ψ 1*∇ψ 2 − ψ 2 ∇ψ 1* ) ∂t 2m 2m
粒子在一维势场 V(x) 中运动,V(x) 无奇点,设
v
∫ψψ
全 * 1
2
dτ
之值与时间无关. 证明: 由 Schrodinger 方程:
∂ψ 1 h2 2 ih = (− ∇ + V )ψ 1 ∂t 2m ih ∂ψ 2 h2 2 = (− ∇ + V )ψ 2 ∂t 2m ∂ψ 1* h2 2 = (− ∇ + V )ψ 1* ∂t 2m
《量子力学教程》作业题及答案--2017-2018第一学期
![《量子力学教程》作业题及答案--2017-2018第一学期](https://img.taocdn.com/s3/m/1e1a834c77232f60ddcca195.png)
1、 求 一 维 线 性 谐 振 子 处 在 第 一 激 发 态 时 概 率 最 大 的 位 置 。
解:ψ 1(x ) =(
2α
π
)αxe − α
2
x2 /2
w(x ) = ψ 1(x ) =
2
2α 3
π
x 2e − α
2
x2
2 2 2 2 ∂w(x ) = 0 得 2xe − α x − 2α 2xx 2e − α x = 0 ∂x
E n x n y = E n x + E n y = (n x + 2n y + )ω
3) 对于基态, n x ,n y = 0 , E 00 =
3 ω 是非简并的; 2
对于第一激发态,
5 n x = 1 , E 10 = ω 是非简并的; 2 n y = 0 7 n x = 0 n x = 2 , , E 01 = E 20 = ω 能级是二重简并的; 2 = 1 = 0 n n y y 9 n x = 3 nx = 1 , ,E E = = ω 是二重简并的。 30 11 n = 1 2 = 0 n y y
x < 0 0 ≤ x ≤ a 中, x > a
V0
4
的本征态,试确定此势阱的宽度 a 。
解:对于 E = −
V0
4
< 0 的情况,三个区域中的波函数分别为
ψ 1 ( x ) = 0 ψ 2 ( x ) = A sin kx ψ ( x ) = B exp(− αx ) 3
其中,
k=
n
则只有量子数 n = 1,3,5, 时, H n (0) = 0 ( n = 1,3,5, ) 则能级为 E n = ( n + 1 2 )ω
量子力学习题及答案
![量子力学习题及答案](https://img.taocdn.com/s3/m/c63db02416fc700abb68fc2b.png)
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x
量子力学——第二章作业参考答案
![量子力学——第二章作业参考答案](https://img.taocdn.com/s3/m/11b308df28ea81c758f57847.png)
+
⎛ ⎜ ⎝
∂ψ ∂t
*
Vψ
+
∂ψ ∂t
Vψ
*
⎞ ⎟
,
⎠
(2)
ψ 、ψ * 满足薛定谔方程
i
∂ψ ∂t
=
⎛ ⎜ ⎝
−
2
2m
∇2
+V
⎞⎟ψ ⎠
,
−i
∂ψ * ∂t
=
⎛ ⎜
−
⎝
2
∇2 2m
+V
⎞⎟ψ * , ⎠
(3) (4)
用 ∂ψ * 乘以(3)式加上用 ∂ψ 乘以(4)式得
∂t
∂t
∂ψ ∂t
Vψ *
dt
s
通常 < 2V2 >≠ 0 ,也就是说在整个区域找到粒子的概率随时间发生变化,概率守恒破缺;
即使 < 2V2 >= 0 ,由(8)式知概率守恒也存在局域破缺除非V2 (r ) = 0
(b)证明如下: 由(a)得
d dt
∫∫∫ d 3rψ τ
*ψ
=
−∫∫ dsi s
j
+
∫∫∫ d 3rψ τ
*
2V2 ψ
第二章作业参考答案
(曾谨言著《量子力学教程》(第二版) 习题 1 P24-P26)
∫ 1.1 证明:(a)能量的平均值 < E >= d 3rψ *Hˆψ ,
哈密顿量 Hˆ = Pˆ 2 2m +V (r ) ,波函数ψ =ψ (r ,t ) ,(1)式变为
(1)
∫ < E >=
d 3r
⎛ ⎜ψ
*
Pˆ 2
+
∂ψ ∂t
量子力学课后习题答案
![量子力学课后习题答案](https://img.taocdn.com/s3/m/c759103303d8ce2f01662304.png)
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学第二章习题 答案
![量子力学第二章习题 答案](https://img.taocdn.com/s3/m/f8630a38a76e58fafab003c4.png)
第二章习题解答p.522.1.证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。
其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。
量子力学习题解答-第2章
![量子力学习题解答-第2章](https://img.taocdn.com/s3/m/fb9b99c94028915f804dc2a9.png)
若
ì0, V ( x ) = í î ¥ ,
则能量本征函数和能量本征值为
- a < x < a 其它地方
y n ( x) =
1 æ n p ö sin ç ( x + a ) ÷ , - a < x < a; n = 1,2,3,... a a è 2 ø
2 2 2 n p h E = n 2 2 m(2 a ) n = 1 是基态(能量最低) , n = 2 是第一激发态。波函数相对于势阱的中心是奇偶交替
定态波函数满足含时薛定谔方程。 对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值 E n ,其它力 学量(不显含时间)的期待值不随时间变化。对连续谱,定态不是物理上可实现的态(不可 归一化) ,但是它们可以叠加成物理上可实现的态。 含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为
第二章 定态薛定谔方程
本章主要内容概要: 1. 定态薛定谔方程与定态的性质: 在势能不显含时间的情况下,含时薛定谔方程可以通过分离变量法来求解。首先求解 定态薛定谔方程(能量本征值方程)
h 2 d 2 y + Vy = E y . 2 m dx 2
求解时需考虑波函数的标准条件(连续、有限、单值等) 。能量本征函数y n 具有正交归一 性(分立谱)
2
可以是物理上可实现(可归一化)的态。其中叠加系数 f (k ) 由初始波包 Y ( x,0) 决定
Y ( x,0) =
由能量本征函数满足
1 2p
¥
¥ ikx f ( k ) e dk ò -¥
d 函数正交归一性
1 2p
- ikx Y ( x ,0) e dk ò -¥
量子力学导论第2章答案
![量子力学导论第2章答案](https://img.taocdn.com/s3/m/5ed126264b35eefdc8d33306.png)
第二章 波函数与Schrödinger 方程2.1设质量为m 的粒子在势场)(r V中运动。
(a )证明粒子的能量平均值为 ω⋅=⎰r d E 3,ψψψψωV m**22+∇=(能量密度)(b )证明能量守恒公式 0=⋅∇+∂∂s tw⎪⎪⎭⎫⎝⎛∇∂∂+∇∂∂-=**22ψψψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化)V T r d V mE +=⎪⎪⎭⎫⎝⎛+∇-=⎰322*2ψψ (1) ⎰=ψψV r d V *3 (势能平均值) (2)()()()[]⎰⎰∇⋅∇-∇⋅∇-=⎪⎪⎭⎫ ⎝⎛∇-=ψψψψψψ**3222*32)(2动能平均值r d mm r d T其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。
因此ψψ∇⋅∇=⎰*322r d mT(3)结合式(1)、(2)和(3),可知能量密度,2**2ψψψψωV m+∇⋅∇=(4)且能量平均值 ⎰⋅=ωr dE 3。
(b )由(4)式,得...2**.....2*22**..2222*2222V Vt m t t t tV V m t t t t t t s V V t mt m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ⎡⎤∂∂*∂∂*∂⎢⎥=∇⋅∇+∇⋅∇++∂⎢∂∂⎥∂∂⎣⎦⎡⎤⎛⎫⎛⎫∂*∂∂*∂∂*∂⎢⎥ ⎪ ⎪=∇⋅∇+∇-∇+∇++⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂*∂=-∇⋅+-∇++-∇+ ⎪ ⎪∂∂⎝⎭⎝⎭=-∇⋅+..*t t ψψψψ⎛⎫∂*∂ ⎪+ ⎪∂∂⎝⎭ρt E s ∂∂+⋅-∇=(ρ :几率密度)s⋅-∇= (定态波函数,几率密度ρ不随时间改变)所以0=⋅∇+∂∂s tw。
2.2考虑单粒子的Schrödinger 方程()()()()[]()t r r iV r V t r mt r t i ,,2,2122ψψψ++∇-=∂∂(1) 1V 与2V 为实函数。
量子力学教程(二版)习题答案
![量子力学教程(二版)习题答案](https://img.taocdn.com/s3/m/4dd169c03086bceb19e8b8f67c1cfad6195fe97a.png)
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
量子力学答案 苏汝铿 第二章课后答案2.4-2#05
![量子力学答案 苏汝铿 第二章课后答案2.4-2#05](https://img.taocdn.com/s3/m/84ebe0faf705cc175527093a.png)
由其它边界条件,又有
A1 sin k1a A2e k2 a B2e k2 a , A1k1 cos k1a A2 k2e k2 a B2 k2e k2 a ; A3 sin k1a A2e k2 ( a b ) B2e k2 ( a b ) , A3k1 cos k1a A2 k2e k2 ( a b ) B2 k2e k2 ( a b ) .
改写上式可得关于不全为 0 系数 ( A1 , A2 , B2 , A3 ) 的线性方程组:
A1 sin k1a
A2e k2a
B2e k2a B2 k2 e k2 a
0, 0, A3 sin k1a 0,
A1k1 cos k1a A2 k2e k2 a
A2 ek2 ( a b ) B2e k2 ( a b )
U0 ) U0 )
2.4 粒子处在势能
பைடு நூலகம்
(当x<0和x>2a+b) U x 0(当0 x a和a+b x 2a+b) U(当a<x<a+b) 0
的场中运动,求在能量小于 U 0 的情况下,决定能量的关系式。 解:
势能如上图所示。 薛定谔方程是:
1 k12 1 =0,
由薛定谔方程及边界条件 1 (0) 0 和 3 (2a b) 0 ,我们有
1 ( x) A1 sin k1 x, 2 ( x) A2ek x B2e k x , 3 ( x) A3 sin[k1 ( x 2a b)],
2 2
当0 x a; 当a x a b; 当a b x 2a b.
即
量子力学第二章习题解答
![量子力学第二章习题解答](https://img.taocdn.com/s3/m/85a30ebc960590c69ec37695.png)
第二章习题解答p.522.1.证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与 无关。
2.2 由下列定态波函数计算几率流密度:i k ri k re re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇s i n r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰dx x ψ方式归一化。
其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。
量子力学习题解答-第2章
![量子力学习题解答-第2章](https://img.taocdn.com/s3/m/34a9d5845901020206409c14.png)
计算出
反射系数 和透射系数 之和为1.
*习题2.1证明下列三个定理
解:(a)证:假设在定态解把实数 改为复数 ,则
若在 时刻,波函数是归一化的,即
在以后时刻
所以要求在任何时候都有
必须有 ,即 必须为实数。
(b)设 满足定态薛定谔方程
把这个式子取复共轭,注意到 是实的,得到
显然 和 是同一薛定谔方程的解,所以它们的线性叠加
或
也是同一薛定谔方程的解。显然 是实函数,所以一维定态薛定谔方程的解总可以取为实函数。
(c)对
进行空间反演 ,得到
如果势能 是偶函数,则有
因此 和 是同一薛定谔方程的解,所以它们的线性叠加
也是同一薛定谔方程的解。 ,所以当势能是偶函数,定态薛定谔方程的解总可以取为有确定宇称的解。
*习题2.2
解:如果 ,那么 和它的二次导数有同样的符号。如果 是正值,它将一直增加,这与我们 , 的要求不符,导致函数是不可归一化的。如果 是负值,它将一直减少(绝对值在增大),这同样与我们 , 的要求不符,导致函数是不可归一化的。
能量本征函数为
能量本征值为
含时薛定谔方程的一般解为
当 时,
显然对 测量能量,不可能得到 ,因为现在的能量本征态中,没有这个本征值,所以测量能量得到 的几率为零。现在体系基态的能量为 ,所以测量能量得到 的几率是 ,由
代入
(注意在 时刻,体系的能量期待值不是 ,因为体系的哈密顿是频率为 的谐振子哈密顿。)
,
由波函数 的归一性,可以得到系数 的归一性
对 态测量能量只能得到能量本征值,得到 的几率是 ,能量的期待值可由
求出。这种方法与用
方法等价。
2.一维典型例子:
量子力学答案 苏汝铿 第二章课后答案2#02
![量子力学答案 苏汝铿 第二章课后答案2#02](https://img.taocdn.com/s3/m/95b3ae0703d8ce2f0066233a.png)
d 2W dV ( ) 0 , 相 应 的 必 有 ), 则 若 满 足 W ( 0) 0, 且 dx 2 dx
d ( ) 0. dx
(1) 证 决定 2 P 和 3D 态能级的 Schondinger 方程是 (2m
1)
批注 [JL1]:
u "
g2 2 u 2 u V u r r g2 6 v 2 v V v r r
u 2 v2 dr r r
(5)
d r
0
r
u r v 2 r dr r r
2
u 2 v 2 dr 0
0
而在 r 很大时 , 由 I r 的特性知 I r 0 , 所以 J r I r dr 0 , 综合上述可知在
U ( x) ( x d ) U ( x) 0 ( x d )
中运动,求:
(i)当势壁离粒子很远时,对束缚态能量的修正值。并据此说明“远离”的意义; (ii)至少存在一个束缚态时, U 0 和 d 应满足的条件。 解: (1) x d 时,势为无穷大,波函数 0
则 U ( x) 的束缚态不超过 V2 ( x) 的束缚态个数,而后者的束缚态个数为 [
2m a 2
] 1,
则所给的势 U ( x) 对应的束缚态个数在 [
2m a 2 m a 2 ] 和[ ] 1 之间 2
v 无节点,且满足
u(0) v(0) 0 ?
uv ' vu ' (
0
r
4 E2 P E3 D )uvdr ' F (r ) , r '2
量子力学(第二版)答案 苏汝铿 第二章课后答案2.10-2#12
![量子力学(第二版)答案 苏汝铿 第二章课后答案2.10-2#12](https://img.taocdn.com/s3/m/a157625477232f60ddcca141.png)
1 4 2 x 2 2 2 2 m 2 x 2 , 2 2m 2m
2 2 2
m
, x
Vn n x Vdx
2
N n H n e
2 2 2
2m
d
又由厄秘多项式 H n 的递推式 2 H n H 2 n1 2nH n1
2
a 0
2
于是 A 30a
5
下面考虑粒子能量的概率分布和能量的平均值:
2 n sin x 对一个无限深的势阱,其能级为 En 的波函数为: n x a a
0
a
x 是各个能级的波函数的叠加,故设
x cn n x cn
n n
2 n sin x a a
2 D exp 2m U 0 E b a
U1
又
a
U2
b
D R 1 ,D 是贯穿系数,R 是反射系数,
所以 D 是粒子透过势垒的概率,而由概率论知识, 粒子连续贯穿两个方势垒的概率等于 分别单独贯穿这两个势垒的概率之积。 于是
E
图 2
a b
a
0
5 2 E x dx 2 ma
2
2.10
设两个方势垒的形状分别是:
0 U x U1
x 0 , 0 x a
0 U x U 2
a x b, x c b x c
U
E
图1
求粒子连续贯穿两个方势垒的贯穿系数。 解:如图(1) ,对低能入射,贯穿一个方势垒的贯穿系数为
周世勋量子力学习题答案(七章全)
![周世勋量子力学习题答案(七章全)](https://img.taocdn.com/s3/m/0b3c780cbed5b9f3f90f1c37.png)
第一章 绪论1.1 由黑体辐射公式导出维思位移定律,能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ (常数),并近似计算b 的数值,准确到二位有效值。
[解]:由黑体辐射公式,频率在ν与ννd +之间的辐射能量密度为ννπνρννd ec hd kTh 11833-=由此可以求出波长在λ与λλd +之间的能量密度λλρd )( 由于 λν/c =, λλνd cd 2+=因而有:λλπλλρλd ehcd kT hc 118)(5-=令λkT hc x =所以有: 11)(5-=xe Ax λρ (44558c h T k A π=常数) 由 0)(=λλρd d 有0)1(115)(254=⎥⎦⎤⎢⎣⎡---=λλλρd dxe e x e x A d d x x x于是,得: 1)51(=-x e x该方程的根为 965.4=x因此,可以给出,k hcxk hc T m 2014.0==λ即b T m =λ (常数)其中 k hcb 2014.0=2383410380546.110997925.21062559.62014.0--⨯⨯⨯⨯⨯=k m ⋅⨯=-310898.2[注]根据11833-=kTh ec h νννπρ 可求能量密度最大值的频率:令kT h x ν=113-=xe Ax νρ (23338h c T k A π=) 0]11[3=-=ννρνd dxe Ax dx d d d x因而可得 131=⎪⎭⎫ ⎝⎛-x e x此方程的解 821.2=xh kTh kTx 821.2max ==νb T Tb '=⇒'=-1max max νν其中34231062559.610380546.1821.2821.2--⨯⨯=='h k b 1910878.5-⋅︒⨯=s k这里求得m ax ν与前面求得的m ax λ换算成的m ν的表示不一致。
陈鄂生《量子力学教程》习题答案第二章力学量算符
![陈鄂生《量子力学教程》习题答案第二章力学量算符](https://img.taocdn.com/s3/m/58f89c0f842458fb770bf78a6529647d2728343c.png)
陈鄂生《量子力学教程》习题答案第二章_力学量算符陈鄂生《量子力学教程》习题答案第二章_力学量算符含答案第一节算符理论基础1.量子力学中的基本假设包括哪些?它们各自的物理意义是什么?答:量子力学中的基本假设包括:(1) 波函数假设:用波函数Ψ(x)描述微观粒子的运动状态,波函数的模的平方表示找到粒子在空间中某一点的概率。
(2) 物理量算符假设:每个物理量都对应一个算符,而对应的测量值是算符的本征值。
(3) 波函数演化假设:波函数随时间的演化遵循薛定谔方程。
(4) 基态能量假设:系统的最低能量对应于基态,且能量是量子化的。
这些基本假设反映了量子力学的基本原理和规律。
2.什么是算符的本征值和本征函数?答:算符的本征值是指对应于某个物理量的算符的一个特征值,它代表了该物理量的一个可能的测量结果。
本征函数是对应于某个物理量的算符的一个特征函数,它表示的是该物理量的一个可能的状态。
3.什么是算符的厄米性?答:算符的厄米性是指一个算符与其共轭转置算符相等。
对于一个算符A,如果满足A†=A,则称该算符是厄米算符。
4.什么是算符的厄米共轭?答:算符的厄米共轭是指将算符的每一项的系数取复共轭得到的新算符。
对于一个算符A,它的厄米共轭算符A†可以通过将A的每一项的系数取复共轭得到。
5.什么是算符的共同本征函数?答:算符的共同本征函数是指对于两个或多个算符A和B,存在一组波函数Ψ(x)使得同时满足AΨ(x)=aΨ(x)和BΨ(x)=bΨ(x)。
其中a和b分别是A和B的本征值。
6.什么是算符的对易性?答:算符的对易性是指两个算符之间的交换顺序不改变它们的结果。
如果两个算符A和B满足[A,B]=AB-BA=0,则称它们对易。
第二节动量算符1.什么是动量算符?它的本征值和本征函数分别是什么?答:动量算符是描述粒子动量的算符,用符号p表示。
动量算符的本征值是粒子的可能动量值,本征函数则是对应于这些可能动量的波函数。
动量算符的本征函数是平面波函数,即Ψp(x)=Nexp(ipx/ħ),其中N是归一化常数,p是动量的本征值。
量子力学答案(第二版)苏汝铿第2章课后答案2#01
![量子力学答案(第二版)苏汝铿第2章课后答案2#01](https://img.taocdn.com/s3/m/7b52d624bcd126fff7050be6.png)
U, z U new , , z
即
U, 0 U new , 0
时,方程(1)中的方程①、②均不变,因此其本征值 E1n , E2 n 不变,方程③变为
2 1 d 2T1 B 2 E3 , 0 2 , T1 0, 0 ……④ 2m T1 d T 0 0 1
2
……①
2 d 2S 1 (1 ) Av 2 E2 2 2m S dv 2
2
……②
1 d 2T B 2 E3 2m T d 2
2
……③
其中 E1 E2 E3 B 2 E 0 对于一维谐振子有
2 d2 1 m 2 x 2 x E x 2 2m dx 2
第一组: 第二章 2.24 一 个 质 量 为 m 的 非 相 对 论 性 粒 子 在 一 势 场 中 运 动 , 势 场 是
U ( x, y, z )
的,求:
2
A ( x2பைடு நூலகம் y 2
x) y2 (B,其中 z 2 A )0 z , B 0 , 1 , 是任意
(1) 能量的本征值;
E001 1 2
3 3 B 2 ( n1 n2 0, n3 1 ) 2
2.25
一个刚体具有惯性矩 I z , 可以自由地在 x y 平面中转动, 令 为 x 轴与转动轴之间的夹角, 求: (1)能量本征值和相应的本征函数; (2)若在 t 0 时,转子由波包 (0) A sin 2 描述,求在 t 0 时的 (t ) .
(t )
1 1 (e2i ei 2 3 2 3
曾谨言量子力学习题解答 第二章
![曾谨言量子力学习题解答 第二章](https://img.taocdn.com/s3/m/bb2e2b4ac850ad02de80418a.png)
(1)
(1) 说明 是量子化的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章定态薛定谔方程本章主要内容概要:1. 定态薛定谔方程与定态的性质:在势能不显含时间的情况下,含时薛定谔方程可以通过分离变量法来求解。
首先求解定态薛定谔方程(能量本征值方程)222.2d V E m dxψψψ-+= 求解时需考虑波函数的标准条件(连续、有限、单值等)。
能量本征函数n ψ具有正交归一性(分立谱)*()()m n mn x x dx ψψδ∞-∞=⎰或δ函数正交归一性(连续谱)'*'()()()q qx x dx q q ψψδ∞-∞=-⎰ 由能量本征函数n ψ可以得到定态波函数/(,)()niE t n n x t x eψ-ψ=定态波函数满足含时薛定谔方程。
对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值n E ,其它力学量(不显含时间)的期待值不随时间变化。
对连续谱,定态不是物理上可实现的态(不可归一化),但是它们可以叠加成物理上可实现的态。
含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为 (,)(,)n n nx t c x t ψ=ψ∑系数n c 由初始波函数确定(,0)()n n nx c x ψψ=∑ ,*()(,0)n n c x x dx ψ∞-∞=ψ⎰由波函数(,)x t ψ的归一性,可以得到系数n c 的归一性21nnc=∑对(,)x t ψ态测量能量只能得到能量本征值,得到n E的几率是2n c ,能量的期待值可由2n n nH c E =∑求出。
这种方法与用*ˆ(,)(,)H x t H x t dx∞-∞=ψψ⎰方法等价。
2. 一维典型例子:(a)一维无限深势阱(分立谱,束缚态)0, 0(),x aV x<<⎧=⎨∞⎩其它地方能量本征函数和能量本征值为2222(), 0;1,2,3,...2nnn xx x a nanEmaπψπ⎛⎫=<<=⎪⎝⎭=若0,(),a x aV x-<<⎧=⎨∞⎩其它地方则能量本征函数和能量本征值为2222()(), ;1,2,3,...22(2)nnnx x a a x a nanEm aπψπ⎛⎫=+-<<=⎪⎝⎭=1n=是基态(能量最低),2n=是第一激发态。
波函数相对于势阱的中心是奇偶交替的:1ψ是偶函数,2ψ是奇函数,3ψ是偶函数,依次类推。
(b )一维简谐振子(分立谱,束缚态):221(),2V x m x xω=-∞<<∞能量本征函数和能量本征值为21/4/2()(), ;2!1, 1,2,3,...2n nnnm mx H e xnE n nξωωψξξπω-⎛⎫=≡⎪⎝⎭⎛⎫=+=⎪⎝⎭其中()nHξ厄米多项式,可由母函数2eξ-生成22()(1)nn n d H e e d ξξξξ-⎛⎫=- ⎪⎝⎭厄米多项式多项式满足递推关系111()2()2()()2()n n n nn H H nH dHnH d ξξξξξξξ+--=-=定义产生算符ˆa+与湮灭算符ˆa - ()ˆˆˆa m xip ωω±= 则有()()ˆˆˆˆˆˆ,2m x a a pi aa ω+-+-=+=-)1100ˆˆ, , 1ˆˆ, 0.n n n n nna aaa ψψψψψ++--+-====当处于能量本征态时2220, 0111122222n x p p T V m x E n m ωω==⎛⎫=====+ ⎪⎝⎭(c)一维自由粒子(连续谱,散射态):定态薛定谔方程为222, 2d E x m dxψψ-=-∞<<∞ 能量本征函数和本征值为22(), ; 2ikx k k x k k k E mψ=≡-∞<<∞=能量本征函数满足δ函数正交归一性''*()'1()2i k k x k kdx e dx k k ψψδπ∞∞--∞-∞==-⎰⎰ 定态波函数为2/(/2)()(,)2k iE t ikx i kx k t m i kx t k x t e ω---ψ=== 定态不是物理上可实现的态(不可归一化),它代表一个向右传播的正弦波(0k >)或向左传播的正弦波(0k <),波的传播速度(相速度)为2phase k v k mω== 尽管定态不是物理上可实现的态,但是定态叠加成的波包2(/2)1(,)()(,)()i kx k t m k x t k x t dk k edk φφ∞∞--∞-∞ψ=ψ=⎰⎰可以是物理上可实现(可归一化)的态。
其中叠加系数()k φ由初始波包(,0)x ψ决定(,0)()ikx x k e dk φ∞ψ=⎰ 由能量本征函数满足δ函数正交归一性1()(,0)ikxk x e dk φ∞--∞=ψ⎰ 波包在空间的传播速度称为群速度 2group phase d k v v dk mω=== (d)一维δ函数势阱:()()V x x αδ=-()x δ函数的性质为, 0()0, 0x x x δ∞=⎧=⎨≠⎩()1, ()()()x dx f x x a dx f a δδ∞∞-∞-∞=-=⎰⎰在0x=处由于()x δ函数势的存在,波函数的导数出现跃变2002(0)d d d m dx dx dx εεψψψαψ+-⎛⎫∆≡-=- ⎪⎝⎭ (如果是()x a δ-函数势,上式中做0a →代换)0E <束缚态:只有一个束缚态,能量本征函函数和本征值为22222(), 22xm x m E m καψκκα-=≡=-=-0E >散射态(连续谱):定态薛定谔方程的解为, 0; (), 0ikx ikxikx ikx Ae Be x k x Fe Ge x ψ--⎧+<≡⎪=⎨⎪+<⎩尽管散射态不是可归一化的态,但是我们可以用它作为代表来讨论入射粒子(波包)被势反射或透射的情况。
由波函数及其导数在0x=连续和跃变条件,可以得出反射波振幅B ,透射波振幅F 与入射波振幅A 的关系(设0G =,没有从右向左入射的波)。
计算出反射波几率流密度R J ,投射波几率流密度T J ,入射波几率流密度I J ,可以得到反射系数R 和透射系数T 。
由几率流密度定义**2i J m x x ⎛⎫∂ψ∂ψ=ψ-ψ ⎪∂∂⎝⎭ (三维情况为()**2i m=ψ∇ψ-ψ∇ψJ ) 计算出22222211(2/)11(/2)R I T I J B R J A E m J F T J A m E αα===+===+反射系数R 和透射系数T 之和为1.1R T +=*习题2.1 证明下列三个定理解:(a) 证:假设在定态解把实数E 改为复数)(0Γ+i E ,则//0)(),(t t iE e e x t x Γ-=ψψ若在0=t时刻,波函数是归一化的,即1)()0,(22==ψ⎰⎰∞∞-∞∞-dx x dx x ψ在以后时刻/22/22)(),(t t e dx x edx t x Γ∞∞-Γ∞∞-==ψ⎰⎰ψ 所以要求在任何时候都有1),(2=ψ⎰∞∞-dx t x必须有0=Γ,即E 必须为实数。
(b )设)(x ψ满足定态薛定谔方程)()()(2222x E x x V x m ψψ=⎪⎭⎫⎝⎛+∂∂- 把这个式子取复共轭,注意到E x V ),(是实的,得到)()()(2**222x E x x V x m ψψ=⎪⎭⎫ ⎝⎛+∂∂- 显然)(x ψ和)(*x ψ是同一薛定谔方程的解,所以它们的线性叠加)()()(*x x x ψψφ+=或[])()()(*x x i x ψψφ-=也是同一薛定谔方程的解。
显然)()(*x x φφ=是实函数,所以一维定态薛定谔方程的解总可以取为实函数。
(c)对)()()(2222x E x x V x m ψψ=⎪⎭⎫⎝⎛+∂∂- 进行空间反演x x -→,得到)()()()(2222x E x x V x m -=-⎪⎪⎭⎫ ⎝⎛-+-∂∂-ψψ 如果势能)()(x V x V -=是偶函数,则有)()()(2222x E x x V x m -=-⎪⎭⎫⎝⎛+∂∂-ψψ 因此)(x ψ和)(x -ψ是同一薛定谔方程的解,所以它们的线性叠加 )()()(x x x -±=±ψψφ也是同一薛定谔方程的解。
)()(x x ±±±=-φφ,所以当势能是偶函数,定态薛定谔方程的解总可以取为有确定宇称的解。
*习题2.2解:如果min E V <,那么ψ和它的二次导数有同样的符号。
如果ψ是正值,它将一直增加,这与我们±∞→x ,0→ψ的要求不符,导致函数是不可归一化的。
如果ψ是负值,它将一直减少(绝对值在增大),这同样与我们±∞→x ,0→ψ的要求不符,导致函数是不可归一化的。
我们还可以从另一个方面讨论这个问题。
设/)(iEt e x -ψ是定态薛定谔方程的一个归一化解,我们有min 2)()(2V x V x V m p H E ≥≥+⎪⎭⎫⎛==在经典力学中我们同样有,一个粒子在一个势场中运动,它的总能量为动能加势能,因为动能0≥,所以总能≥势能≥势能最小值。
如果总能<势能最小值,将意味着动能为负值,这显然是不可能的。
在量子力学中,如果m in V E <,则意味着动能的期待值为负值,或2p 的期待值为负值。
这对归一化的解是不可能的。
*习题2.5 解:(a) 利用哈密顿本征函数的正交归一性*m n mn dx ψψδ=⎰()()222122**1212222**12122121(,0)()()()()()()2x dx Ax x dxA x x x x dx AdxAψψψψψψψψψψψψ=ψ=+=++⎡⎤=+++⎣⎦=⎰⎰⎰⎰所以21=A(b)12//12(,)()()iE t iE t x t x e x e ψψ--⎤ψ=+⎦ 12212122//1222()/()/**1212121(,)()()212iE t iE t i E E t i E E t x t x e x e e e ψψψψψψψψ-----ψ=+⎡⎤=+++⎣⎦代入(), 0n n x x x a aπψ⎛⎫=≤≤ ⎪⎝⎭22222n n E ma π=并令21E E ω-≡()1222//1222221(,)()()2122sin sin sin sin 122sin sin 2sin sin cos iE t iE t i t i t x t x e x e x x x x e e a a a a ax x x x t a a a a aωωψψππππππππω---ψ=+⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(c) 0t ≠时222001222(,)sin sin 2sin sin cos 2a ax x x t dx x x x x x t dx a a a a a ππππω⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=ψ=++⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎰⎰完成积分得到216cos 29a ax t ωπ=- (以/2a 为中心的振荡) (d)由动量期待值与坐标期待值之间的关系216sin 9d x ap mm t dt ωωπ== (e )()()()()()()12121212121212*////**1212////**1212////**12112222()11222(,)(,)12121212iE t iE t iE t iE t iE t iE t iE t iE t iE t iE t iE t iE t i E E E x t H x t dxe e H e e dx e e H e H e dx e e E e E e dx E dx E dx E e ψψψψψψψψψψψψψψ-------=ψψ=++=++=++=++⎰⎰⎰⎰()12/()/**121211212t i E E t dx E e dx E E ψψψψ--⎡⎤+⎣⎦=+⎰⎰⎰⎰对),(t x ψ测量能量,得到1E 的几率为1/2,得到2E 的几率为1/2.,这个几率同0=t 时刻是一样的,也就是说E不随时间变化,这是能量守恒的体现。