非线性光学材料
光学材料中的非线性光学特性分析
光学材料中的非线性光学特性分析光学材料是指能够对光进行控制、调节以及产生新的光学效应的材料。
非线性光学特性是光学材料中一种重要的现象,其研究在光通信、激光技术、光信息处理等领域具有广泛的应用价值。
本文将对光学材料中的非线性光学特性进行分析,探讨其机理以及应用前景。
1. 非线性光学特性简介非线性光学特性是指当光与光学材料相互作用时,产生的光学效应与入射光强度不呈线性关系的现象。
与线性光学特性不同,非线性光学特性由于其强度依赖关系的非线性性质,使得光学材料在应用中具有更加丰富的功能和效果。
常见的非线性光学效应包括二次谐波发生、和频与差频发生、自聚焦、自相位调制等。
2. 非线性光学效应的机理非线性光学效应的产生是由于光照射到光学材料中的原子或分子后,其能级结构发生变化并引发非线性相互作用。
比如,二次谐波发生是由于材料的非线性极化率产生了非线性响应,将入射的光分解为频率为二倍的新光。
自聚焦效应是由于材料的光折射率与光强度的关系非线性,使得光束在传播过程中自动聚焦。
3. 光学材料中的非线性光学特性研究方法为了研究和应用光学材料中的非线性光学特性,科学家们发展了多种实验方法。
其中,著名的方法包括Z-scan技术、功率扭曲、相位匹配等。
Z-scan技术可测量材料的非线性吸收和折射率,并通过测量传播动力学过程来分析非线性效应。
功率扭曲实验通过改变光束强度来研究材料的非线性响应。
相位匹配为材料中的非线性效应提供了最佳的相位条件,以增强非线性光学效应。
4. 非线性光学特性在光通信中的应用非线性光学特性在光通信中具有重要的应用价值。
比如,光纤通信中信号调制和光时钟的生成都离不开非线性光学效应。
非线性光学特性还可用于光通信中的光放大器、光开关和光限幅器等器件的设计和制造。
利用非线性光学特性,还可以实现光通信中的非线性光调制和光波混频等功能。
5. 非线性光学特性在激光技术中的应用非线性光学特性在激光技术中有着广泛的应用。
非线性光学现象与光学非线性材料
非线性光学现象与光学非线性材料光学是研究光的传播、干涉、衍射等性质的科学,而光学的非线性现象则是光在特定条件下表现出的一些与强度相关的特殊现象。
非线性光学现象广泛应用于通信、数据存储、显示技术等领域,并且在光学非线性材料的研发中扮演着重要的角色。
非线性光学现象的基础是光的非线性响应。
一般情况下,光与物质相互作用的过程是线性的,即光的强度与物质的响应呈正比。
然而,当光的强度足够强时,就会引发一系列非线性光学现象。
其中最基本的非线性现象是二次谐波产生,即当光与非线性介质相互作用时,会产生频率是输入光频率的二倍的光。
除了二次谐波产生,还存在着诸如光学频率倍增、和波混频、自相位调制等非线性现象。
这些现象的出现是因为在非线性介质中,光的电场在介质内产生了相互耦合的非线性效应。
通过合适的谐波合成等手段,可以对光进行调制和控制,从而满足不同光学应用的需求。
为了实现这些非线性光学现象,科学家们通过研究和设计不同类型的光学非线性材料。
光学非线性材料是指具有一定非线性光学效应的材料,包括有机和无机材料。
其中,有机非线性材料具有较大的非线性光学响应,适用于高功率激光器、光电开关等领域;而无机非线性材料则具有较高的光学稳定性和可调控性,适用于光波导、光存储等领域。
光学非线性材料的制备方法多种多样,常见的包括溶液法、薄膜法和晶体生长法。
通过这些方法,可以制备出不同结构和形态的材料,从而调控其非线性特性。
此外,根据需要,还可以通过掺杂离子、改变晶体结构等手段来进一步改善非线性特性。
光学非线性材料在科学研究和应用中具有广泛的前景。
例如,在光通信领域,非线性光学现象可以延长光信号的传输距离和调制速度,提高光纤通信系统的性能;在光存储领域,非线性光学材料可实现高密度的光数据存储和读取;在光学成像领域,非线性光学材料可以增强图像的对比度和分辨率。
然而,光学非线性材料也面临一些挑战。
首先,制备高质量的非线性材料需要复杂的工艺和条件,制备成本较高。
非线性光学材料研究及应用
非线性光学材料研究及应用非线性光学是近年来发展最快的光学领域之一。
与线性光学不同,非线性光学是关于光的相互作用的,只有当光强度超过一定的阈值时,才会出现非线性效应。
而非线性光学材料,便是指这种非线性光学效应的发生与表现所需要的一种材料。
一、非线性光学的基础非线性光学研究的主要对象是光与物质的相互作用,即光与物质的媒介之间的相互作用。
物质的分子、原子或其他微观粒子(如晶格中的离子等)与光场的相互作用,是通过微观的相干过程来实现的。
光和物质的相互作用是由光的电场分量产生的。
在非线性光学中,只考虑电场的强度(即振幅)影响物质的响应,忽略了电场的相位影响。
基于非线性光学材料的非线性效应,可以实现多种光学器件的制作,如光电开关、光学调制器、光学逻辑器、光学计算器等,这些光学器件都有着重要的应用价值。
因此,非线性光学的研究在光通信、信息、材料科学等领域都具有广泛的应用前景。
二、非线性光学材料的种类非线性光学材料的种类非常广泛,其中最具代表性的就是非线性晶体。
非线性晶体的非线性效应主要是由于其宏观尺度上的非中心对称性而形成的。
非线性晶体中,最典型的非线性效应就是二次谐波发生,即当一束激光分别作用在材料上,可直接形成其一倍频、二倍频或三倍频等多种频率变化的光谱输出。
此外,还有非线性光学吸收材料、非线性荧光材料、非线性折射材料等,这些材料的非线性效应发生原因不同,具有不同的功能。
三、非线性光学材料在实际应用中的作用非线性光学材料在实际应用中,可具有多种重要作用。
在信息技术领域,非线性光学材料可用于制造高速数据传输的光通信器件,如光电开关、光纤调制器、光电调制器等;在光电子学领域,非线性光学材料常被用于制造激光器、探测器、光学传感器等;在生物医药领域,非线性光学显微技术可用于生存细胞、组织等生物样本的成像。
综上所述,非线性光学材料的研究及应用一直是国内外光学领域的热点之一,随着时代的发展和技术的不断进步,非线性光学材料的应用范围也越来越广泛,未来还有巨大的发展潜力。
非线性光学材料的光学性能研究
非线性光学材料的光学性能研究第一章:引言非线性光学材料是指在光强度较弱时属于线性折射率的材料。
而在光强度较强时,该材料的光学性质会发生明显的非线性变化。
该种材料具有在激光器和光通信器中重要的应用价值,已被广泛研究和应用。
然而,非线性光学材料的光学性能一直是研究的重点,尤其是在可用性和稳定性方面,仍有许多待解决的问题。
本文将从非线性光学材料的定义和发展、非线性光学过程和机理、以及非线性光学材料的光学性能研究等方面进行探讨。
第二章:非线性光学材料的定义和发展非线性光学材料的定义是指在光强度很弱时所表现的光学性质与在光强度较强时的性质有很大差异的材料。
而在光强度较强时,非线性光学材料的光学性质会发生明显的非线性变化。
非线性光学材料的发展起源于20世纪60年代,当时人们开始对非线性光学效应进行探索。
通过研究,人们发现一些高分子、晶体以及半导体等物质具有明显的非线性光学特性,这种性质成为非线性光学材料。
由于非线性光学材料在激光器、光通信器及其它领域中的应用价值,得到了广泛的研究和应用。
目前,人们已经开发出了各种非线性光学材料,包括无机晶体、有机高分子、半导体材料等。
这些材料在光学通信、信息处理、探测与传感、医学等领域具有广泛应用。
其中,特别是锂离子二极管内增强Raman激光器(LD-EYRL)所使用的锂离子二次元晶体、全光纤激光器所使用的光纤、硅光子芯片所使用的铌酸锂晶体等非线性光学材料已经成为当前研究的热点。
第三章:非线性光学过程和机理非线性光学过程主要包括光学效应、非线性介质的非线性反应和非线性扰动传递三个过程。
光学效应包括光线传播过程中所发生的光学效应、如反射、透射、折射、吸收等。
非线性介质的非线性反应主要针对材料在高光强下的一些非线性特性。
通常而言,非线性光学材料在高光强下,其折射率不是一个恒定值,而是会随着光强度的增加而发生变化。
这种情况被称为自聚焦效应,即光束的中心会收缩到材料内部。
此外,非线性光学材料还会发生光学双折射、光学降噪等非线性光学效应。
非线性光学材料的发展与应用
非线性光学材料的发展与应用随着科技的不断进步,非线性光学材料的研究和应用越来越受到关注。
非线性光学材料是指在强光照射下,光与物质相互作用时出现非线性效应的材料。
这种材料具有良好的非线性响应特性,可以用于制造光纤通信、二维材料、微纳器件等,具有广泛的应用前景。
一、非线性光学材料的发展历程1960年代,拉曼和克拉芙在研究激光效应时首次发现了光与物质相互作用时的非线性效应。
此后,人们开始对非线性光学现象进行深入研究,并发现了很多有趣的非线性效应,如自聚焦、自相位调制、二次谐波产生等。
20世纪70年代中期,光纤通信的诞生给非线性光学材料的研究和应用提供了广阔的空间。
1978年,当时的贝尔实验室研究人员发现,在一种特殊的非线性光学材料LiNbO3中,可以产生二次谐波产生效应,这为基于光的通信技术的发展打下了坚实的基础。
80年代末和90年代初,随着非线性光学基础理论的建立和技术手段的不断发展,非线性光学材料得到了飞速的发展。
1994年,由于二次谐波产生效应的实现,非线性光学材料赢得了诺贝尔物理学奖。
今天,非线性光学材料已经成为光子学、材料科学和电子工程中的重要组成部分。
二、非线性光学材料的分类根据非线性效应的不同特性,可以把非线性光学材料分为三大类:光学整流材料、光学调制材料和光学非线性材料。
其中,光学整流材料主要包含晶体管、二极管等器件,其主要功能是对强光进行整流和反向加工。
光学调制材料可以将电信数据信号转换为光信号,并实现光信号的幅度、相位、频率等参数的调制。
光学非线性材料是指在强光的作用下,其光学性质出现非线性变化的材料,如二次谐波产生效应、自相位调制等。
三、非线性光学材料的应用1.光纤通信光纤通信是应用最为广泛的一种非线性光学材料。
光纤通信可以在光纤中传输高速的数据信号,具有传输距离远、速度快、抗干扰等优点,可以满足现代通信领域的各种需求。
非线性光学材料在光纤通信中主要应用于光纤放大器、光学调制器、色散补偿器等器件制造中。
非线性光学材料光谱特性与应用
非线性光学材料光谱特性与应用非线性光学材料是一类具有特殊光学性质的材料,其在光学信号处理、光通信、光计算和光信息存储等领域拥有广泛的应用前景。
本文将重点讨论非线性光学材料的光谱特性和应用,以展示其在光学领域的重要性和潜在价值。
非线性光学材料的光谱特性是该类材料具有的非线性响应与光子能量之间的关系。
与传统的线性光学材料不同,非线性光学材料在光场强度较高时会出现非线性效应,例如二次谐波生成、三次谐波生成和光学泵浦效应等。
这些效应不仅使非线性光学材料具有更广泛的光谱响应范围,还赋予其在光学应用中更多的功能和灵活性。
首先,非线性光学材料的二次谐波生成特性使其在频率转换和光学调制方面具有重要的应用价值。
二次谐波是指当入射光的频率为ω时,非线性材料能够产生2ω频率的二次谐波信号。
这种频率转换特性可用于激光器频率加倍、光学调制、全息成像和光学传感等领域。
同时,非线性光学材料的二次谐波生成过程具有快速的响应速度和高效率的能量转换,使其成为快速数据处理和光子学器件的理想选择。
其次,非线性光学材料的三次谐波生成特性为新型光源和高效频率倍增器的研制提供了平台。
与二次谐波相似,三次谐波是指非线性材料在光场强度较高时能够产生3ω频率的谐波信号。
这种谐波生成过程不仅可以用于创建新的频率转换光源,还可以用于对激光脉冲进行调制和压缩,从而扩展其在光信息处理和传输中的应用。
此外,非线性光学材料还可通过光学泵浦效应实现各种光学信号处理功能。
在光学泵浦过程中,非线性光学材料会发生非线性吸收、散射或发光,从而对入射光信号进行操控和处理。
这种非线性吸收和发光过程可用于光学开关、光调制器和光学逻辑门等光学器件的制备。
此外,非线性散射现象如布里渊散射和拉曼散射也可被非线性光学材料利用于光通信和光纤传感器等领域,进一步扩展了其在光学应用中的应用范围。
除了以上的光谱特性,非线性光学材料还具有自聚焦、自相位调制和非线性吸收等特性,这些特性使得非线性光学材料在激光脉冲压缩、全息显微镜和生物传感等领域拥有广泛的应用前景。
非线性光学晶体材料优秀课件.pptx
红外非线性光学晶体 分类:
➢ 由四面体基团构成的二元或三元化 合物
➢ 由MX3三角锥形基团构成的化合物 ➢ 单质
深紫外非线性光学晶体
➢ KBBF晶体 ➢ SBBO族晶体
非线性光学晶体材料优秀课件
非线性光学晶体的应用
扩展激光的波长覆盖范围 为了提高谐波转换效率经常采用的三种方法:
➢ 外共振腔技术 ➢ 内共振腔技术 ➢ 准相位匹配技术
非线性光学 晶体材料分 子设计方法
非线性光学晶体材料优秀课件
几种重要的非线性光学晶体
LBO族晶体
➢ LBO晶体 ➢ CBO晶体 ➢ CLBO晶体
KTP晶体 BBO晶体 KDP族晶体
➢ KDP晶体 ➢ DKDP晶体
铌酸盐晶体
➢ KNbO3晶体 ➢ LiNbO3晶体 ➢ MgO:LiNbO3晶体
频系数的几何叠加。对于每种化学键,他们共引入两个微观倍 频系数参量,即β //和β ⊥,分别代表平行于每个键的微观倍频系 数参量和垂直于每个键的微观倍频系数参量。 键电荷模型
晶体的线性和非线性极化率主要是由于A-B两个原子中键 电荷g在外光频电场作用下,作非中心对称运动的结果。 分子轨道法
非线性光学晶体材料优秀课件
引言
晶体非线性光学技术是一项很广泛的应用技术。它包 括激光的变频技术 、调制技术、记忆、存储技术、光 折变技术 等
非线性光学晶体材料优秀课件
非线性光学谐波器件的设计原理
晶体的倍频效应
按相位匹配模式可分为: ➢ 共线相位匹配
① 倍频转换 ② 和频转换
➢ 非共线相位匹配
有效倍频系数: 只能进行数值计算 通光方向的长度 其他特征量:相位匹配参量Δk,允许角宽度ΔθPM
准相位匹配谐波器件
非线性光学材料的理论分析和应用
非线性光学材料的理论分析和应用随着现代光学技术的不断发展,越来越多的光学材料被研发出来并被应用于现代光电技术中。
其中,非线性光学材料就是一种备受关注的光学材料之一。
本文将从理论分析和应用两个方面来探讨非线性光学材料的特点和优点。
一、非线性光学材料的理论分析在当前的光学材料中,线性光学材料是最为普遍的,其特点就是其光学性质与介质的电磁场成线性关系。
但是,对于某些应用场景,线性光学材料已经不能满足需要,因此非线性光学材料得以发展起来。
非线性光学材料的主要特点就是其光学性质与介质的电磁场不成线性关系。
当外界的控制场作用于非线性光学材料时,材料的折射率、吸收系数、色散、二阶非线性光学效应、三阶非线性光学效应等都会发生变化。
这种性质可以在光学器件、信息处理、激光技术、成像技术等领域得到广泛应用。
非线性光学材料的电子结构和分子结构都对其光学性质产生重要影响。
在非线性光学材料中,光电单元的溶液是一个极好的研究对象,通过对其光谱和导电性进行分析,可以更好地理解非线性现象的起源和相关物理机制。
二、非线性光学材料的应用在实际应用中,非线性光学材料可以用于制作光学器件,如光纤通信、激光技术、实验室设备、激光检测和测量设备等。
除此之外,非线性光学材料也可以用于信息处理技术、成像技术等一系列领域。
近年来,非线性光学材料的应用范围逐渐扩大,其在能源、环境、生命科学等领域的应用也越来越广泛。
例如,可以使用非线性光学材料来检测水体中的有毒金属离子,其中,非线性光学材料可以发挥其灵敏度和高分辨率的优点。
此外,非线性光学材料还可以应用于太阳能电池等能源技术中。
总之,非线性光学材料的理论分析和应用广泛,可以应用于各种领域。
未来,随着科技的发展和研究的深入,非线性光学材料的应用前景将会更加广阔。
非线性光学材料
传统的非线性光学材料的无机化合物:稳 定性好、结晶性好、实用性强。但倍频系数 小。如磷酸二氢钾用于激光倍频。β-偏硼酸 钡(福建物构所)用作紫外光的倍频和混频 材料。 而有机化合物较无机化合物稳定性差、结 晶性差、实用性差,但倍频系数大。
1 二阶非线性光学效应
当激光作用到非线性光学材料上时,除 了会产生与入射光频率ω相同的光(线性部 分),还会产生频率为2ω的倍频光和频率为 零的静电场(非线性部分)
3
三阶非线性化合物
一般共轭体系越大的分子其三阶非线性光学性 能越好。三阶非线性光学材料在光开关、光限制器 等方面有很好的应用。 光限制效应:对弱入射光透明,对强入射一个饱和值(极限值),从而起到限制光强度的 作用。起到保护光学传感器和人的眼睛的作用。
非线性光学材料
非线性光学效应
当外加高强度的电磁场(如激光等)与物质发生 相互作用时,由于电磁场会诱导分子发生极化,从 而产生不同于原来电磁场频率、相位、振幅等物理 性质的新的磁场,这一现象称为非线性光学效应。
经典的光学理论中,强度不是很强的光与物质发 生作用时,会发生光的吸收、反射、散射等,但光 的频率不会发生改变。
二阶谐波产生 效应(SHG) 光学整流效应
可以产生强的分子内电荷跃迁的非中心 对称分子可能成为性能良好的二阶非线性光 学材料。 一般具有D-π-A结构,D:给电子基团;A: 受电子基团;π:含π电子基团起桥联作用。 如,对硝基苯胺,
金属配合物(LMCT,MLCT,ILCT),含金属离 子部分可作D-π-A结构中的给电子、受电子或 桥联基团部分。
[Cd(L2)2].H2O, space group :Ia 粉末样品的SHG效应是α-石英的310倍
光学材料的非线性光学特性与应用
光学材料的非线性光学特性与应用光学材料是一类具有特殊结构和性质的材料,能够对光的传播和相互作用产生非线性响应。
这些特性使得光学材料在光电子学、通信技术和光信息处理等领域有广泛的应用。
本文将探讨光学材料的非线性光学特性及其应用。
首先,我们来了解一下什么是非线性光学。
光学材料的非线性光学指的是光的传播和相互作用过程中,电磁波的光学响应随光强的增加而非线性变化的现象。
与线性光学不同的是,非线性光学材料的光学性质不仅仅取决于光的频率和波长,还受到光强和光场的空间分布的影响。
非线性光学特性主要包括光学非线性效应和非线性光学参数。
光学非线性效应是指在非线性光学材料中,光与物质相互作用时会引起新的光现象,如二次谐波产生、频率倍增、自聚焦和自相位调制等。
而非线性光学参数则用来描述材料对光场的非线性响应程度,如非线性系数、饱和光强和相位差等。
非线性光学材料的应用十分广泛。
其中,光学频率倍增技术是一种重要的应用。
通过将光束输入非线性光学材料中,利用材料的非线性效应可以将光的频率倍增,从而得到新的频率成分。
这一技术在激光器输出频率调整、量子计算和超快光学研究等领域有着重要的应用。
另外,非线性光学还可以实现光信息的传输和处理。
光纤通信是光学非线性材料应用的一个典型例子。
在光纤中,光束的传播受到非线性效应的影响,这使得光信号能够在光纤中自动调整和修正,从而提高信息传输的容量和质量。
除了上述应用外,非线性光学材料还可以用于光学传感和生物医学领域。
例如,非线性光学成像技术可以实现对生物组织的微观成像,为疾病的早期诊断提供重要依据。
另外,非线性光学材料作为传感器的材料,可以利用光的非线性过程对环境中的物质进行检测和分析。
然而,尽管非线性光学材料在多个领域有广泛应用,但其制备与性能研究仍然面临一系列难题。
首先,目前常用的非线性光学材料主要是有机分子和某些无机材料,而这些材料的响应速度较慢,对激光的功率和波长有限制。
其次,非线性光学材料的非线性系数还有提高的空间,需要进一步研究和开发。
光学中的非线性光学材料及其应用
光学中的非线性光学材料及其应用光学在现代社会中有着广泛的应用,如光通信、光存储、光计算等。
而非线性光学材料作为光学器件中不可或缺的一部分,正逐渐成为光学领域中研究的热点。
一、非线性光学材料的基础概念及分类非线性光学的研究始于上世纪50年代,随着技术的不断发展,人们对非线性光学的研究越来越深入。
非线性光学材料简单来说是指光在这些材料中传播时,随着光的强度的增加,材料响应也会非线性增加的材料。
在光学领域中,非线性光学材料通常被分为三类: 折射率非线性材料、吸收非线性材料、非线性色散材料。
折射率非线性材料指的是材料折射率会随着电磁场的变化而变化,其中又可以分为 Kerr(克尔)效应和 Pockels(波克尔斯)效应两种;吸收非线性材料实为受到光的反射、散射、吸收等情况的影响,使得材料对光的响应是非线性的;非线性色散材料指材料的色散特性是非线性的,例如二次谐波发生器。
二、非线性光学材料的应用非线性光学材料在光学通信、生物医学、军事安全等领域应用广泛。
以下以光学通信为例,探讨非线性光学材料的应用。
在光学通信中,为了提高信息传输速率和容量,一般需要采用波分复用技术(Wavelength Division Multiplexing,简称WDM)。
在WDM技术中,数据通过不同的波长传输,而非线性光学效应可用于波长变换(Wavelength Conversion)和波长多播(Wavelength Multicasting)。
波长变换指将数据流从一个波长变为另一个波长。
克尔效应在其内部实现,因光该效应会导致非线性折射率发生变化,从而使不同波长的光子之间产生相互作用。
因此,使用非线性光学材料模拟器可以在不同波长之间保持相互关联并防止信号的干扰。
另外,非线性光学材料还可用于实现波长多播。
这是指在同一波长上将多个数据流同时发送。
在一个波长上可以同时拥有多个数据流,因此不同流可以在一个通道中传输。
这样一来,不但提高了信道的利用率,还能进行高速的多波长传输。
非线性光学材料的性质研究及应用
非线性光学材料的性质研究及应用近些年随着光学技术的不断发展,非线性光学材料的应用得到了越来越广泛的发展。
这些材料在信息处理、通讯、光子学等领域都乘势而为,成为了一个极具潜力的新兴领域。
那么,什么是非线性光学材料,它们的性质如何?又有哪些应用呢?一、什么是非线性光学材料?光的性质可以用波动理论进行描述,而在非线性光学材料中,光的波动与材料的内部相互作用会带来非线性效应。
简单来说,非线性光学材料是指当光强(或能量)发生变化时,材料中的折射率、吸收系数等光学性质也会发生变化。
二、非线性光学材料的性质非线性光学材料的主要性质分为三种:非线性折射、二阶非线性和三阶非线性。
1. 非线性折射当光的强度较大时,光与介质的相互作用会引起折射率的变化,这被称为非线性折射。
非线性折射效应对于激光器的调制和光纤通讯中的信号传输等都具有重要的应用价值。
2. 二阶非线性二阶非线性是指光波在非线性材料中会经历二次谐波产生、倍频、和频和差频等效应。
其中倍频效应是指通过材料,光的频率可以翻倍;和频效应则是通过两个不同频率的光发生频率合并,形成一个新的频率;差频效应是指通过两个光的频率的差异,产生新的频率。
3. 三阶非线性三阶非线性大部分来源于非线性折射。
当光在材料中传播时,由于物质中电子互相的作用力与光的相互作用会导致折射率产生变化,进而改变光的相位和光程。
这些效应会导致产生新的光,同时也会对光的传输性能产生影响。
三、非线性光学材料的应用非线性光学材料在各个领域都有着广泛的应用。
1. 光信息处理非线性光学材料在光存储、光计算等各个领域都有着广泛的应用。
其中,非线性折射效应被广泛用于激光器的调制,而倍频效应则被用于蓝光光源的制造等方面,可以有效地提高激光器的效率和性能。
2. 通讯领域非线性光学材料广泛应用于光通讯领域,其中倍频效应被用于光纤通讯中的信号传输,而和频效应则被用于光通信中的光源与激光器的制造,它们可以有效地提高光通信的速度和可靠性。
非线性光学材料
非线性光学材料非线性光学材料是指在外加光场的作用下,其光学性质不遵从麦克斯韦方程组的线性叠加原理,而表现出非线性效应的材料。
非线性光学材料具有一系列重要应用,如光通信、光存储、激光调制等,因此广泛应用于光学器件和光电子技术中。
非线性光学材料的非线性效应主要包括二次谐波产生、倍频效应、自聚焦效应、光学隐存效应等。
二次谐波产生是非线性光学材料中最常见的一种非线性效应。
当输入光场的频率为ω时,非线性光学材料会同时产生二次谐波,即频率为2ω的光。
这种现象可以用于频率倍增、频率加倍、频率转换等应用。
倍频效应是指非线性光学材料中输入光场的频率为ω时,其能够产生频率为nω的倍频光。
倍频效应广泛应用于激光技术中,可以将激光的频率提高至更高频率的光,以满足不同实验和应用的需求。
自聚焦效应是非线性光学材料在高光强下表现出的一种特殊现象。
当光场强度足够大时,非线性光学材料会表现出自聚焦效应,即光自动聚焦到材料内部。
这种现象可以用于激光束整形、光信息处理等应用。
光学隐存效应是指在光场作用下,非线性光学材料能够将光信息记录在其内部,并在之后的时间内隐约保持。
这种效应可以用于光存储、光信息处理等领域,具有重要的应用价值。
常见的非线性光学材料包括铁电晶体、光学玻璃、有机非线性材料等。
在实际应用中,非线性光学材料通常需要具备高非线性系数、低吸收损耗、长光学的非线性响应时间、稳定的化学性质等特点。
随着科学技术的发展,越来越多的非线性光学材料被开发出来,并在光学器件和光电子技术中得到广泛应用。
非线性光学材料的研究不仅为我们深入了解光学现象提供了新的途径,还为光电子技术的发展带来了新的可能性。
光学材料中的非线性光学特性研究
光学材料中的非线性光学特性研究光学材料是指在能量范围内能够与光相互作用的物质。
非线性光学特性是指在外界光场作用下,材料的吸收、反射、折射等光学性质与入射光场不呈线性关系的现象。
非线性光学特性研究成果的应用涵盖了光通信、光计算、光储存、生物医学等众多领域。
本文将从非线性光学效应、非线性光学过程、非线性光学材料以及未来发展方向等几个方面进行探讨。
光学材料的非线性光学效应主要包括三个方面,即光学吸收效应、光学色散效应和光学非线性折射效应。
光学吸收效应是材料在光照射下吸收光能的现象。
光学色散效应是指材料介电常数与光频率有关,在某一频率下,介电常数的实部和虚部同时变化。
光学非线性折射效应是指材料的折射率随光强的变化而发生非线性变化的现象。
非线性光学过程是指材料在激光或强光照射下,光子与光子之间或光子与介质之间相互作用的过程。
其中,最重要的非线性光学过程包括二次谐波生成、三次谐波生成、自相位调制等。
例如,二次谐波生成是指在光强足够大的情况下,材料可以将入射光波的频率加倍,生成两倍频光波。
而自相位调制则是指光的相位会随着光强的变化而发生微弱的变化。
这些非线性光学过程为我们提供了一种将光信号转换为其他频率信号的方法,为光通信系统和光功能器件的设计带来了巨大的优势。
非线性光学材料是指具有非线性光学特性的物质,它们能够在外界激励下发生非线性响应。
目前非线性光学材料主要分为有机非线性光学材料和无机非线性光学材料两类。
有机非线性光学材料具有较高的非线性系数和较宽的透明窗口,但其光稳定性和光热稳定性相对较差。
而无机非线性光学材料具有较高的光稳定性和光热稳定性,但非线性系数相对较低。
因此,研究者们正在不断探索新型的非线性光学材料,以兼具高非线性系数和优异光稳定性的性能。
未来,非线性光学研究的发展方向将主要集中在材料设计和性能优化两个方面。
一方面,研究者们将通过调控材料的结构和化学组成,实现材料非线性响应的增强和调控。
例如,通过引入特定的功能基团或控制材料的晶体结构,可以改变材料的非线性极化效应,从而实现非线性光学性能的优化。
非线性光学材料.pptx
第11页/共18页
有机和聚合物非线性光学材料
有机和聚合物作为非线性光学材料具有许多无机材料无法比拟的优点: ①有机和聚合物非线性光学系数要比已经得到使
用的无机晶体高一至两个量级。 ②响应时间短。 ③有机化合物的光学损伤阀值较高。 ④可根据非线性效应的要求来进行分子设计。 ⑤具有优异的可加工型,易于成材,而且可以晶
第14页/共18页
三阶非线性材料前景
三阶非线性光学材料是处于开发研究中的材料,分子工程和分子设计为人们提 供了优化有机和生物分子材料性能良好手段,探索高非线性极化率,超快响应、低 损耗的三阶非线性光学材料的工作正在展开,有机聚合物和半导体材料已能做到灵 敏和快速响应,是较有使用前景的三阶非线性光学材料。
第3页/共18页
第4页/共18页
非线性光学光波导材料
第5页/共18页
非线性晶体光通行材料
第6页/共18页
选材依据
①有较大的非线性极化率。 ②有合适的透明程度及足够的光学均匀性。 ③能以一定方式实现位相匹配。 ④材料的损伤阈值较高,能承受较大的激光功率或能量。 ⑤有合适的响应时间,分别对脉宽不同的脉冲激光或连续激光作出足够响应。
第7页/共18页
分类
二阶非线性光学材料 :大多数是不具有中心对
称性的晶体。常用于光学倍频、混频和光学参量 振荡等效应的晶体材料有两大类。
三阶非线性光学材料:指那些在强激光作用下
产生三阶非线性极化响应,具有强的光波间非线 性耦合的材料。范围很广,由于不受是否具有中 心对称这一条件的限制,这些材料可以是气体、 原 子 蒸 气 、 液 体 、第液8页晶/共1、8页等 离 子 体 以 及 各 类 晶 体 、
光学材料中的光学非线性效应
光学材料中的光学非线性效应在我们探索光的奇妙世界时,光学材料中的光学非线性效应就像是隐藏在深处的宝藏,等待着我们去发掘和理解。
要理解光学非线性效应,首先得清楚什么是线性光学。
在传统的线性光学中,光的传播和与物质的相互作用遵循着一些简单的规律,比如光的强度与入射光的强度成正比。
但当我们进入光学非线性的领域,情况就变得复杂而有趣起来。
光学非线性效应可以发生在多种不同的光学材料中,包括晶体、半导体、液体和气体等。
这些材料在受到强光照射时,会表现出与线性光学截然不同的特性。
其中一种常见的光学非线性效应是二次谐波产生。
简单来说,就是当一束特定频率的光通过某些非线性光学材料时,会产生频率为原来两倍的新光。
这就好像是光在材料中经历了一次神奇的“变身”。
想象一下,原本是红色的光,经过材料后,竟然变成了紫色!这种效应在激光技术、光学通信等领域有着重要的应用。
另一个重要的光学非线性效应是光学克尔效应。
当光的强度发生变化时,材料的折射率也会随之改变。
这就像是材料的“性格”会随着光的“脾气”而变化。
这种效应在光的调制和开关等方面具有很大的潜力。
还有一种有趣的效应叫受激拉曼散射。
当入射光与材料中的分子振动相互作用时,会产生新的频率的光。
这就好像是光与物质之间进行了一场独特的“对话”,从而产生了新的“声音”。
那么,为什么会出现这些光学非线性效应呢?这与材料的微观结构和电子的行为密切相关。
在非线性光学材料中,电子的运动不再是简单地跟随外场线性响应,而是会出现复杂的非线性行为。
这些光学非线性效应为我们带来了许多令人惊喜的应用。
在激光技术中,通过利用非线性效应,可以实现激光频率的转换,获得更广泛的激光波长范围。
这使得我们能够在医疗、材料加工等领域中使用更适合的激光光源。
在光学通信方面,光学非线性效应有助于提高通信的速度和容量。
比如,利用某些非线性光学器件,可以实现光信号的快速调制和开关,从而大大提高信息传输的效率。
在生物医学领域,非线性光学技术也展现出了独特的优势。
非线性光学材料的设计及其应用
非线性光学材料的设计及其应用随着科技的不断发展,非线性光学材料的重要性愈发凸显。
非线性光学效应是指当光子的能量达到某一特定值时,光子与介质相互作用会产生非线性效应,这种效应不仅极具实用性,而且也能为科学研究提供新颖的手段。
因此,设计和研究非线性光学材料的应用前景正在不断拓展。
一、非线性光学材料的基本概念非线性光学材料是一类具有非线性光学效应的材料,主要特点是其折射率和吸收系数会随着光强度的变化而改变。
与线性光学材料不同的是,在非线性光学材料中,光强度不再与光子数成正比,而是与光子数的平方成正比。
二、非线性光学材料的设计非线性光学材料的设计首先要考虑其制备工艺和调制非线性光学性能的能力。
常规的制备方法包括溶胶-凝胶法、微乳液法、水热法、水热溶胶-凝胶法等。
此外,还可通过有机合成和电子束、脉冲激光等手段来制备非线性光学材料。
设计非线性光学材料的重要因素之一是其非线性极化率。
它表示了材料对电场强度的响应能力,在一定程度上决定了材料的非线性光学性能。
因此,在设计非线性光学材料时,需要寻找并合成具有高非线性极化率的材料。
此外,还需考虑非线性光学材料的能带结构和光学谐振子谐振频率对其性能的影响。
非线性光学材料性能的优化需要设计合适的结构和形态,常用的方法有掺杂材料、纳米化以及表面修饰等手段。
三、非线性光学材料的应用由于其非线性光学效应,非线性光学材料被广泛应用于激光技术、光通信、光储存、光计算等领域。
下面简单介绍几个典型的应用案例。
1. 光通信由于具有宽带、高信噪比等优点,光通信技术已被广泛应用。
然而,传统光纤光源受到非线性光学效应限制而难以满足高速传输要求。
而使用非线性光学材料光放大器作为光信号放大器可有效抑制非线性光学效应,提高光信号传输的质量。
2. 光储存非线性光学效应的第三阶非线性极化率为非常强,因此可用于实现光储存。
将空间光调制器以及光斑扫描器等部件组合成光储存系统,由于非线性光学材料的光学响应能力,可以实现高质量的光储存,具有广泛的应用前景。
非线性光学材料
非线性光学材料
随着科技的发展,非线性光学材料正在变得日益重要。
它们具有许多独特的特性,可以用于多种应用领域,如电力传输、生物医学和光学通信。
在本文中,我们将研究非线性光学材料的结构,其特性和可能的应用。
(正文)
非线性光学材料是指一类具有特殊物理性质的材料,它们能够将光能量转换成电能量,或电能量转换成光能量。
这种称为“非线性”的性质也使它们具有众多独特的应用。
结构上,非线性光学材料主要由不同的结构单元组成,这些单元具有不同的物理性质。
典型的结构单元包括金属、氧化物和有机溶剂。
这些单元之间可能形成复合结构,其中包括结构、电荷转移和光学特性等。
从物理性质的角度来看,非线性光学材料的最大特点是其光学非线性性。
该材料具有三种主要的光学非线性特性,即:折射率可调谐、光学矢量可变和偏振激发力。
由于这些特性,非线性光学材料可用于实现许多应用,如快速数据传输、光电安全系统、太阳能收集、光学探测和定位等。
此外,非线性光学材料的强度与普通的线性光学材料相比也有很大的不同。
非线性光学材料在高功率应用中可以将较低的能量转换成较高的能量,这使得它们特别适合用作电力传输的设备。
(结论)
综上所述,非线性光学材料是一类具有特殊物理性质的材料,其特性使它们在多种应用领域具有重要意义。
非线性光学材料能够将光能量转换成电能量,可以用于电力传输、生物医学和光学通信等领域。
此外,它们也具有较高的功率,因此可以在高功率应用中大大提高效率。
非线性光学材料的原理与应用
非线性光学材料的原理与应用随着科技的迅速发展,非线性光学材料在光学领域中得到了越来越广泛的应用。
非线性光学现象的产生是因为光在强电磁场作用下,导致介质的折射率和吸收系数发生了变化。
本文将介绍非线性光学材料的原理和应用。
一、非线性光学材料的原理非线性光学材料的原理主要是基于介质在强光场作用下的折射率和吸收系数变化。
在光学材料中,光与物质的相互作用是线性的,即光的传播方向和光强度之间是线性的,但是在强光场的作用下,由于材料中的电子和分子运动受到了电磁场的强作用,介质发生了折射率和吸收系数的非线性变化。
这种现象被称为非线性光学现象。
非线性光学现象是一种在电场强烈的情况下出现的现象。
当光经过介质时,光的电矢量和介质的电子互相作用,产生一种新的光学效应,这种效应不同于传统的光学现象。
在非线性光学中,介质的折射率和吸收系数取决于光的强度,不同于传统光学中的线性折射和吸收现象。
二、非线性光学材料的应用非线性光学材料在光学研究和光学应用领域中都有广泛的应用。
下面分别介绍一下它们的应用:1. 光纤通信光纤通信中的信息传输是基于光波在光纤中的传输。
而在光波的传输过程中,光波强度会逐渐衰减,从而导致信号强度的降低。
为了克服这个问题,研究人员采用了光纤光放大器,它可以增强光波的强度和自由度,从而提高信号的传输能力。
而光纤光放大器的核心就是非线性光学材料,在信号传输过程中,它可以实现光信号的自我调制和增强。
2. 光学调制器光学调制器是一种能够对光波进行调制的器件,它可以将电子信号转化为光信号。
在光学调制器中,非线性光学材料可以用作调制器的核心元件,通过调制器产生的非线性光学效应,光信号可以进行自我调制和增强,从而提高光信号的传输速率和稳定性。
3. 制备激光器和光学器件非线性光学材料还可以用于制备激光器和光学器件。
激光器在现代工业和科技中有着广泛的应用,但是制备激光器所需要的材料和器件的性能要求也相应地更高,而非线性光学材料正是这些材料和器件的核心元素之一。
非线性光学材料
非线性光学材料非线性光学材料是一类具有特殊光学性质的材料,它们在光学场中的响应与光强呈非线性关系。
这类材料在光通信、激光技术、光信息处理等领域具有重要的应用价值。
本文将对非线性光学材料的基本特性、分类、应用以及未来发展进行介绍。
非线性光学材料的基本特性包括光学非线性效应、非线性极化、非线性折射率等。
其中,光学非线性效应是指材料在高光强作用下,其极化强度与光场强度不再成正比,而是出现非线性关系。
这种非线性效应可以用来实现光学调制、频率转换等功能。
非线性极化是指材料在外电场作用下,极化强度与电场强度不再成正比,而是出现非线性关系。
非线性折射率是指材料在高光强作用下,其折射率随光强的变化而变化。
这些特性使得非线性光学材料在光学器件中具有独特的应用优势。
根据非线性光学效应的不同机理,非线性光学材料可以分为电子非线性材料、分子非线性材料和晶体非线性材料等几类。
电子非线性材料是指在外电场作用下,电子在晶格中发生位移而引起的非线性效应,如半导体材料。
分子非线性材料是指在外电场作用下,分子极化强度与电场强度不再成正比,而是出现非线性关系,如有机非线性光学材料。
晶体非线性材料是指在晶格周期性结构中,由于非中心对称晶体的二阶非线性极化效应而产生的非线性效应,如KTP晶体。
这些不同类型的非线性光学材料在光学器件中具有各自独特的应用价值。
非线性光学材料在光通信、激光技术、光信息处理等领域具有广泛的应用。
在光通信领域,非线性光学材料可以用来实现光纤通信中的信号调制、频率转换等功能,提高光通信系统的传输容量和效率。
在激光技术领域,非线性光学材料可以用来实现激光频率加倍、和频产生等功能,拓展激光器件的应用范围。
在光信息处理领域,非线性光学材料可以用来实现光学存储、光学计算等功能,提高光信息处理的速度和精度。
可以预见,随着光通信、激光技术、光信息处理等领域的不断发展,非线性光学材料将会有更广泛的应用前景。
未来,非线性光学材料的发展方向主要包括材料性能的优化、器件结构的创新以及应用领域的拓展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性光学材料摘要:非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。
在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。
在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。
关键词:非线性光学材料;光电功能材料1.简介在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。
在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。
非线性光学材料是指一类受外部光场、电场和应变场的作用,频率、相位、振幅等发生变化,从而引起折射率、光吸收、光散射等变化的材料。
在用激光做光源时,激光与介质间相互作用产生的这种非线性光学现象,会导致光的倍频、合频、差频、参量振荡、参量放大,引起谐波。
利用非线性光学材料的变频和光折变功能,尤其是倍频和三倍频能力,可将其广泛应用于有线电视和光纤通信用的信号转换器和光学开关、光调制器、倍频器、限幅器、放大器、整流透镜和换能器等领域。
物质在电磁场的作用下,原子的正、负电荷中心会发生迁移,即发生极化,产生一诱导偶极矩p。
在光强度不是很高时,分子的诱导偶极矩p线性正比于光的电场强度E。
然而,当光强足够大如激光时,会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。
分子诱导偶极矩p 就变成电场强度E的非线性函数,如下表示:p=αE+βE2+γE3+……式中α为分子的微观线性极化率;β为一阶分子超极化率(二阶效应),γ为二阶分子超极化率(三阶效应)。
即基于电场强度E的n次幂所诱导的电极化效应就称之为n阶非线性光学效应。
一种好的非线性光学材料应是易极化的、具有非对称的电荷分布的、具有大的π电子共轭体系的、非中心对称的分子构成的材料。
另外,在工作波长可实现相位匹配,有较高的功率破环阈值,宽的透过能力,材料的光学完整性、均匀性、硬度及化学稳定性好,易于进行各种机械、光学加工也是必需的。
易于生产、价格便宜等也是应当考虑的因素。
目前研究较多的是二阶和三阶非线性光学效应。
2.非线性光学材料分类自从20世纪60年代诞生起,非线性光学材料的研究取得了很大的进展,有很多已经进实用化阶段[1-3]。
根据组成可将非线性光学材料大致分为无机非线性光学材料,有机非线性光学材料,无机-有机杂化材料等。
2.1无机非线性光学材料在二次非线性光学材料应用上,无机材料很长时间处于主要地位,取得了巨大的进展,至今已在许多装置中获得应用[4-6]。
与有机材料比,无机材料通常更稳定,它们中许多材料都允许各向异性离子交换,使之可用于导波器材料,并且它们都有比有机材料纯度更高的晶体形式。
其中包括KTP(KTiO-PO4)型材料、KDP(KH2PO4)型材料、钙钛矿型(LiNbO3、KNbO3等)材料、半导体材料(Te、Ag3AsS3、CdSe等)、硼酸盐系列材料(包括KB5、BBO、LBO和KBBF)等,另外还有如沸石分子筛基材料、玻璃型和配合物型材料等。
2.1.1KDP型晶体主要包括KH2PO4和四方晶系的一些同构物及其氘代物晶体等。
此类晶体生长简单,容易得到高质量的单晶,能够得到90°的相位匹配,适合于高功率倍频。
虽然它们的非线性系数较小,但在高功率下并不妨碍获得高的转换效率。
2.1.2KTP型晶体主要包括KTiOPO4以及正交晶系的同构物等。
KTP晶体具有非线性系数大,吸收系数低,不易潮解,很难脆裂,化学稳定性好,易加工和倍频转换效率高等优点,是一种优良的非线性光学晶体,但紫外透过能力差限制了它在紫外区的应用。
2.1.3硼酸盐晶体如偏硼酸钡(BBO),三硼酸锂(LBO)等。
此类晶体的共同特点是紫外透光范围特别宽。
其中BBO和LBO的优点是非线性系数大,转换效率高,透光范围宽,光损伤阈值高,化学稳定性好和易于机械加工。
2.1.4半导体材料如Te、Ag3AsS3、CdSe,GaP,GaAs,α-SiC和β-SiC等,通过调节材料的能隙,有效地改变电子的跃迁几率,从而控制材料的非线性光学响应。
此类材料大多具有较高的非线性光学系数,缺点是晶体质量不高,光损伤阈值太低。
2.1.5钙钛矿型晶体主要包括LiNbO3、LiTaO3以及不同Li/Nb原子比的LixNbyO3型铁电晶体等。
它们都具有较好的非线性光学效应,已被广泛地应用。
铌酸锂单晶是一种具有优良的线性和非线性光学特性的铁电材料,具有较大的电光系数、宽的光透射范围以及优异的热稳定性和化学稳定性,是广泛用于制造电光调制器、电光偏转器、电光开关及制造集成光学器件十分理想的无机晶体材料。
同时,铌酸锂的压电性能又使它成为制造超声换能器、声表器件的关键材料,可用于视频和微波信号处理。
目前铌酸锂绝大部分用于远程通信。
但铌酸锂容易产生光损伤,限制了它在较强激光场合中的应用。
2.1.6沸石分子筛基材料通过沸石分子筛基的分子组装,可以得到非线性光学材料的纳米团簇。
因为某种分子筛只能允许一定大小的分子进入,其孔道结构在组装过程中的作用极其重要。
目前研究较多的是在沸石中组装有机非线性光学效应物质。
如在分子筛的孔道内聚合生长的聚合物,微观有序性较好,避免了聚合物分子有序性易被破坏的缺陷。
同时作为基体的分子筛对客体有机分子起到保护作用,增强了客体的光热稳定性。
另外,可以通过调节分子筛骨架电化学组成而改变其介电常数,调节主客体之间的影响,从而增强非线性光学效应。
又如,对某些有对称中心的有机分子在某些分子筛中组装之后产生非线性光学效应。
如在A1PO4一5分子筛中利用气相装载的方法组装对硝基苯胺后发现生成的包容化合物表现出一定的倍频效应,可能是A1PO4一5无对称中心结构导致,而有对称中心的沸石不产生这种影响。
2.1.7玻璃非线性光学材料玻璃的非线性光学效应大多是由于材料的原子或离子在强光电场的照射下的非线性极化所引起的共振效应。
玻璃虽具有各向同性,但在受到如电极化、热极化、激光诱导极化、电子束辐射极化等作用时,可使其结构发生变化,在微小的区域内产生相当强的定向极化,从而打破玻璃的反演对称性,使其具有二阶非线性光学效应。
可用于制备二倍倍频器、杂化双稳器、紫外激光器,红外激光器、电光调制器等。
利用玻璃的三阶非线性光学效应可制备超高速光开关、光学存储器、光学运算元件、新型光纤等。
如碲铌锌系统玻璃就是一种性能优良的三阶非线性光学玻璃材料。
在碲铌锌系统玻璃中引入稀土离子,利用其4f电子的跃迁提高谐波光子激发的可能性,从而提高玻璃的三阶光学非线性。
由于玻璃组成多样,性能优越、、透光性好、良好的化学稳定性和热稳定性、易于制作和加工和易于掺杂等一系列优点,日益引起人们的重视,也是一类有较好应用前景的非线性光学材料。
2.2有机非线性光学材料在非线性光学材料研究初期就发现尿素、苦味酸、二硝基苯胺等一系列有机物具有非线性光学效应。
由于具有大的非定域π共轭电子体系的有机分子有较强的光电耦合特征,所以能得到高的响应值和比较大的光学系数。
八十年代以后,有机非线性光学材料迅速发展起来。
有机材料相比无机材料具有非线性光学系数高、响应快速、易于修饰、光学损伤阈值高、易于加工及分子可变性强等优点。
目前发现或合成的有机非线性光学材料很多,包括各类有机低分子非线性光学材料、高聚物非线性光学材料、金属有机配合物非线性光学材料等。
2.2.1有机低分子非线性光学材料主要包括如尿素及其衍生物,希夫碱系化合物,偶氮化合物,二苯乙烯类化合物,稠杂环化合物,酞菁类化合物,有机盐类等一系列含发色团的具有π共轭链的近紫外吸收的小分子化合物材料。
有机分子具有大的离域的π电子共轭结构,易被极化,具有较大的非线性光学系数,易于设计和裁剪组合,易于加工成型,便于器件化。
另外,它们成本相对较低,介电常数低,光学响应快以及与铁电无机晶体可比拟或远远超过的非共振光学极化率。
所以可通过分子设计并合成的方法改变结构开发出新型结构材料。
2.2.2高聚物非线性光学材料高聚物非线性光学材料不仅具有非线性光学系数大,响应速度快,直流介电常数低等优点,而且由于分子链以共价键连接,机械强度高,化学稳定性好,加工性能优良,结构可变性强,可制成如膜、片、纤维等各种形式。
在光调制器件,光计算用的神经网络,空间光调制器,光开关器件以及全光串行处理元件等许多方面具有广阔的应用前景。
在合成高聚物非线性光学材料时,虽然高分子本身具有非中心对称单元,但其偶极矩的取向无规律,其非线性光学性能较弱。
因此可通过外加电场,使分子的取向定向排列,从而增强其非线性光学性能。
高分子链的极化取向要在玻璃化转变温度以上才能发生,而取向冻结要在玻璃化转变温度以下,这样要求高分子材料具有较高的玻璃化转变温度。
聚合物还应是透明的材料,使光损失尽量小。
按照聚合物结构可大致分为主客体型聚合物、侧链及主链型聚合物、交联型聚合物、共轭型聚合物非线性光学材料等。
(1)主客体型聚合物将具有高非线性光学系数的客体有机共轭分子和主体聚合物进行混合,形成主客体系的非线性光学材料,又称掺杂型非线性材料。
此类聚合物具有较好的非线性光学特性,容易制备和纯化,但往往主客体相容性较差,掺杂量难以增加。
另外低分子掺杂物的加入还会降低材料的玻璃化温度,影响其取向稳定性。
(2)侧链及主链型聚合物将生色团分子通过共价键或离子键键合到聚合物主链或侧链上。
此类聚合物较掺杂型材料中发色团含量增多,增加了取向稳定性,具有较高的非线性。
但是场诱导的非中心对称排列的高分子易发生松弛,使性能变差。
(3)交联型聚合物将发色团分子交联在聚合物网络中,在交联反应发生之前或在交联过程中把发色团取向极化,生色团取向稳定性得到明显改善,从而获得较好的光学性能。
(4)共轭型聚合物分子的离域程度越高,材料的非线性光学性能越好。
共轭型聚合物可作为良好的二阶非线性光学材料。
此类聚合物非线性光学材料主要有聚二乙炔(PDA)、聚乙炔(PA)、聚噻吩(PTh)、聚苯乙炔(PPV)、聚苯胺类(PAn)、聚苯并噻唑(PBT)、聚苯并咪唑(PBI)、聚酰亚胺及其衍生物。
另外还有无机聚合物如聚膦腈、聚硅氧烷和聚烷基硅等均表现出较好的非线性光学性能,具有更好的热和化学稳定性。
2.2.3金属有机配合物非线性光学材料主要包括金属茂烯类配合物、金属羰基配合物、金属烯烃类有机配合物、金属多炔聚合物、金属卟啉有机配合物、金属酞菁有机配合物以及其它配合物型非线性光学材料等。
1986年,C.C.Frazier等首先报道了金属有机化合物的二次谐波效应。