指数函数知识点总结
指数函数知识点归纳
指数函数知识点归纳一、指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a ≠ 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。
需要注意的是,指数函数的底数\(a\)必须满足\(a > 0\)且\(a ≠ 1\)。
当\(a = 1\)时,\(y = 1^x = 1\),是一个常函数,不是指数函数;当\(a < 0\)时,比如\(a =-2\),那么当\(x =\frac{1}{2}\)时,\((-2)^{\frac{1}{2}}\)在实数范围内无意义。
二、指数函数的图像当\(a > 1\)时,指数函数\(y = a^x\)的图像是上升的,经过点\((0, 1)\)。
因为\(a > 1\),所以当\(x\)的值越来越大时,\(y\)的值增长得越来越快。
当\(0 < a < 1\)时,指数函数\(y = a^x\)的图像是下降的,同样经过点\((0, 1)\)。
此时,当\(x\)的值越来越大时,\(y\)的值越来越趋近于\(0\)。
例如,\(y = 2^x\)和\(y =(\frac{1}{2})^x\)的图像就分别呈现出上升和下降的趋势。
三、指数函数的性质1、定义域:\(R\)(即实数集)2、值域:\((0, +∞)\)这是因为对于任何实数\(x\),\(a^x\)的值总是大于\(0\)的。
3、过定点:\((0, 1)\)无论\(a\)的值是多少,当\(x = 0\)时,\(a^0 = 1\)。
4、单调性:当\(a > 1\)时,函数在\(R\)上单调递增;当\(0 < a < 1\)时,函数在\(R\)上单调递减。
四、指数运算的性质1、\(a^m × a^n = a^{m + n}\)例如:\(2^3 × 2^2 = 2^{3 + 2} = 2^5\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a ≠ 0\))比如:\(\frac{3^5}{3^2} = 3^{5 2} = 3^3\)3、\((a^m)^n = a^{mn}\)举例:\((2^2)^3 = 2^{2×3} = 2^6\)4、\(a^0 = 1\)(\(a ≠ 0\))任何非零数的\(0\)次幂都等于\(1\)。
指数函数应用知识点总结
指数函数应用知识点总结一、指数函数的基本概念和性质1.1 指数函数的定义指数函数是具有x为独立变量的函数,其定义域为实数集合,通常表示为y = a^x,其中a 为底数,x为指数,a为正实数且不等于1。
1.2 指数函数的基本性质指数函数的基本性质包括:(1)当底数a大于1时,指数函数呈增长趋势;当底数a小于1且大于0时,指数函数呈现下降趋势。
(2)指数函数的图像是以点(0,1)为对称轴的。
(3)当x=0时,指数函数的值始终为1。
(4)指数函数是连续且严格递增或递减的。
1.3 指数函数的导数和积分指数函数的导数为其自身的基数乘以lna,即f'(x)=a^x*lna;而指数函数的不定积分为其自身的函数值除以lna再加上常数项,即∫a^xdx=a^x/lna+C。
1.4 指数函数与对数函数的关系指数函数与对数函数是互为反函数的关系,即a^x=y,当且仅当x=loga(y)。
指数函数和对数函数之间可以相互转化。
1.5 指数函数的极限性质当x趋向无穷大时,指数函数a^x的极限为正无穷;当x趋向负无穷大时,指数函数a^x 的极限为0。
二、指数函数在现实生活中的具体应用2.1 指数函数在金融领域的应用(1)复利计算:复利是利息按期计算并加到本金中再计算利息的计息方式。
其数学模型即为指数函数,为A=P*(1+r/n)^(nt)其中,P为本金,r为年利率,n为计息次数,t为存款年限,A为本金加利息后的总额。
(2)经济增长模型:指数函数也常用于描述国民经济的增长趋势,GDP增长率等指标都可以用指数函数来描述其增长趋势。
2.2 指数函数在生物学领域的应用(1)细菌繁殖模型:细菌在合适的环境条件下,其繁殖数量会呈指数增长。
这种繁殖数量可以用指数函数来描述。
(2)人口增长模型:在一个封闭的系统中,人口增长也可以通过指数函数来描述。
2.3 指数函数在物理学领域的应用(1)放射性衰变模型:放射性元素的衰变可以用指数函数来描述。
指数函数知识点总结
指数函数知识点总结指数函数是高中数学中的重要内容之一。
它是以底数为常数、指数为自变量的函数,具有独特的性质和应用。
本文将从定义、性质、图像和应用四个方面对指数函数进行总结。
一、定义指数函数是具有形式f(x) = a^x的函数,其中a为大于0且不等于1的常数。
指数函数是一种通过指数幂运算的方式获得函数值的数学函数。
二、性质1. 底数大于1时,指数函数是增函数;底数在0和1之间时,指数函数是减函数。
这意味着指数函数的图像可以分为两种情况:斜上升和斜下降。
2. 指数函数有定义域为全体实数,值域为正实数。
3. 指数函数的图像经过点(0,1),即a^0 = 1。
4. 指数函数的平行于x轴的渐近线为y = 0。
这是因为指数函数在负无穷大时趋于0。
5. 指数函数的性质可以推广到负指数,即f(x) = a^(-x)。
相同的性质适用于负指数函数。
三、图像指数函数的图像特点很明显。
当底数a大于1时,指数函数的图像会从左下方无限趋近于x轴。
当底数a在0和1之间时,指数函数的图像会从左上方无限趋近于x轴。
指数函数的图像在逼近x轴时变得非常陡峭。
这是因为随着指数不断增加,函数的增长速度越来越快。
四、应用指数函数在现实世界中有许多应用。
以下是一些常见的应用领域:1. 金融领域:指数函数在复利计算中发挥着重要作用。
复利是指在计算利息时将利息加入到本金中,进而计算下一阶段的利息。
指数函数可用于计算定期存款或贷款的未来价值或余额。
2. 自然科学:指数函数在自然科学中广泛应用,尤其是在物理学和化学方面。
例如,放射性衰变是一个指数运动,指数函数可用于描述放射性物质的衰变过程。
3. 经济学:指数函数在经济学中用于描述人口增长、市场价格和物品生产等。
经济学家常常使用指数函数来分析和预测经济趋势。
4. 生物学:指数函数在生物学中用于描述生物种群的增长。
当环境资源充足时,生物种群的增长可以被指数函数描述。
总结:指数函数是一种重要的数学函数,在各个领域都有重要的应用。
指数函数知识点总结
指数函数知识点总结指数函数是高中数学中的重要内容,也是数学课本上的一个章节。
本文将从定义、性质、图像、运算等方面对指数函数的知识点进行总结,以帮助读者更好地理解和掌握指数函数的相关内容。
一、定义指数函数是以一个正常数b(b>0,b≠1)为底的幂函数,函数公式为f(x)=b^x,其中b称为底数,x称为指数,f(x)称为指数函数。
指数函数在生活中的例子有人口增长、细菌繁殖等。
二、性质1.定义域:指数函数的定义域是所有实数。
2.值域:对于b>1的指数函数,值域为(0,+∞);对于0<b<1的指数函数,值域为(0,+∞)。
3.奇偶性:指数函数当底数为奇函数时为奇函数,当底数为偶函数时为偶函数。
4.单调性:对于b>1的指数函数,其在定义域上是增函数;对于0<b<1的指数函数,其在定义域上是减函数。
5.渐近线:指数函数没有水平渐近线,但有垂直渐近线x=0。
6.交点与性质:当x=0时,指数函数的值为1,表示该点在y轴上;当b>1时,指数函数经过(1,b)点,当0<b<1时,指数函数经过(1,1/b)点。
三、图像1.b>1的指数函数的图像:在x轴左侧(负半轴)逐渐趋于0,在x轴右侧(正半轴)逐渐增大,图像位于y轴的上方。
2.0<b<1的指数函数的图像:在x轴左侧(负半轴)逐渐减小,在x轴右侧(正半轴)逐渐趋于0,图像位于y轴的下方。
四、运算1.指数函数的乘法法则:b^m*b^n=b^(m+n),底数相同的指数函数相乘时,指数相加。
2.指数函数的除法法则:(b^m)/(b^n)=b^(m-n),底数相同的指数函数相除时,指数相减。
3.指数函数的幂次法则:(b^m)^n=b^(m*n),指数函数的幂次公式,即指数的指数等于底数的两个指数相乘。
五、常用函数2. 对数函数:对数函数是指指数函数的反函数,记作y = logb(x),其中b为底数,x为指数。
指数函数知识点归纳
指数函数知识点归纳指数函数是一种常见的数学函数,它以底数为常数且大于零的实数来表示自变量的幂。
指数函数有着重要的数学性质和应用。
在这篇文章中,我们将归纳指数函数的一些重要知识点。
1.定义和表示:指数函数可以写成f(x)=a^x的形式,其中a是底数,x是指数。
2.基本性质:(1)当底数a大于1时,指数函数呈现增长态势,即函数值随着自变量的增加而增加;(2)当底数a等于1时,指数函数保持恒定,即f(x)=1;(3)当底数a介于0和1之间时,指数函数呈现减少态势,即函数值随着自变量的增加而减少。
3.导数:指数函数的导数与其本身成正比。
具体地,f'(x) = a^x * ln(a),其中ln(a)是以自然对数e为底的对数。
4.指数函数的图像和性质:(1)当底数a大于1时,指数函数的图像在x轴的右侧逐渐上升;(2)当底数a等于1时,指数函数的图像是一条恒定值的水平直线;(3)当底数a介于0和1之间时,指数函数的图像在x轴的右侧逐渐下降;(4)指数函数的图像通过点(0,1),即f(0)=15.指数函数的性质:(1)指数函数具有不断增长或不断减少的性质;(2)指数函数的图像关于y轴对称;(3)当底数a大于1时,函数值在正无穷大和负无穷大之间无限逼近;(4)当底数a介于0和1之间时,函数值在0和正无穷大之间无限逼近。
6.指数函数和对数函数的关系:指数函数和对数函数是互为反函数的。
即,f(x) = a^x 和 g(x) = loga(x)是一对互为反函数的指数函数和对数函数。
函数f(x) = a^x的定义域是实数集R,值域是正实数集R+;函数g(x) = loga(x)的定义域是正实数集R+,值域是实数集R。
7.指数函数的应用:指数函数在各个领域有着广泛的应用,例如经济增长模型、无线电活动强度计算、化学反应速率、放射性衰变等。
指数函数在实际问题中能够提供一种简洁而有效的数学模型。
综上所述,指数函数是一种基于底数为常数的幂函数,具有增长、恒定或减少的性质。
人教A版必修一指数函数与对数函数知识点总结
人教A版必修一指数函数与对数函数知识点总结一、指数函数的概念与性质:指数函数是以一个常数为底数,自变量是指数的函数,可以表示为y=a^x,其中a为底数,x为指数,a>0且a≠11.指数函数的定义域为全体实数集,值域为(0,+∞)。
2.当a>1时,指数函数呈现递增趋势;当0<a<1时,指数函数呈现递减趋势。
3.a^0=1,a^1=a。
4.任意幂指数函数a^x是定义在R上的连续函数。
5.两个指数函数相等的充分必要条件是它们的底数相等且指数相等。
二、对数函数的概念与性质:对数函数是指以一个常数为底数,自变量是正数的函数,可以表示为y = loga(x),其中 a 为底数,x 为正数,a>0 且a≠11.对数函数的定义域是正数集,值域是全体实数集。
2. loga(a^x) = x,a^loga(x) = x,其中 a>0 且a≠13.若a>1,则对数函数呈递增趋势;若0<a<1,则对数函数呈递减趋势。
4.对数函数的图像与指数函数的图像互为镜像。
5. loga(xy) = loga(x) + loga(y),loga(x/y) = loga(x) -loga(y),(loga(x))^n = nloga(x)。
三、常见指数函数与对数函数:1. y = 2^x:对数函数 y = log2(x)。
2. y = 3^x:对数函数 y = log3(x)。
4. y = 10^x:对数函数 y = log10(x)。
四、指数函数与对数函数的应用:1.物质的衰减与增长:指数函数可以用来描述放射性元素的衰变过程,而对数函数则可以用来描述人口增长、物质浓度衰减等过程。
2.科学计算与数据压缩:指数函数与对数函数在科学计算领域应用广泛,可用于求解数值问题、压缩数据等。
3.经济学与金融学:指数函数与对数函数在经济学与金融学领域有诸多应用,如利息计算、投资回报率分析等。
4.生物学与医学:指数函数与对数函数在生物学与医学领域也有广泛应用,如细胞增殖、病毒复制等。
指数对数函数基本知识点
指数对数函数基本知识点指数和对数函数是数学中常见的函数类型,应用广泛于科学、工程和金融等领域。
本文将介绍指数函数和对数函数的基本知识点,包括定义、性质和应用等方面。
一、指数函数(Exponential Function)指数函数是以常数e为底数的函数,它的定义如下:f(x)=a^x其中a是常数,称为底数;x是变量,称为指数;f(x)是函数的值。
1.常数e:e=1+1/1!+1/2!+1/3!+…2.指数函数的性质:(1)当x为整数时,指数函数的取值和底数a的幂运算相同;(2)当x为分数时,指数函数的取值是底数a的分数次幂;(3)当x为0时,指数函数的值为1;(4)当x趋近于负无穷时,指数函数的值趋近于0;(5)当x趋近于正无穷时,指数函数的值趋近于正无穷。
3.应用:指数函数在自然科学和金融领域有广泛的应用。
在自然科学中,指数函数可以描述各种自然过程的增长或衰减。
在金融领域中,指数函数可以用来进行复利计算。
二、对数函数(Logarithmic Function)对数函数是指数函数的逆运算,它的定义如下:f(x) = log_a(x)其中a是底数;x是函数的值;f(x)是变量。
1.对数的定义:对数函数中的底数a必须大于0且不等于1,对数函数的定义可以有以下两种形式:(1) 若a>1,则f(x) = log_a(x) 表示x=a^f(x);(2)若0a&0。
3.对数函数的性质:(1) f(x) = log_a(1) = 0;(2) f(x) = log_a(a) = 1;(3)若x1>x2,则f(x1)>f(x2);(4) log_a(x * y) = log_a(x) + log_a(y);(5) log_a(x / y) = log_a(x) - log_a(y);(6) log_a(x^k) = k * log_a(x);(7) 若x > 1,则log_a(x) > 0;若0 < x < 1,则log_a(x) < 0;(8)当x趋近于正无穷时,对数函数的值趋近于无穷。
指数函数知识点总结
指数函数知识点总结指数函数是高中数学中的重要内容,它在数学和科学领域中都有着广泛的应用。
指数函数的概念和性质对于学生来说是一个比较抽象和难以理解的内容,但只要我们掌握了其中的一些关键知识点,就能够很好地理解和运用指数函数。
本文将对指数函数的知识点进行总结,希望能够帮助学生更好地掌握这一部分内容。
一、指数函数的定义。
指数函数是以指数为自变量的函数,一般写作y=a^x,其中a是底数,x是指数,y是函数值。
当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
二、指数函数的性质。
1. 指数函数的定义域是实数集,值域是正实数集。
2. 当底数a大于1时,函数呈现增长趋势;当底数a在0和1之间时,函数呈现下降趋势。
3. 指数函数的图像一般为一条曲线,随着指数的增大或减小而逐渐增长或减小。
4. 指数函数的图像经过点(0,1),并且不过x轴。
三、指数函数的运算。
1. 指数函数的乘法,a^m a^n = a^(m+n)。
2. 指数函数的除法,a^m / a^n = a^(m-n)。
3. 指数函数的幂运算,(a^m)^n = a^(mn)。
四、指数函数的应用。
1. 指数函数在经济学中的应用,例如复利计算、指数增长模型等。
2. 指数函数在生物学中的应用,例如细菌繁殖、人口增长等。
3. 指数函数在物理学中的应用,例如放射性衰变、电路中的电流变化等。
五、指数函数的解析式和图像。
1. 当底数a大于1时,指数函数的解析式为y=a^x,图像为逐渐增长的曲线。
2. 当底数a在0和1之间时,指数函数的解析式为y=a^x,图像为逐渐减小的曲线。
六、指数函数与对数函数的关系。
指数函数和对数函数是互为反函数的函数关系,它们之间有着密切的联系。
指数函数的解析式为y=a^x,对数函数的解析式为y=loga(x),它们之间的关系可以通过换底公式进行转换。
指数函数高三知识点总结
指数函数高三知识点总结指数函数是高中数学中的一个重要章节,它在解决实际问题和研究自然科学中起着重要的作用。
下面将对指数函数的相关知识进行总结。
一、指数函数的定义指数函数是以指数为自变量,以底数为底的函数,通常写作y = a^x,其中a为底数,x为指数,y为函数值。
指数函数是一种特殊的幂函数,当底数a>0且a≠1时,其函数图像随着指数的变化呈现出不同的特征。
二、指数函数图像的性质1. 当0<a<1时,指数函数的图像在(−∞,+∞)上递减,并且在x 轴上方逐渐逼近x轴。
2. 当a>1时,指数函数的图像在(−∞,+∞)上递增,并且在x轴上方逐渐逼近y轴。
3. 当a=1时,指数函数的图像是一条水平直线,函数值始终为1。
三、指数函数的基本性质1. 指数函数的定义域为全体实数,值域为正实数。
2. 对于任意实数x1和x2,若x1>x2,则a^x1>a^x2。
3. 指数函数f(x) = a^x是一种连续函数,且在整个定义域上都是可导的。
四、指数函数的常用运算法则1. 乘法法则:a^x * a^y = a^(x+y)。
2. 除法法则:(a^x)/(a^y) = a^(x-y),其中a≠0。
3. 幂法则:(a^x)^y = a^(x*y)。
4. 开方法则:a^(x/y) = (a^x)^(1/y),其中a>0且a≠1。
五、指数函数在实际问题中的应用1. 物质的放射性衰变:放射性元素的衰变过程可以用指数函数来描述。
例如,放射性元素的质量随时间的变化可以用指数函数来描述。
2. 经济增长和衰退:经济发展中的增长和衰退也可以用指数函数来模拟。
例如,国内生产总值的增长率可以建立指数函数模型。
3. 科学实验中的因变量变化:某些科学实验中,因变量的变化过程可以用指数函数来表示。
例如,溶解速率随时间的变化。
六、指数函数的解析式1. 指数函数的解析式一般形式为y = a^x,其中a为底数,x为指数。
指数函数知识点归纳总结
指数函数知识点归纳总结指数函数是高中数学的重要内容之一,它与幂函数密切相关,具有广泛的应用。
本文将对指数函数进行归纳总结,包括定义、性质、图像、相关公式和常见的应用等方面。
一、定义:指数函数是指以一个常数为底数,自变量为指数的函数,通常表示为f(x)=a^x,其中a是一个正实数且不等于1、指数函数的定义域为整个实数集,值域为正实数集。
二、性质:1.底数为a的指数函数在定义域内是递增函数,即当x1<x2时,有a^x1<a^x22.当x取0时,a^0=1、这是由于任何数的零次方均为1,不论底数是多少。
4. 指数函数的导数:指数函数f(x) = a^x的导数等于f'(x) =a^x*ln(a),其中ln(a)是以e为底数的对数。
三、图像:1.当底数a大于1时,指数函数的图像是上升的曲线。
当x增大时,a^x的值也随之增大。
2.当底数a介于0和1之间时,指数函数的图像是下降的曲线。
当x 增大时,a^x的值逐渐减小。
3.底数a等于1时,指数函数的图像是一条水平直线,即y=1四、相关公式:1.指数函数的乘法公式:a^m*a^n=a^(m+n)。
即底数相同的指数相乘,底数不变,指数相加。
2.指数函数的除法公式:a^m/a^n=a^(m-n)。
即底数相同的指数相除,底数不变,指数相减。
3.指数函数的幂函数公式:(a^m)^n=a^(m*n)。
即指数的指数等于底数的幂,底数不变,指数相乘。
4. 指数函数的对数公式:loga(b) = x等价于 a^x = b。
即对数是指数函数的逆运算。
五、常见应用:指数函数有广泛的应用,尤其在科学、工程、经济和金融等领域。
1.天文学中的指数增长:天体的数量、质量、光亮度等往往呈指数增长。
2.化学反应速率:化学反应速率与反应物的浓度之间通常存在指数关系。
3. 人口增长模型:指数函数可以用来描述人口增长的趋势,如Malthus人口增长模型。
4.账户复利计算:复利计算是指利息按照一定的周期复利加入本金,可以用指数函数来表示利息的增长。
指数函数知识点总结
指数函数知识点总结指数函数是数学中的一种常见函数形式。
具体来说,指数函数可以表示为 f(x) = a^x 或 f(x) = e^x 的形式,其中 a 和 e 分别代表底数。
以下是指数函数的一些重要知识点总结:1. 指数函数的性质- 指数函数的定义域为实数集,值域为正实数集。
- 指数函数具有单调递增性质,即底数为正数时,随着自变量x 的增大,函数值增加;底数为负数时,随着自变量 x 的增大,函数值减小。
- 当底数 a 大于 1 时,函数呈现增长趋势,当底数 a 在 0 到 1 之间时,函数呈现衰减趋势。
- 当底数为 e (自然对数的底数) 时,该指数函数称为自然指数函数,常用符号为 f(x) = e^x。
2. 指数运算法则- 指数运算法则包括乘法法则、除法法则、幂的乘方法则和幂的除法法则。
根据这些法则,可以对指数之间的运算进行简化和转换,方便计算和推导。
具体的运算法则请参考数学教材或相关研究资源。
3. 指数函数的图像- 根据指数函数的性质,可以绘制指数函数的图像。
对于一般的指数函数 f(x) = a^x,图像在 x 轴右侧递增,斜率随底数 a 的大小变化而改变;而自然指数函数 f(x) = e^x 的图像在全区间上都是递增的,且斜率始终为正。
- 对于指数函数的图像研究,可以通过计算关键点、确定导数、绘制函数图像等方法进行分析和描绘。
4. 指数函数的应用- 指数函数广泛应用于各个学科和领域。
在数学中,指数函数是指数与对数概念的核心。
在经济学、物理学、生物学等自然科学中,指数函数的增长和衰减特性被广泛用于建模和预测。
- 例如,指数函数可用于描述细菌或病毒的增长情况,经济学中的指数增长模型等。
指数函数的应用领域较为广泛,具体的应用案例可根据不同学科和实际问题进行研究。
以上是关于指数函数的一些重要知识点总结。
更多深入的学习和应用内容,建议参考相关数学教材或专业文献。
祝你学业顺利!。
指数函数知识点归纳总结(精华版)
2 ar s ars a 0, r, s Q
3abr arbr a 0, b 0, r Q
说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;
(2)0 的正分数指数幂等于 0,0 的负分数指数幂没意义。
二、指数函数 1.指数函数定义: 一般地,函数 y ax ( a 0 且 a 1)叫做指数函数,其中x 是自变量, 函数定义域是R .
指数函数知识点归纳总结
一、指数的性质
(一)整数指数幂
1.整数指数幂概念:
a0 1a 0
an 1 a 0, n N an
2. 整数指数幂的运算性质:(1) am an amn m, n Z
பைடு நூலகம்
2 am n amn m, n Z
3
abn an bn n Z
其中am an am a n amn ,
a n b
a b1
n
an
bn
an bn
.
3.a 的 n 次方根的概念
一般地,如果一个数的n 次方等于a n 1,n N ,那么这个数叫
做 a 的 n 次方根,
即: 若 xn a ,则 x 叫做a 的 n 次方根, n 1,n N
说明:①若 n 是奇数,则 a 的 n 次方根记作n a ; 若 a 0 则 n a 0 , 若ao则na 0; ②若 n 是偶数,且 a 0 则 a 的正的n 次方根记作n a , a 的 负的n 次方根,记作: n a ;(例如:8 的平方根
数幂的形式。
规定:
m
正数的正分数指数幂的意义是a n n am a 0,m, n N, n 1 ;
正数的负分数指数幂的意义
m
是 a n
指数函数知识点汇总
指数函数知识点汇总指数函数是高中数学中的重要内容,它是指以一个常数为底的对数函数的逆运算,也就是说指数函数是对数函数的反函数。
以下将从指数函数的定义、特点、性质和应用等方面进行汇总。
1.指数函数的定义:指数函数是以一个正数a(a>0且a≠1)为底的函数,记作y=a^x,其中x是自变量,y是因变量,称为以a为底的指数函数。
2.指数函数的特点:-当a>1时,指数函数是递增函数,即随着自变量的增加,因变量也会增加;-当0<a<1时,指数函数是递减函数,即随着自变量的增加,因变量会减小;-当x=0时,指数函数的值都为1;-当x为负数时,指数函数的值在(0,1)之间或者大于1,根据指数的奇偶性确定。
3.指数函数的性质:-过点(0,1)的指数函数y=a^x的图像必过点(a,a);-指数函数在定义域内是连续的;-指数函数的值域是(0,+∞);-指数函数的图像是一条平滑的曲线,且不会与x轴平行;-指数函数的图像均经过点(0,1),但随着底数a的不同,曲线的形状也不同。
4.指数函数的常见形式:-y=2^x:底数为2的指数函数,也称为指数函数的最简形式;-y=10^x:底数为10的指数函数,也称为常用对数函数。
5.指数函数的应用:指数函数在实际生活中有重要的应用,尤其在经济学、生物学、物理学等领域中-经济学中的复利计算:复利计算是指在固定利率下,一笔资金每经过一定的时间后,利息加到本金上,再按照同样的利率计算下一期的利息,如此类推;-生物学中的指数增长模型:指数增长模型描述了生物群体在适宜生存环境下,其个体数量随时间而呈指数增长的情况;-物理学中的放射性衰变:放射性衰变过程中,放射物质中的原子核数量随着时间的推移而呈指数减少的趋势;-金融学中的指数收益率计算:指数收益率表示其中一特定指数指数中所包括的个股价格变动情况,用以评价股票市场的整体走势。
总结:指数函数是数学中的重要内容,通过对指数函数的定义、特点、性质和应用的汇总,可以帮助我们更好地理解和应用指数函数。
高三指数函数总结知识点
高三指数函数总结知识点一、指数函数的基本性质指数函数是由形如f(x)=a^x的函数所构成,其中a称为底数,a>0且a≠1。
指数函数在数学和自然科学中有广泛的应用,具有以下基本性质:1. 当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。
2. 当x取无穷大时,指数函数趋于正无穷;当x取无穷小时,指数函数趋于0。
3. 指数函数的图像关于y轴对称且过点(0,1)。
二、指数函数的图像与特征1. 当底数a大于1时,指数函数的图像呈现上升的趋势,且越接近y轴,函数值变化越剧烈;当底数a介于0和1之间时,指数函数的图像呈现下降的趋势,且越接近y轴,函数值变化越剧烈。
2. 特殊情况:当底数a等于1时,指数函数退化成常函数f(x)=1;当底数a小于0时,指数函数在定义域产生缺失,图像不连续。
3. 指数函数的图像经过点(0,1),即f(0)=1。
这是因为a^0=1。
三、指数函数的性质与运算1. 指数运算法则:a^x·a^y=a^(x+y)、(a^x)^y=a^(xy)。
2. 指数函数的垂直伸缩与平移:对于函数f(x)=a^x,若k>0,则f(x)的图像上下伸缩,a^x的绝对值增大;若k<0,则f(x)的图像上下伸缩,a^x的绝对值减小。
若c>0,则f(x)的图像平移c个单位向上;若c<0,则f(x)的图像平移|c|个单位向下。
3. 对数与指数函数的互为反函数关系:若f(x)=a^x,则反函数f^(-1)(x)=log_a(x)。
四、指数函数的应用指数函数在实际问题中具有广泛的应用,以下列举几个常见的应用领域:1. 经济增长模型:指数函数可以用来描述经济增长的速度,例如GDP增长率。
2. 生物科学:指数函数可以用来描述细菌、病毒等物种的繁殖速度。
在生物学中,指数增长模型被广泛应用于人口统计、生态学等领域。
3. 物理学中的放射性衰变:放射性物质的衰变过程可以用指数函数模型来描述。
指数函数与对数函数知识点总结
指数函数与对数函数知识点总结一、指数函数的定义与性质1. 定义指数函数是以底数a(a>0且a≠1)为底的函数,一般表示为y=a^x,其中a是底数,x是指数,y是函数值。
2. 性质⑴当a>1时,指数函数是递增函数,图像上开;当0<a<1时,指数函数是递减函数,图像下降。
⑵当x=0时,a^0=1。
⑶当a>1时,随着x的增大,函数值y=a^x也会增大;当0<a<1时,随着x的增大,函数值y=a^x会减小。
3. 图像当底数a>1时,指数函数的图像是递增的曲线,图像上翘;当0<a<1时,指数函数的图像是递减的曲线,图像下降。
4. 应用指数函数在科学计算、生物增长、财经复利、工程技术等领域都有着重要的应用。
例如在计算机科学中,指数函数常用于指数衰减算法、指数增长算法等;在生物学中,指数函数常用于描述生物的增长规律;在金融领域中,指数函数用以描述利息的复利增长等。
二、对数函数的定义与性质1. 定义对数函数是指数函数的逆运算,一般表示为y=log_a(x),其中a是底数,x是真数,y是对数。
2. 性质⑴对数函数的定义域为x>0,值域为实数集。
⑵对数函数的图像是单调递增的曲线,在0处没有定义。
⑶特殊情况下,当底数a=10时,我们称为常用对数函数,一般表示为y=log(x);当底数a=e时,我们称为自然对数函数,一般表示为y=ln(x)。
3. 图像对数函数的图像是单调递增的曲线,图像在x轴的右侧。
4. 应用对数函数在科学计算、信息论、统计学、工程技术等领域都有着广泛应用。
例如在信息论中,对数函数用于计算信息量、信息熵等;在统计学中,对数函数用于描述正态分布、伯努利分布等;在工程技术中,对数函数用于解决指数增长问题、指数衰减问题等。
三、指数函数与对数函数的关系1. 反函数关系指数函数与对数函数是一对反函数,它们的定义域和值域互为对方的值域和定义域。
具体而言,对数函数y=log_a(x)中,x=a^y。
指对幂函数知识点总结
指对幂函数知识点总结在数学的学习中,指对幂函数是非常重要的一部分内容。
下面咱们就来好好梳理一下指对幂函数的相关知识点。
一、指数函数指数函数的一般形式为$y = a^x$($a > 0$ 且$a ≠ 1$),其中$a$ 是底数,$x$ 是指数。
1、定义域指数函数的定义域为$R$,也就是全体实数。
2、值域当$a > 1$ 时,函数的值域为$(0, +\infty)$;当$0 < a <1$ 时,函数的值域同样为$(0, +\infty)$。
3、单调性若$a > 1$,则函数在$R$ 上单调递增;若$0 < a < 1$,则函数在$R$ 上单调递减。
4、图像特点(1)当$a > 1$ 时,指数函数的图像过点$(0,1)$,且从左到右逐渐上升。
(2)当$0 < a < 1$ 时,指数函数的图像过点$(0,1)$,且从左到右逐渐下降。
5、指数运算性质(1)$a^m × a^n = a^{m + n}$(2)$(a^m)^n = a^{mn}$(3)$(ab)^n = a^n b^n$二、对数函数对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$ 且$a ≠ 1$),其中$a$ 是底数,$x$ 是真数。
1、定义域当$a > 1$ 时,定义域为$(0, +\infty)$;当$0 < a <1$ 时,定义域也是$(0, +\infty)$。
2、值域对数函数的值域为$R$。
3、单调性当$a > 1$ 时,函数在$(0, +\infty)$上单调递增;当$0 <a < 1$ 时,函数在$(0, +\infty)$上单调递减。
4、图像特点(1)对数函数的图像都过点$(1,0)$。
(2)当$a > 1$ 时,图像从左到右逐渐上升;当$0 < a <1$ 时,图像从左到右逐渐下降。
5、对数运算性质(1)$\log_a (MN) =\log_a M +\log_a N$(2)$\log_a \frac{M}{N} =\log_a M \log_a N$(3)$\log_a M^n = n \log_a M$6、指对数互化若$a^b = N$,则$\log_a N = b$ 。
指数函数及其性质知识点总结超详细版(共66页)
指数函数及其性质知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换 知识点一 指数函数的概念一般地,函数xa y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R . 1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,xa 无意义;若0<a ,则对于x 的某些值,xa 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义. 2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R . 3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下: (1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)xa 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.例1. 已知函数()()x a a x f ⋅-=32是指数函数,求a 的值. 分析:本题考查指数函数的定义,指数函数的定义有三个特征: (1)指数的位置只有一个自变量,但不是含自变量的多项式; (2)底数是一个大于0且不等于1的常数;(3)x a 的系数必须为1.解:∵函数()()x a a x f ⋅-=32是指数函数∴⎪⎩⎪⎨⎧≠>=-10132a a a ,解之得:2=a . 例2. 已知指数函数()()32--+=a a a y x 的图象过点()4,2,则=a _________.解:由题意可得:()()⎪⎩⎪⎨⎧≠>=--10032a a a a ,解之得:2=a 或3=a .∵函数的图象经过点()4,2 ∴2=a .例3. 若指数函数()x f 的图象经过点()9,2,求()x f 的解析式及()1-f 的值. 解:设函数()x a x f =.∵其图象经过点()9,2,∴2239==a ,∴3=a . ∴()x f 的解析式为()x x f 3=. ∴()31311==--f . 例4. 函数()x a a a y 442+-=是指数函数,则a 的值是【 】 (A )4 (B )1或3 (C )3 (D )1解:由题意可得:⎪⎩⎪⎨⎧≠>=+-101442a a a a ,解之得:3=a .∴x y 3=.选择【 C 】.例5. 若函数()xa y 12-=(x 是自变量)是指数函数,则a 的取值范围是_________.解:∵函数()xa y 12-=是指数函数∴⎩⎨⎧≠->-112012a a ,解之得:21>a 且1≠a .∴a 的取值范围是⎭⎬⎫⎩⎨⎧≠>121a a a 且.例6. 若函数()xa a y 32-=是指数函数,求实数a 的取值范围.解:∵函数()xa a y 32-=是指数函数∴⎩⎨⎧≠->-130322a a a a ,解之得:⎪⎩⎪⎨⎧±≠<>213303a a a 或. ∴实数a 的取值范围是⎭⎬⎫⎩⎨⎧±≠<>213303a a a a 且或.知识点二 指数函数的图象和性质一般地,指数函数xa y =(0>a 且1≠a )的图象和性质如下表所示:指数函数函数值的特点:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数xa y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数xa y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大. (2)由于指数函数xa y =(0>a 且1≠a )的图象经过点⎪⎭⎫⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小. 2. 函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫ ⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称. 如下图所示,指数函数x y 2=与xy ⎪⎭⎫⎝⎛=21的图象关于y 轴对称.(1)指数函数xa y =(0>a 且1≠a )与函数xa y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数xy 2=与函数xy 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数xa y --=(0>a 且1≠a )(即xa y ⎪⎭⎫ ⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数xy --=2(即xy ⎪⎭⎫ ⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数xa y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.例7. 函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点_________. 解:令01=-x ,则1=x ,2513-=-⨯=y .∴函数()531-=-x a x f (1,0≠>a a 且)的图象恒过定点()2,1-.例8. 函数1-=x a y (1,0≠>a a 且)的图象恒过定点P ,则点P 的坐标为【 】 (A )()1,0 (B )()1,1 (C )()1,1- (D )()0,1 解:令01=-x ,则1=x ,10==a y . ∴定点P 的坐标为()1,1.选择【 B 】.例9. 函数1+=x a y (1,0≠>a a 且)的图象恒过的定点坐标为_________. 解:令01=+x ,则1-=x ,10==a y .∴函数1+=x a y (1,0≠>a a 且)的图象恒过定点()1,1-.例10. 函数33+=-x a y (1,0≠>a a 且)的图象过定点_________.解:令03=-x ,则3=x ,43130=+=+=a y .∴函数33+=-x a y (1,0≠>a a 且)的图象过定点()4,3.例11. 如果指数函数()()xa x f 1-=是R 上的减函数,那么a 的取值范围是【 】(A )2<a (B )2>a (C )21<<a (D )10<<a分析 对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数的图象从左到右是下降的,函数为R 上的减函数.解:∵函数()()xa x f 1-=是R 上的减函数∴110<-<a ,解之得:21<<a . ∴a 的取值范围是()2,1.选择【 C 】.例12. 已知集合{}3<=x x A ,{}42>=x x B ,则=B A __________. 分析:指数函数x y 2=为R 上的增函数. 解:42>x ,222>x∵函数x y 2=为R 上的增函数 ∴2>x ,∴{}2>=x x B ∴{}32<<=x x B A .例13. 解不等式22112>⎪⎭⎫ ⎝⎛-x .解:()22121>--x ,2221>-x∵函数x y 2=为R 上的增函数 ∴121>-x ,解之得:0<x . ∴原不等式的解集为()0,∞-. 例14. 不等式422<-xx 的解集为__________.解:2222<-xx∵函数x y 2=为R 上的增函数 ∴22<-x x ,解之得:21<<-x . ∵原不等式的解集为()2,1-.4.指数函数xa y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快;(2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b )的图象特点(1)若1>>b a ,则当0<x 时,总有10<<<xxb a ;当0=x 时,总有1==xxb a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>xxa b ;当0=x 时,总有1==xxb a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有xx b a <.6. 指数函数xa y =(0>a 且1≠a )的图象和性质再说明 指数函数xa y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0.图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交; (2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数xa y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间. (2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.例15. 设0>x ,且x x a b <<1,则【 】(A )10<<<a b (B )10<<<b a (C )a b <<1 (D )b a <<1 解法一:∵0>x ,且x x a b <<1∴指数函数x a y =(0>a 且1≠a )和x b y =(0>b 且1≠b )在y 轴右侧的图象f x () =12(都在直线1=y 的上方,它们的的图象是上升的,∴1>a ,1>b∵在y 轴右侧,指数函数x a y =(0>a 且1≠a )的图象在x b y =(0>b 且1≠b )的图象的上方∴根据第一象限“底大图上”,有b a >. ∴1>>b a .选择【 C 】.解法二:∵x x a b <<1,∴x x a a b b <<00, ∵0>x ,∴1,1>>a b . ∵x x a b <,0>x a ,0>x∴1<⎪⎭⎫⎝⎛=xx x a b a b ,∴10<<a b ,∴b a >.∴1>>b a .例16. 已知实数b a ,满足ba ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121,给出下面的五种关系,则其中可能成立的序号为__________.①b a <<0; ②a b <<0; ③0<<a b ; ④0<<b a ; ⑤0==a b . 分析:采用数形结合的方法解决本题:在同一平面直角坐标系中分别画出指数函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫⎝⎛=31的草图,在画图时要注意y 轴左侧“底小图高”和y 轴右侧“底大图高”,还有指数函数的图象都经过定点()1,0.解:如下图所示,在同一平面直角坐标系中分别画出函数x y ⎪⎭⎫ ⎝⎛=21和xy ⎪⎭⎫ ⎝⎛=31的图象.为便于观察并发现问题,设m ba=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛3121.当0<x 时,有0<<b a ; 当0>x 时,有a b <<0;当0=x 时,有0==b a ,此时1=m . ∴可能成立的序号为②④⑤.例17. 设3132⎪⎭⎫ ⎝⎛=a ,3231⎪⎭⎫ ⎝⎛=b ,3131⎪⎭⎫ ⎝⎛=c ,则c b a ,,的大小关系是【 】 (A )b c a >> (B )c b a >> (C )b a c >> (D )a c b >>分析:(1)对于同底数幂比较大小,则可以利用指数函数的单调性比较.如本题中b 与c 的大小比较;(2)对于非同底数幂比较大小,则要借助于中间量或借助于指数函数的图象比较大小.如本题中a 与c 的大小比较.本题知识储备(1)对于指数函数xa y =(0>a 且1≠a ),当10<<a 时,函数在R 上为减函数,即y 随x 的增大而减小.(2)对于指数函数xa y =(0>a 且1≠a )与xb y =(0>b 且1≠b ),若b a >,则当0<x 时,xxb a <;当0>x 时,xxb a >.解:∵指数函数xy ⎪⎭⎫ ⎝⎛=31在R 上为减函数∴31323131⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛,即b c >. ∵3132>,∴31313132⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛,即c a >. ∴b c a >>,选择【 A 】.另外,也可以这样比较a 与c 的大小:∵12231323132031313131=>=⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=ca ,∴c a >. 例18. 设6.06.0=a ,5.16.0=b ,6.05.1=c ,则c b a ,,的大小关系是__________.解:∵指数函数xxy ⎪⎭⎫⎝⎛==536.0在R 上为减函数∴6.05.16.06.0<,即a b <. ∵16.06.006.0=<,15.15.106.0=>∴6.06.05.16.0<,即c a <. ∴c a b <<.另外,根据: 对于指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b ),若b a >,则当0<x 时,x x b a <;当0>x 时,xx b a >.可直接得到c a <.例19. 设9.014=y ,61.028=y ,5.1321-⎪⎭⎫⎝⎛=y ,则【 】(A )321y y y >> (B )312y y y >> (C )231y y y >> (D )123y y y >>分析:三个幂是不同底数的幂,但每个幂根据底数与2的关系都可以化为以2为底的幂,最后借助于指数函数的单调性即可得到三者之间的大小关系. 解:∵9.014=y ,61.028=y ,5.1321-⎪⎭⎫ ⎝⎛=y∴()8.19.02122==y ,()83.161.03222==y ,()5.15.11322==--y .∵指数函数x y 2=在R 上为增函数∴83.18.15.1222<<,即61.09.05.18421<<⎪⎭⎫⎝⎛-∴312y y y >>.选择【 B 】.例20. 设1212121<⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<ab ,那么【 】(A )a b a b a a << (B )b a a a b a << (C )a a b b a a << (D )a a b a b a <<解:∵1212121<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<a b ,∴0121212121⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a b . ∵指数函数xy ⎪⎭⎫ ⎝⎛=21为R 上的减函数∴10<<<b a .在同一平面直角坐标系中分别画出函数x a y =与x b y =的图象如下页图所示.x x由图象可得:a a b b a a <<.选择【 C 】.知识点三 指数函数的定义域和值域 1 定义域(1)指数函数xa y =(0>a 且1≠a )的定义域为R . (2)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(3)函数()xa f y =的定义域与函数()x f 的定义域不一定相同.例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R .注意:求指数型复合函数的定义域时,先观察函数是()xa f y =型还是()x f ay =型.例21. 函数()3121++-=x x f x 的定义域为【 】(A )(]0,3- (B )(]1,3-(C )()(]0,33,--∞- (D )()(]1,33,--∞-解:由题意可得:⎩⎨⎧>+≥-03021x x,解之得:x <-3≤0.∴函数()x f 的定义域为(]0,3-.选择【 A 】. 例22. 求下列函数的定义域:(1)xy ⎪⎭⎫⎝⎛-=211; (2)153-=x y .解:由题意可知:x⎪⎭⎫ ⎝⎛-211≥0,∴x⎪⎭⎫ ⎝⎛21≤1021⎪⎭⎫ ⎝⎛=,∴x ≥0.∴该函数的定义域为[)+∞,0;(2)由题意可知:15-x ≥0,解之得:x ≥51.∴该函数的定义域为⎪⎭⎫⎢⎣⎡+∞,51.例23. 函数()2311-⎪⎭⎫ ⎝⎛-=x x f x的定义域为__________. 解:由题意可得:⎪⎩⎪⎨⎧≠-≥⎪⎭⎫⎝⎛-020311x x,解之得:x ≥0且2≠x .∴函数()x f 的定义域为[)()+∞,22,0 . 例24. 求函数()423212-⨯-=xxx f 的定义域.解:由题意可得:042322>-⨯-x x∴()()04212>-+x x ,解之得:12-<x (舍去),42>x . ∵函数x y 2=为R 上的增函数,2242=>x ,∴2>x . ∴函数()x f 的定义域为()+∞,2.2 值域(1)指数函数xa y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()xa f y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.例25. 求函数1241--=+x x y 的值域. 解:()122212421-⨯-=--=+x x x x y .设x t 2=,则0>t ,∴()211222--=--=t t t y .∵()+∞∈,0t∴()21min -==f y ,无最大值.∴函数1241--=+x x y 的值域为[)+∞-,2. 例26. 求函数1241-+=+x x y 的值域. 解:()122212421-⨯+=-+=+x x x x y .设x t 2=,则0>t ,∴()211222-+=-+=t t t y .∴函数在()+∞∈,0t 上为增函数 ∴函数1241-+=+x x y 的值域为()+∞-,1. 注意例25和例26的区别.例27. 已知函数()1-=x a x f (x ≥0)的图象经过点⎪⎭⎫⎝⎛21,2,其中0>a ,且1≠a .(1)求a 的值;(2)求函数()x f 的值域.分析:求指数函数x a y =(0>a 且1≠a )的解析式,只需要其图象上一个点的坐标即可.解:(1)把⎪⎭⎫⎝⎛21,2代入()1-=x a x f 得:21=a ;(2)由(1)知()121-⎪⎭⎫⎝⎛=x x f ,为R 上的减函数∵x ≥0,∴1-x ≥1-,∴()x f <0≤2211=⎪⎭⎫⎝⎛-.∴函数()x f 的值域为(]2,0.注意:指数函数x a y =(0>a 且1≠a )的图象位于x 轴的上方,并且在一个方向上无限接近于x 轴,函数的值域为()+∞,0.本题易错结果为(]2,∞-.总结 求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f ay =的值域.例28. 若函数()1-=x a x f (0>a 且1≠a )的定义域和值域都是[]2,0,求实数a 的值.分析:指数函数的单调性与底数和1的大小关系有关,若关系不明确,必要时要进行分类讨论. 解:由题意可知:当10<<a 时,函数()1-=x a x f 在[]2,0上为减函数∴⎩⎨⎧=-=-012120a a ,显然无解; 当1>a 时,函数()1-=x a x f 在[]2,0上为增函数∴⎩⎨⎧=-=-210120a a ,解之得:3=a (3-=a 舍去). 综上所述,实数a 的值为3. 例29. 求下列函数的定义域和值域: (1)412-=x y ; (2)32221--⎪⎭⎫⎝⎛=x x y .本题知识点储备 (1)函数()x f ay =(0>a 且1≠a )的定义域与函数()x f 的定义域相同.(2)求形如()x f ay =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数ta y =的单调性,即可求出函数()x f ay =的值域.解:(1)由题意可得:04≠-x ,解之得:4≠x . ∴函数412-=x y 的定义域为()()+∞∞-,44, .∵041≠-x ,∴122041=≠=-x y ,且0>y . ∴函数412-=x y 的值域为{}10≠>y y y 且;(2)函数32221--⎪⎭⎫⎝⎛=x x y 的定义域为R .∵()413222--=--x x x ≥4-∴32221--⎪⎭⎫ ⎝⎛x x ≤16214=⎪⎭⎫ ⎝⎛-,且021322>⎪⎭⎫ ⎝⎛--x x .∴函数32221--⎪⎭⎫⎝⎛=x x y 的值域为(]16,0.例30. 求下列函数的定义域和值域:(1)xy -⎪⎭⎫⎝⎛=32; (2)222x x y -=.解:(1)函数xy -⎪⎭⎫⎝⎛=32的定义域为R .∵x ≥0,∴x -≤0. ∴1320min=⎪⎭⎫⎝⎛=y ∴函数xy -⎪⎭⎫⎝⎛=32的值域为[)+∞,1;(2)函数222x x y -=的定义域为R . ∵()11222+--=-x x x ≤1∴()2211max ===f y ,且0>y . ∴函数222x x y -=的值域为(]2,0.例31. 如果函数122-+=x x a a y (0>a 且1≠a )在[]1,1-上有最大值,且最大值为14,试求a 的值.分析:这是求()x a f y =型函数的定义域和值域.求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:()121222-+=-+=x x x x a a a a y .设x a t =,则0>t ,∴()211222-+=-+=t t t y .当1>a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t ,1.∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t ,1上为增函数∴()14122max =-+==a a a f y ,解之得:3=a (5-=a 不符合题意,舍去);当10<<a 时,∵[]1,1-∈x ,∴⎥⎦⎤⎢⎣⎡∈a a t 1,∵函数()212-+=t y 在⎥⎦⎤⎢⎣⎡∈a a t 1,上为增函数∴1412112max =-+=⎪⎭⎫ ⎝⎛=a a a f y ,解之得:31=a (51-=a 不符合题意,舍去).综上所述,3=a 或31=a . 例32. 求函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xxy 的值域.解:12121121412+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=xxxxy 设xt ⎪⎭⎫ ⎝⎛=21,则0>t ,∴4321122+⎪⎭⎫ ⎝⎛+=++=t t t y . ∴函数43212+⎪⎭⎫ ⎝⎛+=t y 在()+∞∈,0t 上为增函数.取0=t ,得1=y .∴函数12141+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=xx y 的值域为()+∞,1.例33. 已知[]3,2-∈x ,求函数()12141+-=x x x f 的最值. 解:()1212112141121412+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-=xxxxx x x f .设xt ⎪⎭⎫ ⎝⎛=21,∵[]3,2-∈x ,∴⎥⎦⎤⎢⎣⎡∈4,81t .∴4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵⎥⎦⎤⎢⎣⎡∈4,81t∴()134,4321max min ===⎪⎭⎫ ⎝⎛=f y f y .例34. 若122+x ≤241-⎪⎭⎫ ⎝⎛x ,则函数x y 2=的值域是_________.解:∵122+x ≤241-⎪⎭⎫ ⎝⎛x ,∴122+x≤()x x 242222---=.∵函数x y 2=在R 上为增函数∴12+x ≤x 24-,解之得:3-≤x ≤1,即[]1,3-∈x .∴函数x y 2=在[]1,3-上的值域为⎥⎦⎤⎢⎣⎡2,81.例35. ()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2解法一:()13331331+⋅=+=+x xx x x f 设x t 3=,则()+∞∈,0t ,()()133131313+-+=+-+=+=t t t t t t f . ∵()+∞∈,0t ,∴0133<+-<-t ,∴31330<+-+<t .∴()30<<t f ,即函数()1331+=+x x x f 的值域为()3,0.选择【 B 】.解法二:()xxx xx x x f ⎪⎭⎫ ⎝⎛+=+=+⋅=+=+3113311313331331. ∵031>⎪⎭⎫ ⎝⎛x ,∴1311>⎪⎭⎫ ⎝⎛+x,∴331130<⎪⎭⎫ ⎝⎛+<x,∴()()3,0∈x f .例36. 已知定义在R 上的偶函数()x f 满足:当x ≥0时,()x x a x f 22+=,()251=f . (1)求实数a 的值;(2)用定义法证明()x f 在()+∞,0上是增函数; (3)求函数()x f 在[]2,1-上的值域. 解:(1)∵当x ≥0时,()x x a x f 22+=,()251=f ∴2522=+a ,解之得:1=a ; (2)证明:由(1)可知:()xx x f 212+=. 任取()+∞∈,0,21x x ,且21x x <,则()()()()()212121212122112122221212221221221x x x x x x x x x x x x x x x f x f ++--=⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫ ⎝⎛+-+=-∵()+∞∈,0,21x x ,且21x x < ∴02,012,022212121>>-<-++x x x x x x ∴()()()()2121,0x f x f x f x f <<-. ∴()x f 在()+∞,0上是增函数;(3)∵函数()x f 为偶函数,且在[)+∞,0上为增函数 ∴()x f 在(]0,∞-上为减函数 ∴()()20min ==f x f .∵()252211=+=-f ,()4174142=+=f ,25417> ∴在区间[]2,1-上()()4172max ==f x f .∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.利用单调性法求最值的结论(1)如果函数()x f y =在区间[]b a ,上单调递增,在区间[]c b ,上单调递减,那么函数()x f y =在区间[]c a ,上有最大值)()(max b f x f =.如下页图所示;(2)如果函数()x f y =在区间[]b a ,上单调递减,在区间[]c b ,上单调递增,那么函数()x f y =在区间[]c a ,上有最小值)()(min b f x f =.如下图所示.f x ()max = f b ()f x ()min = f b ()第(3)问另解:∵函数()x f 为定义在R 上的偶函数 ∴()x f 在区间[]0,1-和[]1,0上的值域相同 ∴()x f 在[]2,1-上的值域即在[]2,0上的值域. ∵()x f 在[)+∞,0上为增函数 ∴()x f 在[]2,0上为增函数∴()()20min ==f x f ,()()4172max ==f x f . ∴函数()x f 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡417,2.例37. 设函数()axx f -⎪⎭⎫⎝⎛=1021,a 是不为零的常数.(1)若()213=f ,求使()x f ≥4的x 的取值范围; (2)当[]2,1-∈x 时,()x f 的最大值是16,求a 的值.解:(1)∵()axx f -⎪⎭⎫⎝⎛=1021,()213=f ∴2121310=⎪⎭⎫ ⎝⎛-a,∴1310=-a ,解之得:3=a . ∴()()103310122---==x xx f .∵()x f ≥4,∴1032-x ≥22,∴103-x ≥2,解之得:x ≥4. ∴使()x f ≥4的x 的取值范围是[)+∞,4;(2)()()10101102221----==⎪⎭⎫⎝⎛=ax axaxx f .当0>a 时,()x f 在[]2,1-上为增函数∴()()4102max 21622====-a f x f ,∴4102=-a ,解之得:7=a ; 当0<a 时,()x f 在[]2,1-上为减函数∴()()410max 21621===-=--a f x f ,∴410=--a ,解之得:14-=a . 综上所述,7=a 或14-=a .例38. 已知函数()ax a x f -=3(0>a 且1≠a ). (1)当2=a 时,()4<x f ,求x 的取值范围;(2)若()x f 在[]1,0上的最小值大于1,求a 的取值范围. 解:(1)当2=a 时,()x ax a x f 2332--==.∵()4<x f ,∴223242=<-x ,∴223<-x ,解之得:21>x . ∴x 的取值范围是⎪⎭⎫⎝⎛+∞,21;(2)∵0>a 且1≠a∴函数ax y -=3在[]1,0上为减函数. 当1>a 时,()x f 在[]1,0上为减函数∴()()03min 11a a f x f a =>==-,∴03>-a ,解之得:3<a . ∴31<<a ;当10<<a 时,()x f 在[]1,0上为增函数 ∴()()103min >==a f x f ,显然不成立. 综上所述,a 的取值范围是()3,1.例39. 已知函数()1+=-a x a x f 的图象(0>a 且1≠a )过点⎪⎭⎫⎝⎛2,21.(1)求实数a 的值;(2)若函数()121-⎪⎭⎫ ⎝⎛+=x f x g ,求函数()x g 的解析式;(3)在(2)的条件下,若函数()()()12--=x mg x g x F ,求()x F 在[]0,1-∈x 上的最小值()m h .本题知识储备 求形如()xaf y =的函数的值域时,转化为求()+∞∈=,0xat 时,函数()t f y =的值域.解:(1)∵函数()1+=-a x a x f 的图象过点⎪⎭⎫⎝⎛2,21∴2121=+-a a,解之得:21=a . ∴实数a 的值为21; (2)由(1)知:()12121+⎪⎭⎫⎝⎛=-x x f∵()121-⎪⎭⎫ ⎝⎛+=x f x g∴()xx x g ⎪⎭⎫⎝⎛=-+⎪⎭⎫⎝⎛=-+2111212121;(3)∵()()()12--=x mg x g x F∴()xx x x m m x F ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-212212121212. 设xt ⎪⎭⎫⎝⎛=21,∵[]0,1-∈x ,∴[]2,1∈t∴()()2222m m t mt t t F --=-=,[]2,1∈t .①当2>m 时,()t F 在[]2,1∈t 上为减函数∴()()()442222min +-=--==m m m F t F ,∴()44+-=m m h ;②当1≤m ≤2时,()()2min m m F t F -==,∴()2m m h -=; ③当1<m 时,()t F 在[]2,1∈t 上为增函数∴()()()121122+-=--==m m m F t F ,∴()12+-=m m h .综上所述,()⎪⎩⎪⎨⎧<+-≤≤->+-=1,1221,2,442m m m m m m m h .例40. 已知函数()x a x f =,()m a x g x +=2,其中1,0,0≠>>a a m 且.当[]1,1-∈x 时,()x f y =的最大值与最小值之和为25. (1)求a 的值;(2)若1>a ,记函数()()()x mf x g x h 2-=,求当[]1,0∈x 时,()x h 的最小值()m H . 分析:(1)指数函数()x a x f =(10≠>a a 且)在其定义域内为单调函数,所以指数函数在给定闭区间上的最值在区间的端点处取得,故本问不用进行分类讨论. 解:(1)∵函数()x a x f =(10≠>a a 且)在[]1,1-上为单调函数 ∴由题意可知:()()2511=-+f f . ∴251=+a a ,解之得:2,2121==a a . ∴a 的值为21或2;(2)∵1>a ,∴2=a ,∴()()m x g x f x x +==22,2. ∵()()()x mf x g x h 2-=∴()()m m m m x h x x x x +⋅-=⋅-+=22222222.设x t 2=,∵[]1,0∈x ,∴∈t []2,1 ∴()()m m m t m mt t t h +--=+-=2222①当2>m 时,()t h 在[]2,1上为减函数 ∴()()432min +-==m h t h ,即()43+-=m m H ;②当1≤m ≤2时,()()m m m h t h +-==2min ,即()m m m H +-=2; ③当1<m 时,()t h 在[]2,1上为增函数 ∴()()11min +-==m h t h ,即()1+-=m m H .综上所述,()⎪⎩⎪⎨⎧<+-≤≤+->+-=1,121,2,432m m m m m m m m H .例41. 已知函数()1242--⋅=x x a x f . (1)当1=a 时,解不等式()0>x f ; (2)当21=a ,∈x []2,0时,求()x f 的值域. 解:(1)当1=a 时,()()122212422--=--⋅=x x x x x f . 设x t 2=,则0>t ,()122--=t t t f .∵()0>x f ,∴0122>--t t ,解之得:1>t 或21-<t .∵0>t∴1>t ,∴0212=>x ,∴0>x . ∴不等式()0>x f 的解集为()+∞,0; (2)当21=a 时,()()1221242--=--=x x x x x f . 设xt 2=,∵∈x []2,0,∴∈t []4,1,()4521122-⎪⎭⎫ ⎝⎛-=--=t t t t f∵()t f 在[]4,1上为增函数∴()()()()114,11max min ==-==f t f f t f .∴函数()t f 的值域为[]11,1-,即函数()x f 在∈x []2,0上的值域为[]11,1-. 例42. 已知函数()x x b a x f +=(其中b a ,为常数,10,10≠>≠>b b a a 且且)的图象经过点()6,1A ,⎪⎭⎫ ⎝⎛-43,1B .(1)求函数()x f 的解析式;(2)若b a >,函数()211+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=xx b a x g ,求函数()x g 在[]2,1-上的值域.解:(1)把()6,1A ,⎪⎭⎫ ⎝⎛-43,1B 分别代入()x x b a x f +=得:⎪⎩⎪⎨⎧=+=+43116b a b a ,解之得:⎩⎨⎧==42b a 或⎩⎨⎧==24b a . ∴函数()x f 的解析式为()x x x f 42+=; (2)若b a >,则2,4==b a∴()22141211+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=xx x x b a x g设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,1-,∴∈t ⎥⎦⎤⎢⎣⎡2,41,()4721222+⎪⎭⎫ ⎝⎛-=+-=t t t t g . ∴()4721min =⎪⎭⎫ ⎝⎛=g t g ,()()42max ==g t g .∴()t g 在⎥⎦⎤⎢⎣⎡2,41上的值域为⎥⎦⎤⎢⎣⎡4,47,即函数()x g 在[]2,1-上的值域为⎥⎦⎤⎢⎣⎡4,47.说明:方程组⎪⎩⎪⎨⎧=+=+43116b a b a 可以这样求解:∵⎪⎩⎪⎨⎧=+=+43116b a b a ,∴⎩⎨⎧==+86ab b a .∴b a ,是方程0862=+-x x 的两个实数根(方程思想).解之得:4,221==x x ,∴⎩⎨⎧==42b a 或⎩⎨⎧==24b a .例43. 函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xxy ,∈x []2,2-的值域是__________.解:设xt ⎪⎭⎫ ⎝⎛=21,∵∈x []2,2-,∴∈t ⎥⎦⎤⎢⎣⎡4,41,41232322-⎪⎭⎫ ⎝⎛-=+-=t t t y . ∴()64,4123max min ==-=⎪⎭⎫⎝⎛=f y f y∴函数41232-⎪⎭⎫ ⎝⎛-=t y 在∈t ⎥⎦⎤⎢⎣⎡4,41上的值域为⎥⎦⎤⎢⎣⎡-6,41.∴函数221341+⎪⎭⎫ ⎝⎛⨯-⎪⎭⎫ ⎝⎛=xx y ,∈x []2,2-的值域是⎥⎦⎤⎢⎣⎡-6,41. 例44. 已知函数()ax xx f ++-=223(∈a R ).(1)若()271=f ,求a 的值; (2)若()x f 有最大值9,求a 的值. 解:(1)∵()271=f∴3213273==++-a ,∴31=+a ,解之得:2=a ; (2)设()()11222++--=++-=a x a x x x g∴()()11max +==a g x g∴()()21max 3933max ====+a x g x f ,∴21=+a ,解之得:1=a .例45. 若函数()m x f x -=-3的最大值为2,则实数m 的值为【 】 (A )1- (B )2- (C )3- (D )4- 解:设()x x g -=3,则()x g <0≤130=,即函数()x g 的最大值为1. ∵函数()m x f x -=-3的最大值为2 ∴()2max =-m x g ,∴21=-m 解之得:1-=m .选择【 A 】.例46. 例45的第三种解法 以下几例为求()x a f y =型函数的值域()1331+=+x x x f 的值域是【 】(A )()+∞,3 (B )()3,0 (C )()2,0 (D )()+∞,2 解:设x t 3=,则0>t ,()13+==t t t f y . ∴03>-=yyt ,解之得:30<<y .选择【 B 】.例47. 函数x y --=328(x ≥0)的值域为__________.不等分析法和单调性法解:∵x ≥0,∴x -≤0,∴x -3≤3 ∴x -<320≤823=,∴8-≤023<--x .∴0≤8283<--x ,0≤8<y ,即函数x y --=328(x ≥0)的值域为[)8,0.注意: 不要漏掉023>-x这一范围.例48. 函数x y 416-=的值域是__________.解:由题意可知:x 40<≤16,∴16-≤04<-x ,∴0≤16416<-x . ∴0≤4416<-x ,0≤4<y . ∴函数x y 416-=的值域是[)4,0. 例49. 函数()xxx f 242-=的定义域是__________,值域是__________. 解:由题意可知:0242>-xx,∴024>-x ,解之得:2<x . ∴函数()x f 的定义域是()2,∞-.设x t 2=,则40<<t (2<x ),()tt t t g -+-=-=4414. ∵40<<t ,∴04<-<-t ,∴440<-<t ,∴144>-t(可结合图象)∴0441>-+-t ,()0>t g ,∴()0>x f∴函数()x f 的值域为()+∞,0. 例50. 函数xx y +-=112的值域为__________.解:()xxx xx y ++-+++-+-===12112111222∵012≠+x ,∴1121-≠++-x ,∴21221121=≠-++-x ,即21≠y . ∵0>y ,∴该函数的值域为⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛,2121,0 .例51. 函数()xx xx x f --+-=10101010的值域是【 】(A )(][)+∞-∞-,11, (B )()()+∞-∞-,11, (C )[]1,1- (D )()1,1-解:()11021110211011011010110101101010101022222+-=+-+=+-=+-=+-=--x x x x x xx x x x x xxx f . ∵0102>x ,∴11102>+x ,∴2110202<+<x ,∴0110222<+-<-x∴11102112<+-<-x ,即()11<<-x f .∴函数()xx xx x f --+-=10101010的值域是()1,1-.选择【 D 】. 解法二:()11011010110101101010101022+-=+-=+-=--x x xxx x x x x x x f 设t x =210,则0>t ,11+-=t t y∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴函数()x f 的值域为()1,1-. 例52. 求下列函数的值域:(1)11+-=x x a a y (0>a ,且1≠a );(2)124+-=x x y .解:(1)12112111+-=+-+=+-=xx x x x a a a a a y . ∵0>x a ,∴11>+x a ,∴2120<+<x a ,∴0122<+-<-x a ∴11211<+-<-x a ,即11<<-y . ∴该函数的值域为()1,1-.解法二:设x a t =,则0>t ,11+-=t t y ∴011>---=y y t ,∴011<-+y y ,解之得:11<<-y . ∴该函数的值域为()1,1-. (2)()1221242+-=+-=x x x x y设xt 2=,则0>t ,4321122+⎪⎭⎫ ⎝⎛-=+-=t t t y∵()+∞∈,0t ,∴4321min =⎪⎭⎫ ⎝⎛=f y .∴函数124+-=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43.例53. 已知函数()b a x f x +=(10≠>a a 且)的定义域和值域都是[]0,1-,则=+b a _________.解:当10<<a 时,函数()x f 在[]0,1-上为减函数∴()()⎩⎨⎧-==-1001f f ,即⎪⎩⎪⎨⎧-=+=+1101b b a ,解之得:⎪⎩⎪⎨⎧-==221b a .∴=+b a 23-; 当1>a 时,函数()x f 在[]0,1-上为增函数∴()()⎩⎨⎧=-=-0011f f ,即⎪⎩⎪⎨⎧=+-=+0111b b a ,显然方程组无解.综上所述,=+b a 23-. 例54. 函数124--=x y 的值域为【 】 (A )[)+∞,1 (B )()1,1- (C )()+∞-,1 (D )[)1,1-解:由题意可知:x 20<≤4,∴4-≤02<-x ,∴0≤424<-x ∴0≤224<-x ,∴1-≤1124<--x ,即1-≤1<y . ∴函数124--=x y 的值域为[)1,1-,选择【 D 】. 例55. 已知函数()13-=-x x f ,则()x f 的【 】 (A )定义域是()+∞,0,值域是R (B )定义域是R ,值域是()+∞,0 (C )定义域是R ,值域是()+∞-,1 (D )定义域、值域都是R 解:函数()13-=-x x f 的定义域为R . ∵03>-x ,∴13->-x ,即()1->x f∴函数()13-=-x x f 的值域为()+∞-,1.选择【 C 】. 例56. 下列各函数中,值域为()+∞,0的是【 】 (A )22x y -= (B )x y 21-= (C )12++=x x y (D )113+=x y解:(A )函数22x y -=的定义域为R ,值域为()+∞,0,故(A )正确; (B )∵x 20<≤1,∴1-≤02<-x ,∴0≤121<-x ,∴0≤121<-x . ∴函数x y 21-=的值域为[)1,0;(C )∵4321122+⎪⎭⎫ ⎝⎛+=++=x x x y ≥43 ∴函数12++=x x y 的值域为⎪⎭⎫⎢⎣⎡+∞,43;(D )对于函数113+=x y ,因为011≠+x ,所以130=≠y ,且0>y ,故该函数的值域为()()+∞,11,0 .例57. 关于x 的方程0131=--⎪⎭⎫⎝⎛a x有解,则a 的取值范围是__________.解:∵0131=--⎪⎭⎫ ⎝⎛a x,∴131+=⎪⎭⎫ ⎝⎛a x∵x ≥0,∴x⎪⎭⎫ ⎝⎛<310≤1∵方程0131=--⎪⎭⎫⎝⎛a x有解∴10+<a ≤1,解之得:a <-1≤0. ∴a 的取值范围是(]0,1-.例58. 关于x 的方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根,则实数a 的取值范围是_________. 分析:该方程有正实数根指的是0>x .解:∵方程a a x-+=⎪⎭⎫ ⎝⎛52353有正实数根 ∴0>x ,∴1535300=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<x,∴15230<-+<a a . 解之得:4332<<-a ,即实数a 的取值范围是⎪⎭⎫⎝⎛-43,32. 例59. 已知方程013329=-+⋅-k x x 有两个实数解,求实数k 的取值范围. 分析:设x t 3=,则0>t ,方程可转化为关于t 的一元二次方程,且方程有两个正实数根.结论 一元二次方程()002≠=++a c bx ax 有两个正实数根的条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 解:设x t 3=,则0>t ,∵013329=-+⋅-k x x ,∴01322=-+-k t t由题意可知:方程01322=-+-k t t 有两个正实数根∴()()⎪⎩⎪⎨⎧>-=⋅>=+≥---013020134221212k t t t t k ,解之得:k <31≤32.∴实数k 的取值范围是⎥⎦⎤⎝⎛32,31.例60. 已知函数122-+=x x a a y (0>a 且1≠a ),当x ≥0时,求该函数的值域. 解:设x a t =,则0>t ,()211222-+=-+=t t t y .当1>a 时,∵x ≥0,∴t ≥1∵函数()212-+=t y 在[)+∞,1上为增函数∴()21min ==f y ,∴函数的值域为[)+∞,2; 当10<<a 时,∵x ≥0,∴t <0≤1∴()y f <0≤()1f ,∴y <-1≤2,即函数的值域为(]2,1-.综上所述,当1>a 时,函数的值域为[)+∞,2;当10<<a 时,函数的值域为(]2,1-.知识点四 指数函数的单调性及其应用 1 单调性当1>a 时,函数xa y =在R 上为增函数;当10<<a 时,函数xa y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:注意 讨论形如()x f ay =的函数的单调性,首先要确定函数()x f 的单调性,然后结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减.2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较;类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高;类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小.(2)应用于解简单不等式 不等式可化为()()x g x f a a<的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.例61. 求函数x y -=2的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数 ∴函数x y -=2在(]0,∞-上为增函数,在[)+∞,0上为减函数.例62. 求函数xy -⎪⎭⎫⎝⎛=21的单调性.解:设x t -=,则函数t 在(]0,∞-上为增函数,在[)+∞,0上为减函数∴函数xy -⎪⎭⎫⎝⎛=21在(]0,∞-上为减函数,在[)+∞,0上为增函数.例63. 函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间是【 】(A )[)+∞-,1 (B )(]1,-∞- (C )[)+∞,1 (D )(]1,∞-解:设()11222+--=+-=x x x t ,则函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数∵指数函数ty ⎪⎭⎫⎝⎛=21在R 上为减函数∴函数xx y 2221+-⎪⎭⎫⎝⎛=的单调递增区间为[)+∞,1.选择【 C 】.例64. 求函数()2222++-=x xx f 的单调区间.解:设()312222+--=++-=x x x t ,则()t y x f 2==.∵函数t 在(]1,∞-上为增函数,在[)+∞,1上为减函数,函数t y 2=在R 上为增函数 ∴函数()x f 的单调递增区间为(]1,∞-,单调递减区间为[)+∞,1. 例65. 求函数32212+-=+x x y 的单调区间. 解:()3222322212+⋅-=+-=+x x x x y设x t 2=,则0>t ,且函数x t 2=在R 上为增函数 ∴()213222+-=+-=t t t y∴函数()212+-=t y 在∈t (]1,0上为减函数,此时(]0,∞-∈x ;在[)+∞∈,1t 上为增函数,此时[)+∞∈,0x .∴函数32212+-=+x x y 的单调递增区间为[)+∞,0,单调递减区间为(]0,∞-.例66. 求函数1121+-⎪⎭⎫⎝⎛=x x y 的单调区间.解:设12112111+-=+-+=+-=x x x x x t ,()()+∞--∞-∈,11, x ,则ty ⎪⎭⎫⎝⎛=21,且1≠t .∵函数121+-=x t 在()1,-∞-和()+∞-,1上均为增函数 函数ty ⎪⎭⎫⎝⎛=21在()()+∞∞-∈,11, t 上为减函数∴函数1121+-⎪⎭⎫⎝⎛=x x y 的单调递减区间为()1,-∞-和()+∞-,1,无单调递增区间.1例67. 函数()()32212---=x x x f 的单调增区间为__________.解:∵221<<,∴1120<-< ∴函数()()32212---=x x x f 的单调增区间即函数322--=x x t 的单调减区间.∵()413222--=--=x x x t∴函数t 的单调减区间为(]1,∞- ∴函数()()32212---=x x x f 的单调增区间为(]1,∞-.例68. 若函数axxy +-=22在()1,∞-内单调递增,则a 的取值范围是__________.解:设42222a a x ax x t +⎪⎭⎫ ⎝⎛--=+-=∵函数axxy +-=22在()1,∞-内单调递增∴函数4222a a x t +⎪⎭⎫ ⎝⎛--=在()1,∞-内单调递增∴2a≥1,解之得:a ≥2,即a 的取值范围是[)+∞,2. 例69. 若函数12-=x y 在(]m ,∞-上单调递减,则m 的取值范围是__________. 解法一:设x t 2=,则0>t ,1-=t y . ∵函数1-=t y 在(]1,0∈t 上为减函数 ∴x 20<≤021=,解之得:x ≤0.∴函数12-=x y 在(]0,∞-∈x 上为减函数. ∵函数12-=x y 在(]m ,∞-上单调递减 ∴m ≤0,即m 的取值范围是(]0,∞-. 解法二:函数12-=x y 的图象大致如图所示. 由图象可知:函数12-=x y 的单调递减区间 为(]0,∞-,所以(]0,∞-∈m .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·sr raa += ),,0(R s r a ∈>;(2)rss r a a =)( ),,0(R s r a ∈>; (3)sr r a a ab =)( ),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;指数函数·例题解析【例1】求下列函数的定义域与值域:解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,练习:(1)412-=x y ; (2)||2()3x y =; (3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b解 选(c),在x 轴上任取一点(x ,0), 则得b <a <1<d <c . 练习:指数函数① ②满足不等式,则它们的图象是( ).【例3】比较大小: (3)解 (3)借助数,利用指数函数的单调性,,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得 ∴说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与,即为,如例2中的(3).练习: (1)1.72.5与 1.73( 2 )0.10.8-与0.20.8- ( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例5】作出下列函数的图像:(3)y =2|x-1| (4)y =|1-3x |解 (2)y =2x -2的图像(如图2.6-5)是把函数y =2x 的图像向下平移2个单位得到的.解 (3)利用翻折变换,先作y =2|x|的图像,再把y =2|x|的图像向右平移1个单位,就得y =2|x-1|的图像(如图2.6-6).解 (4)作函数y =3x 的图像关于x 轴的对称图像得y =-3x 的图像,再把y =-3x 的图像向上平移1个单位,保留其在x 轴及x 轴上方部分不变,把x 轴下方的图像以x 轴为对称轴翻折到x 轴上方而得到.(如图2.6-7)【例8】已知=>f(x)(a 1)a a x x -+11(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数.解 (1)定义域是R . ∴函数f(x)为奇函数. 即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)单元测试题一、选择题:(本题共12小题,每小题5分,共60分)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且bba a -+=则b b a a --的值等于( )A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、1(1)2x + B 、14x + C 、2x D 、2x - 6、下列2()(1)x xf x a a -=+g 是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数 9、函数121x y =-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞U C 、()1,-+∞ D 、()(,1)0,-∞-+∞U 10、已知01,1a b <<<-,则函数xy a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 11、2()1()(0)21xF x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]na b - D 、(1%)na b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上)13、若103,104xy==,则10x y-= 。
14、函数22811(31)3x x y x --+⎛⎫=- ⎪⎝⎭≤≤的值域是 。
15、函数2233x y -=的单调递减区间是 。
16、若21(5)2x f x -=-,则(125)f = 。
三、解答题:(本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17、设01a <<,解关于x 的不等式22232223x x xx a a -++->。
18、已知[]3,2x ∈-,求11()142x xf x =-+的最小值与最大值。
19、设a R ∈,22()()21x x a a f x x R ⋅+-=∈+,试确定a 的值,使()f x 为奇函数。
20、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间及值域。
21、若函数4323xxy =-+g 的值域为[]1,7,试确定x 的取值范围。
22、已知函数1()(1)1x xa f x a a -=>+ (1)判断函数的奇偶性; (2)求该函数的值域;(3)证明()f x 是R 上的增函数。
指数与指数函数同步练习参考答案一、二、13、414、991,33⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,令222812(2)9U x x x =--+=-++,∵ 31,99x U -∴-≤≤≤≤,又∵13U y ⎛⎫= ⎪⎝⎭为减函数,∴99133y ⎛⎫⎪⎝⎭≤≤。
15、()0,+∞,令23,23U y U x ==-, ∵3Uy =为增函数,∴2233x y -=的单调递减区间为()0,+∞。
16、 0,3221(125)(5)(5)220f f f ⨯-===-=三、17、∵01a <<,∴ xy a =在(),-∞+∞上为减函数,∵ 22232223x x x x aa-++->, ∴222322231x x x x x -+<+-⇒>18、221113()142122124224x x x x x x x f x -----⎛⎫=-+=-+=-+=-+ ⎪⎝⎭,∵[]3,2x ∈-, ∴1284x -≤≤. 则当122x-=,即1x =时,()f x 有最小值43;当28x-=,即3x =-时,()f x 有最大值57。
19、要使()f x 为奇函数,∵ x R ∈,∴需()()0f x f x +-=,∴1222(),()212121x x x x f x a f x a a +-=--=-=-+++,由12202121x xx a a +-+-=++,得2(21)2021x x a +-=+,1a ∴=。
20、令13Uy ⎛⎫= ⎪⎝⎭,225U x x =++,则y 是关于U 的减函数,而U 是(),1-∞-上的减函数,()1,-+∞上的增函数,∴22513x x y ++⎛⎫= ⎪⎝⎭在(),1-∞-上是增函数,而在()1,-+∞上是减函数,又∵2225(1)44U x x x =++=++≥, ∴22513x x y ++⎛⎫= ⎪⎝⎭的值域为410,3⎛⎤⎛⎫ ⎥ ⎪ ⎝⎭⎥⎝⎦。
21、243232323x x xx y =-⋅+=-⋅+,依题意有22(2)3237(2)3231x x x x ⎧-⋅+⎪⎨-⋅+⎪⎩≤≥即1242221xx x⎧-⎪⎨⎪⎩或≤≤≥≤,∴ 224021,x x<或≤≤≤ 由函数2xy =的单调性可得(,0][1,2]x ∈-∞U 。
22、(1)∵定义域为x R ∈,且11()(),()11x xxx a a f x f x f x a a -----===-∴++是奇函数; (2)1222()1,11,02,111x xx x x a f x a a a a +-==-+>∴<<+++∵即()f x 的值域为()1,1-;(3)设12,x x R ∈,且12x x <,12121212121122()()011(1)(1)x x x x x x x x a a a a f x f x a a a a ----=-=<++++(∵分母大于零,且12x x a a <) ∴()f x 是R 上的增函数。