热重分析TG

合集下载

TG 基本原理

TG 基本原理

热重分析仪(TG)基本原理热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。

广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。

利用热重分析法,可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析(包括利用TG测试结果进一步作表观反应动力学研究),可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。

热重分析仪的基本原理示意如下:炉体(Furnace)为加热体,在由微机控制的一定的温度程序下运作,炉内可通以不同的动态气氛(如N2、Ar、He等保护性气氛,O2、air等氧化性气氛及其他特殊气氛等),或在真空或静态气氛下进行测试。

在测试进程中样品支架下部连接的高精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG曲线)。

当样品发生重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发生的温度区域,并定量计算失/增重比例。

若对TG曲线进行一次微分计算,得到热重微分曲线(DTG曲线),可以进一步得到重量变化速率等更多信息。

典型的热重曲线如下图所示:100200300400500600700800900/ 温度 /℃406080100120140TG /%­20­15­10­5D TG /(%/m in)7样品称重:7.95mg 20K/min 升温速率:20K/min N2气氛:N2 Al2O3, 坩埚:Al2O3, 敞开式TG TG 典型图谱(图中所示为一水合草酸钙的分解过程)DTG DTG 曲线TG TG 曲线: ­12.3%: ­19.2%: ­30.1% : 38残余质量: 38.4% 质量变化 质量变化: 186峰值: 186.2 .2 ℃: 518峰值: 518.3 .3 ℃: 770峰值: 770.6 .6 ℃ : 489起始点: 489.2 .2 ℃ : 155起始点: 155.8 .8 ℃: 710起始点: 710.8 .8 ℃ 质量变化图谱可在温度与时间两种坐标下进行转换。

热分析技术简介—TG

热分析技术简介—TG

-30
100
200
300
400
500
600
Temperature /°C
PS的TG曲线
热分析技术简介—TG
基本原理
TG的内部示意图
热分析技术简介—TG
工作原理简图
热分析技术简介—T线校正,保证测试结果准 确。
原因:浮力效应以及仪器内部结构因素, 使TG基线并不是水平线。如果不扣除,会 产生质量上的偏差。
DSC
Differential Scanning Calorimetry
热分析技术简介—TG
TG209
热分析技术简介—TG
主要内容
TG的定义 基本原理 仪器校正 实验的影响因素 应用实例 TG的最新功能进展
热分析技术简介—TG
TG的定义
热重分析法:研究样品在程序升温时,样 品失重和加热温度或时间之间关系的一种 技术。所有与重量变化有关的物理及化学 过程都可以用TG表征。
升温速度的影响
TG /% 110 100
90 80 70
5℃/min 10℃/min 20℃/min
50
100
150
200
250
300
Temperature /°C
升温速度对聚酰亚胺内溶剂挥发的影响
热分析技术简介—TG
样品制备的影响
样品几何形状尽可能细; 样品与坩埚紧密接触,平铺于坩埚底部; 样品尽量少,合适的样品量:5-10mg 样品过多或粒度过大会造成:分解反应移
热分析技术简介—TG
基线校正
TG /mg
0.5
0.0
-0.5
-1.0
100
200
300
400
500

热重分析原理

热重分析原理

热重分析原理热重分析(Thermogravimetric Analysis,TGA)是一种通过测量样品在升温过程中的质量变化来研究材料性质的分析技术。

它是一种广泛应用于材料科学、化学、生物学等领域的重要实验手段。

热重分析原理主要是利用样品在不同温度下的质量变化来分析样品的成分、热稳定性、热分解动力学等信息。

在进行热重分析时,首先需要将样品放入热重仪的样品盘中,并在恒定的升温速率下进行加热。

在加热的过程中,热重仪会实时监测样品的质量变化,并将数据记录下来。

通过对样品质量变化曲线的分析,可以得到样品在升温过程中的质量损失情况,进而推断样品的热分解温度、热分解产物、热分解动力学参数等信息。

热重分析原理的核心在于样品在升温过程中的质量变化。

当样品受热时,其内部的化学键可能会发生断裂,导致挥发分的释放、热分解产物的生成等过程,从而引起样品质量的变化。

通过监测样品的质量变化,可以得到样品在不同温度下的热稳定性情况,进而推断样品的热分解特性。

热重分析原理不仅可以用于研究样品的热稳定性,还可以用于分析样品的成分。

在进行热重分析时,可以结合其他分析技术,如气相色谱-质谱联用技术(GC-MS)、傅里叶变换红外光谱(FTIR)等,对样品在不同温度下释放的挥发分进行在线分析,从而推断样品的成分信息。

此外,热重分析原理还可以用于研究样品的热分解动力学。

通过对样品在不同升温速率下的热重曲线进行分析,可以得到样品的热分解动力学参数,如活化能、反应级数等信息,从而揭示样品的热分解反应机理。

总之,热重分析原理是一种重要的材料分析技术,通过研究样品在升温过程中的质量变化,可以得到样品的成分、热稳定性、热分解动力学等信息,为材料科学、化学、生物学等领域的研究提供了重要的实验手段。

热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

热分析法—热重分析法(TG)  差热分析法(DTA) 差示扫描量热法( DSC)

亮点
金属氧化物薄层通常制备方法:原子层沉积、脉冲激光沉积、化学气相 沉积、射频溅射、喷墨印刷等方法。
本文—— “combustion” process in which the
heat required for oxide lattice formation is provided by the large internal energies of the precursors
IPS实质TFT
TFT:指薄膜晶体管,即每个液晶像素点都是由集成在像素点后面的 薄膜晶体管来驱动, 高速度、高亮度、高对比度, 最好的LCD彩色显示设备之一
文章内容: 金属氧化物半导体——耦合光透性、机械性能好、出色的电子性能。
TFT performance of many oxides exceeds that of amorphous silicon (a-Si:H), and their stability rivals or exceeds that of typical organic semiconductors
外推始点onset:基线延长线与曲线拐点切线的交点。
始点initial:开始偏离基线的点。
常见热分析技术
热重分析 微分热重分析 差热分析 差示扫描量热法
检测待测物与样品 的不同
TG(DTG) 质量
DTA 温度
DSC 能量(热焓)
热重分析法
程序控温下,质量 随温度的变化。m=f(T)。 测量条件:发生质量变化。 纵坐标:质量或其百分数
600
800
1000
1200
140 780
180 205
450
T/℃
1030
差热分析法(DTA)参Fra bibliotek物:在测量温度范围内不发生 任何热效应的物质,如-Al2O3、

热重分析技术简介—TG

热重分析技术简介—TG
Key Laboratory of Rubber-Plastics (QUST), Ministry of Education, China
TG的定义
TG曲线表示方法
TG /% 100
80
60
40
20
0 100
Peak: 219.2 °C
Onset: 431.5 °
ICTA 热分析方法
T
TM
G
A
质量
尺寸
DTA 温度
光学
磁学
电学
热量
声学
力学
DS
DM
C
A
Key Laboratory of Rubber-Plastics (QUST), Ministry of Education, China
TG的定义
热重分析法:研究样品在程序升温时,样品 失重和加热温度或时间之间关系的一种技术。 所有与重量变化有关的物理及化学过程都可 以用TG表征。 热稳定性 原材料鉴定 脱水、脱酸 填料分析 组分分析 分解温度 分解动力学 氧化稳定性
TG /mg
0.5
0.0
5K/min
-0.5
10K/min
15K/min
40K/min -1.0
100
200
300
400
500
600
700
800
Temperature /°C
Key Laboratory of Rubber-Plastics (QUST), Ministry of Education, China
实验结果的影响因素
升温速度的影响
TG /%
110
100
90
80
5℃/min

热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

热分析法—热重分析法(TG)  差热分析法(DTA) 差示扫描量热法( DSC)

热分析技术分类
测定的性质 质量
温度 热焓
挥发物 尺寸 电性质 光性质 磁性质
方法 热重分析法(TG)
微热重分析法(DTG) 差热分析法(DTA) 差示扫描量热法(DSC)
逸出气体分析法(EGA) 热膨胀法 热电法 热光法 热磁法
描述
程序控温下,测量物质的质量随温度的变 化 TG的基础上,利用计算机计算Δm-T的曲线 程序控温下,测量温度随程序温度的变化
TG,DTA,DSC曲线
相关文献 壹
JACS简介
Journal of the American Chemical Society 中文名:《美国化学会志》 化学杂志龙头 1879至今 134年历史
JACS简介
总引证次数和被引次数第一,远超第二 JACS每年有51期 JACS不收版面费,文章用彩色不加收费用 审稿周期10周。通讯是2个审稿人,全文是3个,全文审稿周期更长
IPS实质TFT
TFT:指薄膜晶体管,即每个液高速度、高亮度、高对比度, 最好的LCD彩色显示设备之一
文章内容: 金属氧化物半导体——耦合光透性、机械性能好、出色的电子性能。
TFT performance of many oxides exceeds that of amorphous silicon (a-Si:H), and their stability rivals or exceeds that of typical organic semiconductors
发展历史
1964年—— Watson等研制出可定量测量热量的差示扫描量热计,试样用量 为mg级。Mazieres研制的微量差热分析仪的试样量达到了10-100ug。 近十年来——热分析仪器与其他分析仪器的联用技术也发展很快,出现了 TG-MS、TG-GC、DTA-MS、TG-TGA等联用仪器,既节省试样用量又同时 获得更多的信息。

热重分析TG

热重分析TG
转变与反应。
6.2 TG基本原理
热重法又称热失重法(Thermogravimetry,TG)
在程序控温下,测量物质的质量随温度(或时间)的变化 关系。对于材料的热稳定性、组成以及热反应变化进行有 效表征。
微量热 天平
铂金样 品盘
加 热 器
热重分析通常可分为两类:动态(升温)和静态(恒温)。
谱图表示方法: 样品的重量或重量分数随温度或时间的变化曲线
•精确反映样品的起始反应温度,达 到最大反应速率的温度(峰值), 反应终止温度。 •利用 DTG 的峰面积与样品对应的重 量变化成正比,可精确的进行定量 分析。
6.4 TG在聚合物材料中的应用
1. 聚合物热稳定性的评价 2. 聚合物组成的剖析 3. 研究聚合物固化 4. 研究聚合物中添加剂的作用
5. 研究聚合物的降解反应动力学
PTFE 31.5%
炭黑 18.0%
SiO2
50.5%
乙丙橡胶中炭黑和油的含量
共聚物的分析
苯乙烯-α -甲基苯乙烯共聚物的热稳定性
a-聚苯乙烯
b-苯乙烯-α -甲基苯乙烯无 规共聚物
c-苯乙烯-α -甲基苯乙烯嵌 段共聚物
d-聚α -甲基苯乙烯
乙烯-乙酸乙烯酯共聚体中组分含量的测定
乙酸
乙酸乙烯酯 量 相对分子质 乙 酸 乙% 烯 酯 含 量 TG 曲线第一阶 乙酸相对分子质量
•试样量过多,传质阻力大,使试样温度偏离线性程 序升温,TG曲线发生变化;
•试样粒度越小越好,尽可能平铺; •<600℃采用铝皿, >600℃采用三氧化二铝皿; •碱性样品不能采用铝皿。
2. 升温速率
1-20℃/min
常用:10-20℃/min
注意事项:

热重分析实验报告

热重分析实验报告

热重分析实验报告热重分析法研究材料组成一、实验目的1、了解热重分析仪的原理2、通过实验,学会热重曲线的分析二、实验原理热重分析法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。

热重分析仪主要由炉子、程序控温系统、记录系统等几个部分构成。

通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。

从热重法可以派生出微商热重法,也称导数热重法,它是记录TG 曲线对温度或时间的一阶导数的一种技术。

实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。

DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。

热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。

根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。

三、仪器和试剂热失重分析仪TG209F1 德国NETZSCH公司试样(含有氯化反式1,4-聚异戊二烯(CTPI))四、实验步骤1、打开热重分析仪及电脑;2、取下空坩埚,取2~5mg试样置空坩埚内,轻轻振动,使之均匀平铺于坩埚内。

3、打开电脑中的程序,设置实验温度从30℃升到800℃,升温速度为20K/min,实验气氛为氮气,开始实验。

4、实验完毕,打印TG曲线图,降温,关闭电脑及热重分析仪。

五、数据处理实验所得热重曲线如下图所示整个实验都处于氮气气氛中,在此无氧环境下炭黑组分重量不变,失重原因是小分子的挥发和橡胶的裂解。

从DTG曲线看到,在263℃附近出现第一个失重峰,TG曲线得到失重量为14.06%,由于样品中小分子的熔点较低,所以分析该温度下的失重是由于小分子(比如增塑剂、防老剂等)的挥发造成的;在394℃附近出现第二个失重峰,失重量为77.5%,由于胶料一般在400℃左右裂解,所以判断Project:Identity:Date/Time:Laboratory:Operator:Sample:42012-4-12 12:09:50QUST LIU CTPI-4Material:Correction File:Temp. calib. file:Range:Sample Car./TC:Sample Mass:empty 007.bt3温度校正.tt330/20.0(K/min)/800TG 209F1 standard/P 5.966 mgMode/Type of Meas.:Segments:Crucible:Atmosphere:Corr/M.Range:Pre Mment Cycles:TG/Sample + Correction 1/1Al2O3-- / N2 / N2820/2000 mg 0xVacInstrument:NETZSCH TG 209 F1File:E:\ngbwin\data5\刘晨光\120411\CTPI-4.dt3liujiwen 2012-04-12 15:32 Main100200300400500600700Temperature /°C102030405060708090100TG /%-20-15-10-5DTG /(%/min)Mass Change: -14.06 %Mass Change: -77.50 %Residual Mass: 6.43 % (797.0 °C )Peak: 263.3 °CPeak: 394.2 °C该失重量就是样品中胶的含量。

《热重分析法TG》课件

《热重分析法TG》课件

在化学反应研究中的应用
热重分析法在化学反应研究中用于研究反应动力学、反应机理和反应条件优化。通过分析反应过程中 物质的质量变化和温度变化,可以获得反应速率常数、活化能、反应机理和反应条件等信息,有助于 深入了解反应过程和提高产物的纯度和产量。
例如,在研究有机合成、药物合成和燃料合成等化学反应过程中,热重分析法可以用来优化反应条件 和提高产物的收率。
03
热重分析实验技术
实验前的准备
仪器准备
确保热重分析仪(TGA)处于良 好工作状态,检查天平、炉子、 气体供应等辅助设备的运行情况

样品准备
选择合适的样品,确保其质量和纯 度满足实验要求。对于某些特殊样 品,可能需要特殊的预处理或制备 方法。
实验环境准备
确保实验室环境干燥、无尘、无振 动,以减少外部因素对实验结果的 影响。
食品工业领域
研究食品成分的热稳定性、热降解等 ,有助于食品加工工艺的优化和食品 安全控制。
THANKS
感谢观看
04
热重分析法的应用实例
在材料科学中的应用
热重分析法在材料科学中广泛应用于研究材料的热稳定性、热分解行为和相变过 程。通过分析材料在加热过程中的质量变化,可以获取材料的热稳定性、分解温 度、热分解机制和残余物性质等信息,为材料的合成、改性和应用提供重要依据 。
例如,在研究新型高分子材料、复合材料和陶瓷材料的制备过程中,热重分析法 可以用来评估材料的热稳定性、确定最佳合成条件和优化材料性能。
热重分析法在各领域的应用前景
能源领域
研究新能源材料(如电池材料)的热 稳定性、热分解反应等,为新能源开 发提供支持。
环境领域
应用于大气污染、水污染等环境问题 研究,通过分析污染物的热行为,为 环境治理提供依据。

热重分析TG

热重分析TG

热重分析热重分析(Thermogravimetric Analysis,TG或TGA),是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组份。

TGA在研发和质量控制方面都是比较常用的检测手段。

热重分析在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。

目录多少物质(如CuSO4·5H2O中的结晶水)。

从热重曲线上我们就可以知道CuS O4·5H2O中的5个结晶水是分三步脱去的。

TGA 可以得到样品的热变化所产生的热物性方面的信息。

种类热重分析通常可分为两类:动态法和静态法。

1、静态法:包括等压质量变化测定和等温质量变化测定。

等压质量变化测定是指在程序控制温度下,测量物质在恒定挥发物分压下平衡质量与温度关系的一种方法。

等温质量变化测定是指在恒温条件下测量物质质量与温度关系的一种方法。

这种方法准确度高,费时。

热重分析仪结构2、动态法:就是我们常说的热重分析和微商热重分析。

微商热重分析又称导数热重分析(Derivative Thermogravimetry,简称DTG),它是TG曲线对温度(或时间)的一阶导数。

以物质的质量变化速率(dm/dt)对温度T(或时间t)作图,即得DTG曲线。

仪器构造进行热重分析的基本仪器为热天平,它包括天平、炉子、程序控温系统、记录系统等几个部分。

除热天平外,还有弹簧秤。

热重分析仪数据分析热重分析仪结构:1、试样支持器;2、炉子;3、测温热电偶;4、传感器;5、平衡锤;6、阻尼和天平复位器;7、天平;8、阻尼信号影响因素影响热重法测定结果的因素,大致有下列几个方面:仪器因素,实验条件和参数的选择,试样的影响因素等等。

1、浮力及对流的影响。

浮力和对流引起热重曲线的基线漂移。

热天平内外温差造成的对流会影响称量的精确度。

解决方案:空白曲线、热屏板、冷却水等。

2、挥发物冷凝的影响。

解决方案:热屏板。

热分析法热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

热分析法热重分析法(TG)  差热分析法(DTA) 差示扫描量热法( DSC)

热分析技术分类
测定的性质
方法
质量
热重分析法(TG)
微热重分析法(DTG)
温度
差热分析法(DTA)
热焓
差示扫描量热法(DSC)
挥发物
尺寸 电性质 光性质 磁性质
逸出气体分析法(EGA)
热膨胀法 热电法 热光法 热磁法
描述
程序控温下,测量物质的质量随 温度的变化 TG 的 基 础 上 , 利 用 计 算 机 计 算 Δm-T的曲线 程序控温下,测量温度随程序温 度的变化
程序控温下, 测量物与参比 物的温差与温 度的关系 ΔT=f(T) 正峰:放热 倒峰:吸热
差示扫描量热法
程序控温下,为维持 T(测量物)=T(参比物)
补偿的热量与温度的关 系ΔT=f(T)
正峰:放热 倒峰:吸热
典型的DSC曲线
热流率(dH/dt)为纵坐标、 时间(t)或温度(T)为横坐
标。
曲线离开基线的位移即代表样 品吸热或放热的速率(mJ·s1),而曲线中峰或谷包围的 面积即代表热量的变化。
程序控温下,测量物与参比物能 量差随温度变化
程序控温下,物质释放出气体随 温度变化
热分析曲线
横坐标表示温度T或时间t,纵坐标为相应的物理量,例 如热流量dQ/dT,温差△T,质量损失△ m,长度(体积) 变化△ L( △ V)。
基线:无试样存在时产生的分析轨迹,或者可以说是恒 定条件下,仪器的响应信号曲线。
JACS简介
总引证次数和被引次数第一,远超第二
JACS每年有51期
JACS不收版面费,文章用彩色不加收费用
审稿周期10周。通讯是2个审稿人,全文是3个,全 文审稿周期更长
IPS实质TFT
TFT:指薄膜晶体管,即每个液晶像素点都是由集成 在像素点后面的薄膜晶体管来驱动, 高速度、高亮度、高对比度, 最好的LCD彩色显示设备之一

热重分析(TG)

热重分析(TG)
可以推导出CuSO4·5H2O 的脱水方程如下:
热天平种类
➢根据试样与天平横梁支撑点之间的相对位置,热
天平可分为下皿式,上皿式与水平式三种。
热天平测量原理
➢ 当天平左边称盘中试样因受热产生重量变化时,天平横梁连同光栏则向
上或向下摆动,此时接收元件接收到的光源照射强度发生变化,使其输 出的电信号发生变化。这种变化的电信号送给测重单元,经放大后再送 给磁铁外线圈,使磁铁产生与重量变化相反的作用力,天平达到平衡状 态。因此,只要测量通过线圈电流的大小变化,就能知道试样重量的变 化。(零为平衡)
➢粒度越小,反应速率越快,使TG曲线上的Ti和Tf
温度降低,反应区间变窄。
➢试样粒度大往往得不到较好的TG曲线。粒度减小
不仅使热分解温度下降,而且也使分解反应进行 的很完全。
德国NETZSCH STA449C型综合热分析仪
应用举例
• 大同煤的TG-DTG分析
Weight loss(wt%, daf) Rate of weight loss (%/s)
为了获得精确的实验结果,分析各种 因素对TG曲线的影响是很重要的。影响TG 曲线的重要因素包括:
一、仪器因素 二、试样因素
仪器因素
➢升温速率 ➢炉内气氛 ➢支持器及坩埚材料 ➢炉子的几何形状 ➢热天平灵敏度
(1) 升温速率
➢对热重法影响比较大。 ➢升温速率越大,所产生的热滞后现象越严重,
往往导致热重曲线上的起始温度Ti和终止温度 Tf偏高。虽然分解温度随升温速率变化而变化, 但失重量保持恒定。
CuSO4·5H2O的TG曲线
曲线EF段也是一平台,相应质量 为m2;曲线FG 为第三台阶,
质量损失为0.8mg,可求得质量 损失率

热重分析相关

热重分析相关

热重分析TG(TGA)和DTG原理解析与应用
1、名词:热重分析(Thermogravimetric Analysis,TGA),又叫热重法(Thermogravimetry,TG),热重仪(热重分析仪):Thermogravimetric Analyzer 。

2、定义:在程序控制温度下,测量物质的质量与温度关系(w=f(T))的一种热分析技术。

由热重分析法得到的曲线称为TG曲线或TGA曲线,横坐标为温度,纵坐标为质量分数。

3、DTG曲线:叫微商热重分析(DTG)曲线,TG曲线对温度(或时间)的一阶导数得到的曲线(纵坐标为dW/dt,横坐标为温度或时间),物理意义表示失重速率与温度(或时间)的关系。

DTG曲线峰顶点与Tg曲线拐点相对应,为失重速率最大值点,DTG曲线峰数目与TG曲线台阶数相等。

DTG曲线面积与失重量成正比。

当失重很小TG曲线上无法分辨出来时,可以借助DTG分辨。

4、热重分析分类:等温热重法(恒温),非等温热重法(程序升温)
5、影响热重分析TGA测定结果的因素:仪器本身(浮力、坩埚选择、灵敏度)、升温速率、试样量、样品粒度、样品形状、气氛等。

6、热重分析应用介绍:物质热稳定性比较,物质的成分分析,物质的分解过程和热解机理,研究反应动力学,高分子的热氧化降解等,材料中挥发性物质的测定。

第7章 热重分析法

第7章 热重分析法

Temperature / °C
将该样品在真空下进行测试,由于增塑剂沸点的降低,挥发温度与橡胶 分解温度拉开距离,得到了更准确的增塑剂质量百分比:13.10%。
复杂气流控制下的热重分析(TG)
通过改变测试气氛(真空-氮气-空气), 有助于深入剖析材料成分。
7.3.5 研究聚合物的降解反应动力学
动力学基本原理
10
5
0
20
Kinetic Analysis of Vulcameter Data
A 1>B
150.0 °C 160.0 °C 170.0 °C 180.0 °C
40
60
80
100
120
Time/min
可采用动力学软件分析恒温下的扭矩测量数据
反应类型: A B
反应物 A 的浓度
Arrhenf(a)
exp EA RT
前置因子
f(x) – 反应类型
动力学软件 Kinetics 反应机理
简单反应(单步) A
B
A
B
C
复杂反应(多步)
A
B
A
2
C
B B
A
B
C
D
A
B
连串反应, f 竞争反应, c 平行反应, p
DTG % / min
Sample:
NR/SBR
Sample mass: 20.64 mg
Crucible:
Pt open
Heating rate: 20 K/min
Atmosphere: VACUUM
天然橡胶 NR mass loss: - 36.97 %
丁苯橡胶 SBR mass loss: - 10.33 %

热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

热分析法—热重分析法(TG)  差热分析法(DTA) 差示扫描量热法( DSC)
1.0
0.8
树脂样品的玻璃化转变
[1] 0.6
0.4
0.2
玻璃化转变: 起始点: 53.8 ℃ 中点: 57.9 ℃ 终止点: 62.0 ℃ 比热变化*: 0.421 J/(g*K)
0 40 50 60 温度 /℃ 70 80 90 100
在无定形聚合物由玻璃态转变为高弹态的过程中,伴随着比 热变化,在 DSC 曲线上体现为基线高度的变化,由此可得到 材料的玻璃化转变温度。
satisfy a Hume–Rothery stabilization rule
How to discover it?
During systematic exploration of the Na–Au–Ga system
Thank you
TG,DTA,DSC曲线
相关文献

JACS简介
Journal of the American Chemical Society 中文名:《美国化学会志》
化学杂志龙头
1879至今 134年历史
JACS简介
总引证次数和被引次数第一,远超第二
JACS每年有51期
JACS不收版面费,文章用彩色不加收费用 审稿周期10周。通讯是2个审稿人,全文是3个,全 文审稿周期更长
外推始点onset:基线延长线与曲线拐点切线的交点。 始点initial:开始偏离基线的点。
常见热分析技术
热重分析 微分热重分析 差热分析 差示扫描量热法
TG(DTG) 检测待测物与 样品的不同 质量 DTA 温度 DSC 能量(热焓)
热重分析法
程序控温下,质量 随温度的变化。 m=f(T)。 测量条件:发生质 量变化。 纵坐标:质量或其 百分数

热重分析

热重分析

第三节 热重分析(TG )一、基本原理热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。

如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。

如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。

如图1所示。

一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。

第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。

第三个台阶发生在高温是属于试样本体的分解。

为了清楚地观察到每阶段失重最快的温度。

经常用微分热重曲线DTG (如图1b )。

这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。

对于分解不完全的物质常常留下残留物W R 。

在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。

另外目前又出现了一种等温TG 曲线。

这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即:W=f (t )(温度为定值)W 0 W 1 W 2 W 3重量图1 热重分析曲线(a )与微商热重曲线(b )炉子它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。

二、基本结构热重法的仪器称为热天平,给出的曲线为热重曲线。

热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。

热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。

热天平的示意图如图2-1所示。

通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成温度。

三、影响因素虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下:1.坩埚的影响坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。

EGCG热重分析法

EGCG热重分析法

EGCG热重分析法热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程,获取失重比例、失重温度(起始点,峰值,终止点...)、以及分解残留量等相关信息。

TG方法广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。

可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析,包括利用TG测试结果进一步作表观反应动力学研究。

可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。

图谱可在温度与时间两种坐标下进行转换。

红色曲线:热重(TG)曲线,表征了样品在程序温度过程中重量随温度/时间变化的情况,其纵坐标为重量百分比,表示样品在当前温度/时间下的重量与初始重量的比值。

绿色曲线:热重微分(DTG)曲线(即dm/dt曲线,TG曲线上各点对时间坐标取一次微分作出的曲线),表征重量变化的速率随温度/时间的变化,其峰值点表征了各失/增重台阶的重量变化速率最快的温度/时间点。

热重曲线怎么分析对于一个失/增重步骤,较常用的可对以下特征点进行分析:切线的相交点,可作为该失/增重过程起始发生的参考温度点,多用于表征材料的热稳定性。

切线的相交点,可作为该失/增重过程结束的参考温度点。

DTG曲线峰值:质量变化速率最大的温度/时间点,对应于TG 曲线上的拐点。

质量变化:分析TG曲线上任意两点间的质量差,用来表示一个失重(或增重)步骤所导致的样品的质量变化。

残余质量:测量结束时样品所残余的质量。

另外,在软件中还可对TG曲线的拐点(与DTG峰温等同)、DTG 曲线外推起始点(更接近于真正意义上的反应起始温度)、DTG 曲线外推终止点(更接近于真正意义上的反应结束温度)等特征参数进行标示。

热重分析法TG

热重分析法TG
• 热重法测定,试样量要少,一般2~5mg。一方面是因为仪 器天平灵敏度很高(可达0.1μg),另一方面如果试样量多 ,传质阻力越大,试样内部温度梯度大,甚至试样产生热 效应会使试样温度偏离线性程序升温,使TG曲线发生变化 ,粒度也是越细越好,尽可能将试样铺平,如粒度大,会 使分解反应移向高温。
四、影响TG数据的因素
分析)
4.3
3.2
4.6
0.3
8.3
5.8
8.3
0.0
11.2
7.6
10.9
0.3
14.9
10.2
14.6
0.3
27.1
18.9
27.1
0.0
31.1
21.7
31.1
0.0Βιβλιοθήκη The End谢谢观看
一、热重分析的定义
• 热重法(TG)又称热失重法,是在程 序控温下,测量物质的质量随温度(或 时间)的变化关系的一种热分析技术。
用数学表达式为:
W f T或t
• 热重法通常有动态(升温)和静态(恒 温)之分,但通常是在等速升温条件下 进行。
二、热重法的原理
• 物质在温度作用下,随温度的升高,会 产生相应的变化,如水分蒸发,失去结 晶水,低分子易挥发物的逸出,物质的 分解氧化等。
• 将物质的质量变化和温度变化的信息记 录下来,就得到了物质的质量温度曲线 ,即热重曲线。
• 热重曲线纵坐标表示重量(mg),向下表 示重量减少,向上表示重量增加;横坐 标表示温度T〔℃或K),有时也可用时 间t,从左向右表示T 或 t 增加
三、热重法的试样要求
• 适于热重分析的试样的特点 (1)要在反应中有质量变化; (2)是不同的样品组成,质量变化的大小不同。

热重曲线分析

热重曲线分析

热重曲线分析
热重(TG)曲线,表征了样品在程序温度过程中重量随温度/时间变化的情况,其纵坐标为重量百分比,表示样品在当前温度/时间下的重量与初始重量的比值。

热重微分(DTG)曲线,表征重量变化的速率随温度/时间的变化,其峰值点表征了各失/增重台阶的重量变化速率最快的温度/时间点。

对于一个失/增重步骤,较常用的可对以下特征点进行分析:
TG曲线外推起始点:TG台阶前水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程起始发生的参考温度点,多用于表征材料的热稳定性。

TG曲线外推终止点:TG台阶后水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程结束的参考温度点。

DTG曲线峰值:质量变化速率最大的温度/时间点,对应于TG曲线上的拐点。

质量变化:分析TG曲线上任意两点间的质量差,用来表示一个失重(或增重)步骤所导致的样品的质量变化。

残余质量:测量结束时样品所残余的质量。

另外,在软件中还可对TG曲线的拐点(与DTG峰温等同)、DTG 曲线外推起始点(更接近于真正意义上的反应起始温度)、DTG曲线外推终止点(更接近于真正意义上的反应结束温度)等特征参数进行标示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转变与反应。 转变与反应。
TG基本原理 6.2 TG基本原理
热重法又称热失重法(Thermogravimetry,TG) 热重法又称热失重法(
在程序控温下,测量物质的质量随温度(或时间) 在程序控温下,测量物质的质量随温度(或时间)的变化 物质的质量 关系。对于材料的热稳定性、 关系。对于材料的热稳定性、组成以及热反应变化进行有 效表征。 效表征。
TG在聚合物材料中的应用 6.4 TG在聚合物材料中的应用
1. 聚合物热稳定性的评价 2. 聚合物组成的剖析 3. 研究聚合物固化 4. 研究聚合物中添加剂的作用 5. 研究聚合物的降解反应动力学
TG在聚合物材料中的应用 6.4 TG在聚合物材料中的应用
1.聚合物热稳定性的评价 1.聚合物热稳定性的评价 比较起始失重温度
TG在聚合物材料中的应用 6.4 TG在聚合物材料中的应用
4. 研究聚合物中添加剂的作用
• 聚合物中常用的添加增塑剂,其用量和品种不同,对材料 聚合物中常用的添加增塑剂,其用量和品种不同, 增塑剂 作用效果不同。 作用效果不同。 增塑剂
• 发泡剂的性能和用量直接影响泡沫材料的性能和制造工艺 发泡剂的性能和用量直接影响泡沫材料的性能和制造工艺 条件。 条件。
曲线陡降处为样品失重区,平台区为样品的热稳定区。 曲线陡降处为样品失重区,平台区为样品的热稳定区。 失重区 热稳定区
TG实验技术 6.3 TG实验技术
1. 试样量和试样皿 试样量: 试样量:5-10mg 试样皿: 试样皿:铝、三氧化二铝或铂金 注意事项: 注意事项:
•对于膨胀型的材料适量减少试样量; 对于膨胀型的材料适量减少试样量; 对于膨胀型的材料适量减少试样量 •试样量过多,传质阻力大,使试样温度偏离线性程 试样量过多,传质阻力大, 试样量过多 序升温,TG曲线发生变化 曲线发生变化; 序升温,TG曲线发生变化; •试样粒度越小越好,尽可能平铺; 试样粒度越小越好,尽可能平铺; 试样粒度越小越好 •<600℃采用铝皿, >600℃采用三氧化二铝皿; <600℃采用铝皿, 600℃采用三氧化二铝皿; •碱性样品不能采用铝皿。 碱性样品不能采用铝皿。 碱性样品不能采用铝皿
2. 升温速率
1-20℃/min 常用:10常用:10-20℃/min
注意事项: 注意事项:
•升温速度越快,温度滞后越严重; 升温速度越快,温度滞后越严重; 升温速度越快 •升温速度快,使曲线的分辨力下降,会丢失某些中间 升温速度快,使曲线的分辨力下降, 升温速度快 产物的信息,如对含水化合物慢升温可以检出分步失水 产物的信息, 的一些中间物; 的一些中间物; •同系列样品比较,在没有特殊要求下最好采用相同升 同系列样品比较, 同系列样品比较 温速率。 温速率。
发泡剂
可获得适宜的成型温度条件,即发泡剂开始分解的温度。 可获得适宜的成型温度条件,即发泡剂开始分解的温度。
• 阻燃剂在聚合物中有特殊效果,阻燃剂的种类和用量选择 阻燃剂在聚合物中有特殊效果 在聚合物中有特殊效果, 适当,可大大改善聚合物材料的阻燃性能。 适当,可大大改善聚合物材料的阻燃性能。
无机阻燃 剂
TG在聚合物材料中的应用 6.4 TG在聚合物材料中的应用
5. 研究聚合物的降解反应动力学
• 降解反应动力学是研究材料降解的速度随时间、温度的变 降解反应动力学是研究材料降解的速度随时间、 活化能、 化关系,最终求出活化能 反应级数并对该反应机理进行解 化关系,最终求出活化能、反应级数并对该反应机理进行解 释。 •活化能是材料发生分解所需的临界能量,活化能越高,材料 活化能是材料发生分解所需的临界能量 活化能是材料发生分解所需的临界能量,活化能越高, 的热稳定性越好。 的热稳定性越好。
ቤተ መጻሕፍቲ ባይዱ. 气氛的影响
氮气、空气。 氮气、空气。 流速:40mL/min,利于传热、逸出气体。 流速:40-100 mL/min,利于传热、逸出气体。
注意事项: 注意事项:
• 热天平周围气氛的改变对TG曲线影响显著。 热天平周围气氛的改变对TG曲线影响显著。 TG曲线影响显著
TG失重曲线的处理和计算 4. TG失重曲线的处理和计算
乙烯-乙酸乙烯酯共聚体中组分含量的测定 乙烯-
乙酸
乙酸乙烯酯相对分子质 量 乙酸乙烯酯含量 % = × TG曲线第一阶段失重量 乙酸相对分子质量
共混物的分析
各组分的失重温度没有太大变化, 各组分的失重温度没有太大变化, 各组分失重量=各组分纯物质的失重× 各组分失重量=各组分纯物质的失重×百分含量叠加的结果
微量热 天平 铂金样 品盘
加 热 器
热重分析通常可分为两类:动态(升温)和静态(恒温) 热重分析通常可分为两类:动态(升温)和静态(恒温)。
谱图表示方法: 谱图表示方法: 样品的重量或重量分数随温度或时间的变化曲线
梯度曲线
曲线的纵坐标为质量 mg 或剩余百分数 表 或剩余百分数%表 示; 横坐标T为温度。用热 横坐标 为温度。 为温度 力学温度( ) 力学温度(K)或摄氏 温度( 温度(℃)。
材料的热分解动力学公式: 材料的热分解动力学公式:
活化能 指前因子 反应级数
失重率
升温速率
气体常数
E dα n ln[β ] = ln A(1 − α ) − RT dT
1 dα ln[ β ]− − − − 在多个升温速率下,给定失重率, 在多个升温速率下,给定失重率,以 RT dT 作图,斜率为活化能E 作图,斜率为活化能E,截距为
性质随温度变化的一类技术。 性质随温度变化的一类技术。 通过检测样品本身的热物理性质 随 温度或时间的变化 的变化, 通过检测样品本身的 热物理性质随 温度或时间 的变化 , 热物理性质 来研究物质的分子结构 聚集态结构、 分子结构、 来研究物质的 分子结构 、 聚集态结构 、 分子运动的变 化等。 温度和热焓的变化 质量的变化 热物理性质变化: 热物理性质变化: 尺寸的变化 力学特性的变化 电磁学变化
起始分解温度
外延起始温度 TG-5% TG-50% TG-10% 终止温度
外延终止温度
微商曲线(DTG) (DTG)表示和意义 5. 微商曲线(DTG)表示和意义 重量的变化率与温度或时间的函数关系, TG曲线对 重量的变化率与温度或时间的函数关系,是TG曲线对 温度或时间的一阶导数。 DTG曲线是一个热失重速率 温度或时间的一阶导数 。 DTG 曲线是一个热失重速率 的峰形曲线。 的峰形曲线。
玻璃 18%
聚四氟乙烯中炭黑和SiO 聚四氟乙烯中炭黑和SiO2的含量确定
PTFE 31.5% 炭黑 18.0%
SiO2
50.5%
乙丙橡胶中炭黑和油的含量
共聚物的分析
苯乙烯苯乙烯-α-甲基苯乙烯共聚物的热稳定性 a-聚苯乙烯 b-苯乙烯-α-甲基苯乙烯无 苯乙烯规共聚物 c-苯乙烯-α-甲基苯乙烯嵌 苯乙烯段共聚物 d-聚α-甲基苯乙烯
TG在聚合物材料中的应用 6.4 TG在聚合物材料中的应用
3. 研究聚合物固化 静态热重分析, 静态热重分析,适用于 固化过程中失去低分子 固化过程中失去低分子 的缩聚反应。 物的缩聚反应。
利用酚醛树脂固化过程中 生成水, 生成水,测定脱水失重量 最多的固化温度, 最多的固化温度,其固化 程度最佳。 程度最佳。
[
]
ln A(1 − α )
[
n
]
ln A(1 − α ) = ln A + n ln(1 − α )
n
[
]
以截距对ln(1作图,可求出反应级数n和指前因子A 以截距对ln(1-α)作图,可求出反应级数n和指前因子A ln(1
•精确反映样品的起始反应温度,达 精确反映样品的起始反应温度, 精确反映样品的起始反应温度 到最大反应速率的温度( 峰值) 到最大反应速率的温度 ( 峰值 ) , 反应终止温度。 反应终止温度。 •利用 DTG 的峰面积与样品对应的重 利用DTG 利用 DTG的峰面积与样品对应的重 量变化成正比, 量变化成正比 , 可精确的进行定量 分析。 分析。
几种高分子材料的TG曲线 几种高分子材料的TG曲线 TG
比较失重速率
热稳定性TG曲线比较示意图 热稳定性TG曲线比较示意图 TG
c >b >a
TG在聚合物材料中的应用 6.4 TG在聚合物材料中的应用
2.聚合物组成的剖析 2.聚合物组成的剖析 添加剂的分析
水 2%
树脂 80%
TG法确定玻璃钢 TG法确定玻璃钢 材料中玻璃纤维 成分的含量
从事材料工作必备的几种热分析仪器: 从事材料工作必备的几种热分析仪器:
差示扫描量热仪( 差示扫描量热仪(DSC) 差热分析仪 (DTA) ) 热重分析仪 (TGA) ) 热机械分析仪 (DMA) )
静态转变、熔融、脱水、升华、 用于测量物质的静态转变、熔融、脱水、升华、吸 解吸、玻璃化转变、液晶转变、燃烧、固化、 附、解吸、玻璃化转变、液晶转变、燃烧、固化、 模量、 阻尼、 热化学常数、 纯度、 模量 、 阻尼 、 热化学常数 、 纯度 、 分解 等性质的
第六章 热重分析 Thermal Gravimetric Analysis TGA
第六章 热重分析 (TGA) )
6.1 热分析简介 TG基本原理 6.2 TG基本原理 TG实验技术 6.3 TG实验技术 TG在聚合物材料中的应用 6.4 TG在聚合物材料中的应用
6.1 热分析简介
现代热分析技术指在程序控温下,测量物质的物理 指在程序控温下,
相关文档
最新文档