第五章杆件的内力图 工程力学

合集下载

工程力学(范钦珊-蒋永莉-税国双-著)-清华大学出版社.pdf

工程力学(范钦珊-蒋永莉-税国双-著)-清华大学出版社.pdf

工程力学——课后练习题讲解教师张建平第一章静力学基础课后习题:1. P32习题1-12. P32习题1-23. P33习题1-8图a和b所示分别为正交坐标系Ox解:图():F分力:图与解图,两种情形下受力不同,二者的1-2a解图示压路机的碾子可以在推力或拉力作用下滚过):θ解图第二章力系的简化课后习题:1. P43习题2-12. P43习题2-23. P44习题2-4由作用线处于同一平面内的两个力F和习题图所示一平面力系对A(30),B(0,图示的结构中,各构件的自重都略去不计。

1图2-4解习题)中的梁∑0,F0,1m习题3-3图解:根据习题3-3第三章附加习题课后习题:1. P69习题3-52. P69习题3-63. P70习题3-74. P71习题3-135. P71习题3-143-14 图示为凸轮顶杆机构,在凸轮上作用有力偶,其力偶矩确定下列结构中螺栓的指定截面Ⅰ-Ⅰ上的内力分量,,产生轴向拉伸变形。

,产生剪切变形。

如习题4-2图所示直杆A、C、B在两端A、B处固定,在C解:首先分析知,该问题属于超静定问题,受力图如图所示:试用截面法计算图示杆件各段的轴力,并画轴力图,单解:(a)题题-3一端固定另一端自由的圆轴承受四个外力偶作用,如5-3解:将轴划分为四个截面扭矩平衡方程im m 扭矩平衡方程+m3-3扭矩平衡方程5-5 试写出图中所示各梁的剪力方程、弯矩方程图3建立坐标系并确定两个控制面,如图左侧为研究对象:−=)取根据力平衡方程和弯矩平衡方程得出4ql弯矩方程:1解建立坐标系,并取两个控制面,如图ql ql1Q。

工程力学05-杆件的内力图

工程力学05-杆件的内力图
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
构件内力图概念、画法
杆件基本变形时内力图的表示
内力图沿杆轴线的分布规律 最大内力与危险截面的确定
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
5.2 轴力图与扭矩图
5.2.2 扭矩图 1)扭转内力分量与扭矩
作用在杆件上的外力偶矩可以向杆轴线简化, 简化的结果若力偶作用面在横截面上,该力偶矩分 量——扭矩 扭矩可以是外力简化,也可以由传递的功率计 算得到 2)功率P、转速n和外力偶矩T P (5-1) T=9549 n (N.m) 式中: P:功率(kW) n:转速(r/min)
d
D MD D
确定控制截面
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
5.2 轴力图与扭矩图
5.2.2 扭矩图 MA=1146N.m,MB=MC=350N.m,MD=446N.m。 MB MC MA 求各截面扭矩 BC段 SMx= 0 B C A
C
l l MO =2FPl
FP D B
MC C
l
FP
D B
FQC
S M C= 0
解得:
– MC + MO – FP×l =0
FQC=FP MC = MO – FP×l = 2FPl– FPl = FPl

工程力学电子教案(第三版)第5章 杆件的内力

工程力学电子教案(第三版)第5章 杆件的内力

§5-2 杆件扭转时的内力
例5-2 传动轴(图5-9a)的转速n=150r/min;
A处为主动轮,输入功率PA=70kW,B、C、D处
为从动轮,其输出功率分别为PB=30kW, PC=PD=20kW。试绘制该轴的扭矩图。
图5-9
§5-2 杆件扭转时的内力
(2)计算扭矩 须将轴分为AB、AC和CD三段, 逐段计算扭矩。应用截面法,假想地沿1-1横截 面把轴截开,取左段为研究对象(图5-9b),为保 持左段平衡,1-1横截面上的扭矩T1为
图5-2
§5-1 杆件拉(压)时的内力
3. 轴力
现以图5-3a所示拉杆为例,求其任意横截面
m-m上的内力。
应用截面法,假想地沿m-m截面把杆截开,
取左段为研究对象(图5-3b),列出平衡方程

∑Fx=0,FN-F=0
FN=F 由于内力FN的作用线与杆的轴线重合,故FN 称为轴力。
§5-1 杆件拉(压)时的内力
显然,图5-7所示m-m横截面上的扭矩为
正。
§5-2 杆件扭转时的内力
图5-8
§5-2 杆件扭转时的内力
●与求轴力的方法类似,用截面法计算扭矩时, 通常先假设扭矩为正,然后根据计算结果的正负 确定扭矩的实际方向。
●若作用于轴上的外力偶矩多于两个,也与拉 伸(压缩)问题中绘制轴力图相仿,以横坐标表示 横截面的位置、纵坐标表示相应横截面上的扭矩, 用图线来表示各横截面上扭矩沿轴线变化的情况。 这样的图线称为扭矩图。
1.工程实例:钻探机的钻杆(图5-5a)、机器中的 传动轴(图5-5b)
图5-5
§5-2 杆件扭转时的内力
2. 计算简图 这些杆件都是两端作用两个大小相等、方
向相反且作用平面垂直于杆件轴线的力偶,致使 杆件的任意两个横截面之间都发生绕轴线的相对 转动,这种变形称为扭转变形。

工程力学选择题

工程力学选择题

静力学部分第1章 工程静力学基础1、平面汇交力系如图所示,已知F 1=kN 3,F 2=1kN ,F 3=3kN ,则该力系的合力R 的大小应为( ) A 、R=(1+43) kN B 、R=kN 3C 、R=(1+23)kND 、R=02、重量为W 的物块放在倾角为θ的粗糙斜面上而处于临界平衡状态。

已知物块与斜面间的静滑动摩擦系数为f ,此时物块受到斜面的摩擦力为( )A 、FwB 、fW sin θC 、fW cos θD 、fW tan θ3、在图示轮子受力图中,Fr m Fr m 3,21==,其中( )图轮子处于平衡状态。

4、如图所示系统只受F 作用而处于平衡。

欲使A 支座约束反力的作用线与AB 成300角,则斜面的倾角α应为( )A 、00B 、300C 、450D 、 6005、平面汇交四个力作出如下图所示力多边形,表示力系平衡的是( ).6、若作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。

则其合力可以表示为( )。

A 、12F F -;B 、21F F -;C 、12F F +。

7、重P的均质圆柱放在V型槽里,考虑摩擦柱上作用一力偶,其矩为M时(如图),圆柱处于极限平衡状态。

此时按触点处的法向约束力N A与N B的关系为()。

A、N A = N B;B、N A > N B;C、N A < N B。

8、图示三铰刚架,受水平力P作用,有以下四种说法,其中错的是()。

A、AC为二力平衡杆件B、BC为三力平衡构件C、反力RA和RB的方向都指向CD、RA的方向指向C,RB的方向不确定9、如果力FR 是F1、F2二力的合力,用矢量方程表示为FR=F1+F2,则三力大小之间的关系为( )。

A、必有FR =F1+F2B、不可能有FR=F1+F2C、必有FR >F1,FR>F2D、可能有FR<F1,FR<F210、力对物体的作用效应取决于力的三要素,下列选项中不属于力的三要素的是:(B )A、力的大小B、力的单位C、力的方向D、力的作用点11、刚体受三力作用而处于平衡状态,则此三力的作用线( A )。

工程力学习题册第五章 - 答案

工程力学习题册第五章 - 答案

第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。

其变形特点是杆件沿_轴线方向伸长或缩短__。

其构件特点是_等截面直杆_。

2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。

图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。

剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。

4.构件在外力作用下,_单位面积上_的内力称为应力。

轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。

1MPa=__106_N/m2=_1__N/mm2。

5.杆件受拉、压时的应力,在截面上是__均匀__分布的。

6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。

__压缩_时的应力为__压应力_,符号位负。

7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。

8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。

9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。

E称为材料的_弹性模量__。

它是衡量材料抵抗_弹性变形_能力的一个指标。

10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。

11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。

12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。

13.采用___退火___的热处理方法可以消除冷作硬化现象。

工程力学课后习题答案

工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。

在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。

然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。

如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。

题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。

《工程力学》第5章 杆件的内力图

《工程力学》第5章 杆件的内力图
➢扭矩沿杆轴线方向变化的图形,称为扭矩图; ➢T(x)的图象表示:
①扭矩变化规律; ②|T|max值及其截面位置,强度计算(危险截面)
27/65
5.2 轴力图与扭矩图----扭矩图
【例4】圆轴受有四个绕轴线转动的外加力偶,各 力偶的力偶矩的大小和方向均示于图中,其中力 偶矩的单位为N.m,尺寸单位为mm。试画出圆轴 的扭矩图。
【例3】 图示杆的A、B、C、D点分别作用着大小为5P 、8P、4P和 P 的力,试画出杆的轴力图。
OA
BC
D
PA
N1
A
PBPCBCPD D Nhomakorabeax
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图,列平衡方程
Fx 0 N1 PA PB PC PD 0
N1 PA PB PC PD 5P 8P 4P P 2P21/65
剪力方程和弯矩方程。
MO=2FPl
FP
B
A
C
l
l
39/65
5.3 剪力图与弯矩图--剪力方程与弯矩方程
解:1.确定控制面和分段
截面A、B、C均为控制面。需要分为AC和CB两段建
立剪力和弯矩方程。
2.建立Oxy坐标系
3.建立剪力方程和弯矩方程
y
MO=2FPl
O
A
C
F
P
x
B
l
l
40/65
5.3 剪力图与弯矩图--剪力方程与弯矩方程
41/65
5.3 剪力图与弯矩图--剪力方程与弯矩方程
y
MO=2FPl
O
A
C
l
FP
B l
x2
FP

工程力学第5节 平面静定桁架的内力计算

工程力学第5节 平面静定桁架的内力计算

F1 sin 30 G 0
n
Fiy 0
i1
F1 cos 30 F2 0
得 F1 40 kN(拉) F2 34.6 kN(压)
节点 B:
n
Fix 0
i1 n
Fiy 0
i1
F2 F6 0

F3 G 0
F6 34.6 kN(压) F3 20 kN(拉)
i1 n
Fiy 0
i1
FS1 sin 60 FS4 sin 60 0 FS1 cos 60 FS4 cos 60 FS3 0
解得
FS4 FS1 2F(压) 校核计算结果
将各杆内力计算结果列表如下
杆号
1
2
3
内 力 2F 1.73F 2F
半部分为研究对象进行受力分析,列平衡方程:
n
M E (Fi ) 0
FS1 1sin 60 FAy 1 0
i1
n
M D (Fi ) 0
i1 n
Fiy 0
i1
F1

1 2

FS3
1
sin
60


FAy

2 3

0
FAy FS2 sin 60 F1 0
• 因为只有三个独立平衡方程,因此作假想截面时, 一般每次最多只能截断三根杆件。
注意
• 由于平面汇交力系只能列出两个独立平衡方程,所 以应用节点法必须从只含两个未知力大小的节点开 始计算。
例2-15 平面桁架的受力及尺寸如图所示, 试求桁 架各杆的内力。
解 1)先求支座反力:以整体桁架为研究对象进行

工程力学杆件的内力分析和内力图

工程力学杆件的内力分析和内力图

工程力学
第五章 杆件的内力分析与内力图
2. 截面法旳基本环节:
例3: 截面法求内力
F
截开:
替代: 平衡:
F F
FS
F 0
上刀刃 n
n 下刀刃
F Fs 0 Fs F
工程力学
第五章 杆件的内力分析与内力图
2. 截面法旳基本环节总结:
① 截开:在所求内力旳截面处,假想地用截面将杆件一分为二。
②替代:任取一部分为研究对象,将弃去部分对留下部分旳作用, 作用在截开面上相应旳内力(力或力偶)替代。
写剪力方程和弯矩方程旳措施和前面简介旳求内力分量旳措施 和过程相同,所不同旳,目前旳指定横截面是坐标为x旳任意 横截面。x是变量,FS(x)、M(x)是函数。
2. 剪力图和弯矩图:
剪力图
Fs Fs(x) 旳图线表达 例题5-4
弯矩图
M M (x) 旳图线表达 例题5-5
工程力学
第五章 杆件的内力分析与内力图
工程力学 5.2.2 扭矩和扭矩图
第五章 杆件的内力分析与内力图
工程力学
第五章 杆件的内力分析与内力图
5.2.2 扭矩和扭矩图
扭转变形是指杆件受到大小相等,方向相反且作用平面垂直于
杆件轴线旳力偶作用,使杆件旳横截面绕轴线产生转动。
A
B O
一、传动轴旳外力偶矩
A
BO
m
m
1.由定义直接计算
外力偶矩: Me=Fd
L CB段
Fs( x)
RA
P
a L
P(a
x
L)
x M (x) Pa b Px(a x L) L
③根据方程画内力图
工程力学
第五章 杆件的内力分析与内力图

工程力学 第五章 弯曲内力(FS)

工程力学 第五章 弯曲内力(FS)

楼房的横梁:
阳台的挑梁:
(Internal Forces in Beams) 二、弯曲的概念:
受力特点——作用于杆件上的外力都垂直于杆的轴线。 变形特点——杆轴线由直线变为一条平面的曲线。
P M
q
主要产生弯曲变形的杆--- 梁。 RA 三、平面弯曲的概念:
NB
(Internal Forces in Beams) F1 q
A
a m l m x
F
B
F
x
0,
XA 0
Fa M A 0 , RB l F (l a ) Fy 0 , YA l
XA A
YA
F
B
RB
(Internal Forces in Beams) 求内力——截面法 F (l a ) Fy 0 , FS YA l m XA=0A F (l a ) M C 0 , M YA x l x m YA 1、 剪力(Shear force) FS x 构件受弯时,横截面上其作用线平行 于截面的内力. FS 2、弯矩(Bending moment )M M C 构件受弯时,横截面上其作用面垂直 YA 于截面的内力偶矩. M 剪力 C 弯曲构件内力 Fs 弯矩
m (受拉)
m
按变形:当dx 微段的弯曲上凸(即该段的下 半部受压)时,横截面m-m 上的弯矩为负 注:横截面上的弯矩:
-
m
“左顺右逆”为正;反之为负 按受力:“上压下拉”为正,反之为负
(受压)
(Internal Forces in Beams) 例题2 图示梁的计算简图。已知 F1、F2,且 F2 > F1 , 尺寸a、b、c和 l 亦均为已知.试求梁在 E 、 F 点处横截面处 的剪力和弯矩. RA F2 RB F1 a 解: (1)求支反力 R 和 R

第五章杆件的内力与内力图.ppt

第五章杆件的内力与内力图.ppt

FQy
AC: FQy (x) = - FRA = - m / l (0<x ≤ a)
m/l
Mz (x) = - FRAx = - mx / l (0≤x < a)
Mz BC: FQy (x) = - FRA = - m / l (a ≤ x< l )
ma/l mb/l
Mz (x) = m - FRAx = m (l -x ) / l (a < x≤ l )
x
由∑Fxi = 0, - 3 +2x + FN (x) = 0, FN (x) = 3 - 2x . x = 0 时 , FN (x) = 3 KN; x = 2m 时 , FN (x) = - 1KN。
3KN A
B 2KN/ m C
D 1KN
2m
2m
2m
3 FN
(KN)
1
规律:没有力作用的杆段,轴力为常数; 分布荷载为常数的杆段,轴力线性变化; 集中力两侧,轴力有突变。
二、梁的内力——剪力和弯矩
a FPm1 FP2
A
B
m
FRA
x
FRB
FP1
A
m MZ
C
x m FQY
FRA
FQY —— 剪力 MZ —— 弯矩
规 定:
FQY:
∑FP FQY
FQY
左上右下剪力正, 反之为负
∑ FP
∑M
MZ
MZ:
MZ
∑M
上凹下凸弯矩正, 反之为负
a
FP1
m
FP2
A
m
B 由∑Fyi=0, FRA- FP1 - FQY =0
规定:按右手法则,力矩矢的方向指向横截 面的外法线方向为正,反之,为负。

第五章杆件的内力分析与内力图

第五章杆件的内力分析与内力图
对右半段列平衡方程:
P1
FN 2 (x2 ) P3
m
x2 FN 2 m
P3
P2 m
F m
N2 8
轴力方程为:
FN1(x1) P1 0 x1 a
P1
A
P2
aB
P3
C
FN 2 (x2 ) P3 a x2 l
l
画出轴力图如图。
注意 内力图的规定:
P1
(FN)
(1)标出特征点内力的绝对值 (2)内力图与原杆件上下对齐,可不画坐标轴
Mn2
mc
M n2 +mC 0
M n1 mA 76.4 Nm
M n2 114.6 Nm
13
14
三、弯曲(剪力和弯矩)方程及其内力图
1、静定梁的分类(三种基本形式) 简支梁
外伸梁
悬臂梁
15
2、弯曲内力(剪力和弯矩)的正负号规定
① 剪力Fs :
剪力对所取的一段梁上任意一点的矩为顺时针转向时,剪力
T(x1)=MA=m0b (0<x1 a) T(x2)=m0(a+b-x2) (a x2 a+b)
扭矩图如图
m0
AB
C
ab
m0b
(T ) AB C
12
例 传动轴如图所示,转速 n = 500转/分钟,主动轮B输入功率
NB= 10KW,A、C为从动轮,输出功率分别为 NA= 4KW ,
NC= 6KW,试计算该轴的扭矩。
成两部分。
取 取其中任意部分为研究对象,而弃去另一部分。
代用作用于截面上的内力,代替弃去部分对留下部
分的作用力。
平 建立留下部分的Leabharlann 衡条件,确定未知的内力。6

第5章杆件的内力图

第5章杆件的内力图

工程力学工程静力学与材料力学马志涛第5章杆件的内力图5.1.4 杆件内力分量的正负号规则5.1.4 杆件内力分量的正负号规则——轴力▪当轴力背离截面,即杆件受到拉伸时,其轴力为正。

▪当轴力指向截面,即杆件受到压缩时,其轴力为负。

F AB Fm m F N AFm m F B F N m m▪当轴力背离截面,即杆件受到拉伸时,其轴力为正。

▪当轴力指向截面,即杆件受到压缩时,其轴力为负。

FAB Fm mF NAFm mF BF Nm m▪使截开部分顺时针转动为正▪使截开部分逆时针转动为负FF mmFF SFF S▪使截开部分顺时针转动为正▪使截开部分逆时针转动为负FFmmFF SFF S凹面朝上的弯矩为正凹面朝下的弯矩为负M MM M▪按右手螺旋法则,扭矩T 的方向与截面外法线方向一致为正▪按右手螺旋法则,扭矩T 的方向与截面外法线方向相反为负M e M ennⅠⅡM eⅠTTM eⅡ▪按右手螺旋法则,扭矩T的方向与截面外法线方向一致为正▪按右手螺旋法则,扭矩T的方向与截面外法线方向相反为负M eⅠT TM eⅡM e MeⅠⅡnnC▪一直杆,A 端固定,在B 、C 两处作用有集中载荷F 1和F 2,其中F 1=5 kN ,F 2=10 kN 。

▪试画出:杆件的轴力图。

C AB F 1F 2llCAB llF 1F 2F A 解:1. 确定A 处的约束力A 处虽然是固定端约束,但由于杆件只有轴向载荷作用,所以只有一个轴向的约束力F A 。

由平衡方程求得F A =5 kN෍F x =0F A +F 1−F 2=0解:2.确定控制面3.应用截面法求控制面上的轴力用假想截面分别从控制面A 、B'、B"、C 处将杆截开,假设横截面上的轴力均为正方向(拉力),并考察截开后下面部分的平衡。

C ABF 1F 2llCAB llF 1F 2F A在集中载荷F 2、约束力F A 作用处的A 、C 截面,以及集中载荷F 1作用点B 处的上、下两侧横截面都是控制面。

2016工程力学(高教版)教案:第五章杆件的内力分析

2016工程力学(高教版)教案:第五章杆件的内力分析

第五章杆件的内力分析在进行结构设计时,为保证结构安全正常工作,要求各构件必须具有足够的强度和刚度。

解决构件的强度和刚度问题,首先需要确定危险截面的内力。

内力计算是结构设计的基础。

本章研究杆件的内力计算问题。

第一节杆件的外力与变形特点进行结构的受力分析时,只考虑力的运动效应,可以将结构看做是刚体;但进行结构的内力分析时,要考虑力的变形效应,必须把结构作为变形固体处理。

所研究杆件受到的其他构件的作用,统称为杆件的外力。

外力包括载荷(主动力)以及载荷引起的约束反力(被动力)。

广义地讲,对构件产生作用的外界因素除载荷以及载荷引起的约束反力之外,还有温度改变、支座移动、制造误差等。

杆件在外力的作用下的变形可分为四种基本变形及其组合变形。

一、轴向拉伸与压缩受力特点:杆件受到与杆件轴线重合的外力的作用。

变形特点:杆沿轴线方向的伸长或缩短。

产生轴向拉伸与压缩变形的杆件称为拉压杆。

图:5-1所示屋架中的弦杆、牵引桥的拉索和桥塔、阀门启闭机的螺杆等均为拉压杆。

图5-1二、剪切受力特点:杆件受到垂直杆件轴线方向的一组等值、反向、作用线相距极近的平行力的作用。

变形特点:二力之间的横截面产生相对的错动。

产生剪切变形的杆件通常为拉压杆的连接件。

如图5-2所示螺栓、销轴连接中的螺栓和销钉,均产生剪切变形。

图5-2三、扭转受力特点:杆件受到作用面垂直于杆轴线的力偶的作用。

变形特点:相邻横截面绕杆轴产生相对旋转变形。

产生扭转变形的杆件多为传动轴,房屋的雨蓬梁也有扭转变形,如图:5-3所示。

图5-3四、平面弯曲受力特点:杆件受到垂直于杆件轴线方向的外力或在杆轴线所在平面内作用的外力偶的作用。

变形特点:杆轴线由直变弯。

各种以弯曲为主要变形的杆件称为梁。

工程中常见梁的横截面多有一根对称轴(图5-4)各截面对称轴形成一个纵向对称面,梁的轴线也在该平面内弯成一条曲线,这样的弯曲称为平面弯曲。

如图5-4所示。

平面弯曲是最简单的弯曲变形,是一种基本变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AC段
FQ x1 Fp
F 0, F x F 0 M 0, M x M F 2l x 0
y Q 1 p
1 p 1
(0 x1<l )
M x1 M Fp 2l x1 2 Fp l Fp 2l x1 Fp x1
5.3.3 剪力图弯矩图的绘制
例题5-6(p89) 试画出 图示简支梁的剪力图与弯矩图,并确定剪力和弯 矩绝对值的最大值。
解:1、求支反力
FAy 0.89kN , FFy 1.11kN
2、求特定截面上的剪力和弯矩并根据微分 关系作图
集中力作用处,剪力图有突变。 变化值为集中力值。
A截面 : FQ 0.89kN , M 0 B截面 : FQ 0.89kN , M 1.335kN m C截面 : FQ 0.89kN , M 0.335kN m D截面 : FQ 0.89kN , M 1.665kN m E截面 : FQ 1.11kN , M 1.665kN m F截面 : FQ 1.11kN , M 0
3、由图确定剪力和弯矩绝对值的最大值
集中力偶作用处,弯矩图有突变。 变化值为集中力偶值。 集中力作用 处,弯矩图 斜率变化。
FQ
max
1.11kN 位于EF段, M
max
1.665kN m 位于D、E截面
例题5-7(p90)
解题的过程与上题一 样,在此省略。
试画出 图示外伸梁的剪力图与弯矩图。
FQ x FRA qx ql qx
qx2 M x qlx 2
(0 x<2l )
x M 0, M x FRA x qx 0 2
(0 x<2l )
例题5-5(p86) 图示悬臂梁在 B 、C两处分别承受集中力Fp和集中力 偶M=2Fpl作用。梁的全长为2l 。试写出该梁的剪力方程与弯矩方程。 解:需分段建立剪力方程、弯矩方程。
2、根据计算结果作出扭矩图
5.3 剪力图与弯矩图 5.3.1 剪力方程和弯矩方程
描述梁的剪力和弯矩沿长度方向变化的代数方程。 例题5-4(p85) 图示简支梁上承受集度为q的均布载荷作用,梁的长 度为2l 。试写出该梁的剪力方程与弯矩方程。
解:1、求支反力
2 FRA qx FQ x 0
BC段
y Q
(0 x1<l )
2 p
F 0, F x F 0 M 0, M x F 2l x 0 FQ x2 Fp (l x2<2l )
2 p 2
M x2 Fp 2l x2
(l x2<2l )
5.3.2 载荷集度、剪力、弯矩之间的微分关系
由平衡方程 解得
由平衡方程
解得
5.2 轴力图与扭矩图 5.2.1 轴力图
例题5-2(p81) 表示轴力沿杆件轴线变化的图形。 轴力图
2 截面法
3 画轴力图
用轴线方向的坐标轴表示杆截面的位置,其垂 直方向的另一个坐标轴表示轴力的大小。
5.2.2 扭矩图
表示扭矩沿轴线变化的图形。
功率、转速和扭矩的关系
第5章
杆件的内力图
5.1 基本概念与基本方法 5.2 轴力图与扭矩图 5.3 剪力图与弯矩图
5.1 基本概念与基本方法
在外力作用下,明了杆件的内力性质和其在沿杆件长度方向的 变化情况,这是确定杆件的危险截面和变形所必需的。
杆件上内力分量的正负号规则 轴力 无论作用在哪一侧横截面上,使杆件受拉者为正;受压者为负。
例题5-3(p82) 图示之圆轴受到四个绕轴线转动的外加 力偶作用,其力偶矩的大小和方向均示 于图中,其中力偶矩的单位为N· m,轴 尺寸单位为mm。试画出轴的扭矩图。 解:1、应用截面法确定1-1,2-2,3-3 截面处的扭矩:
用轴线方向的坐标轴表示 杆截面的位置,其垂直方 向的另一个坐标轴表示扭 矩的大小。
在这里再次提醒学习者注意 到载荷集度、剪力、弯矩之 间的微分关系
载荷集度为负,弯矩 图凸的方向与M坐标 正方向一致。
剪力图斜率为负,载 荷集度向下。
剪力为零处,弯矩图 有极值。
本章作业:5-5 b)、d);5-6b)、d)
剪力
使截开部分杆件产生顺时针方向转动者为正;反之则为负。
弯矩
作用在左侧截面上使截开部分逆时针方向转动;或者作用在 右侧截面上使截开部分顺时针方向转动者为正;反之则为负。
扭矩
扭矩矢量方向(按右手螺旋定则确定)与截面外法线方向 一致者为正;反之则为负。
例题5-1(p80)
图示悬臂梁承受集中力Fp及集中力偶Mo作用,试 确定截面C及截面D上的剪力和弯矩。
可以证明,载荷集度、剪力、弯矩之 间存在如右所示的微分关系。可以帮 助我们在画剪力图和弯矩图时提高效 率、减少错误。
这种关系表明:
剪力图的斜率等于均布载荷的集度;弯矩图在某 点处的斜率等于该处剪力的数值。 如果某段梁上无分布载荷作用(q =0),则该段梁的剪 力图为水平线,弯矩图为斜直线。 如果某段梁上有均布载荷作用(q =常数),则该段梁的剪力 图为斜直线,弯矩图为二次抛物线。 弯矩图的抛物线的凸凹性与载荷集度的正负有关。当q为正(向上)时, 凹的方向与M坐标正方向一致;当q为负(向下)时,凸的方向与M坐 标正方向一致。
相关文档
最新文档