金融数学-课后习题答案4
金融数学课后习题
![金融数学课后习题](https://img.taocdn.com/s3/m/9191d00a52d380eb63946d16.png)
第一章 利息的度量1.现在投资600元,以单利计息,2年后可以获得150元的利息。
如果以相同的复利利率投资2000元,试确定在3年后的累计值。
2.在第1月末支付314元的现值与第18月末支付的271元的现值之和,等于在第T 月末支付1004元的现值。
年实际利率为5%,求T 。
3.在零时刻,投资者A 在其账户存入X ,按每半年复利一次的年名义利率i 计息。
同时,投资者B 在另一个账户存入2X ,按利率i (单利)来计息。
假设两人在第8年的后6个月中将得到相等的利息,求i 。
3.如果年名义贴现率为6%,每四年贴现一侧,试确定100元在两年末的累计值。
4.一项投资以δ的利息力累积,27.72年后将翻番。
金额为1的投资以每两年复利一次的年名义利率δ累积n 年,累计值将成为7.04.求n 。
5.一直利息力为tt +=21δ,一笔金额为1的投资从0=t 开始的前n 年赚取的总利息是8.求n 。
6.已知利息力为1003t t =δ,求)3(1-a 。
第二章 等额年金1.某人想用分期付款的方式购买一辆现价为10万元的汽车,如果手气支付一笔款项后,在今后5年内每月末付款2000元即可付清车款,假设每月复利一次的年名义利率为8%,试计算他首期付款金额为多少?2.某人将在10年后退休,他打算从现在开始每年初向一种基金存入2000元,如果基金的收益率为6%,试计算他在退休时可以积存多少退休金。
3.某人从2000年3月1日起,每月末可以领取200元,2010年5月末是最后一次领取。
如果每月复利一次的年名义利率是6%,试计算:(1)年金的现值;(2)年金的终值;(3)年金在2005年12月31日的值。
4.某人在今后20年内,每年初向一基金存入10000元。
从第30年开始,每年末可以领取一笔退休金。
该基金的收益率为6%。
(1)如果限期领取20年,每次可以领取多少?(2)如果无限期的领下去(当他死亡后,由其继承人领取),每次可以领取多少?5.借款人原计划在每月末偿付1000元,用5年的时间还清贷款。
金融数学_常州工学院中国大学mooc课后章节答案期末考试题库2023年
![金融数学_常州工学院中国大学mooc课后章节答案期末考试题库2023年](https://img.taocdn.com/s3/m/011974fbd4bbfd0a79563c1ec5da50e2534dd149.png)
金融数学_常州工学院中国大学mooc课后章节答案期末考试题库2023年1.在BS模型中,在其他参数不变的情况下,看跌期权的价格关于波动率,是严格单调递增的。
()参考答案:正确2.计算期权价格的时候是从期初支付往终端算。
()参考答案:错误3.障碍期权和欧式期权都具有路径依赖性。
()参考答案:错误4.一份普通欧式期权的Gamma大于零。
()参考答案:正确5.欧式看跌期权的价格上限是执行价格。
()参考答案:错误6.无套利原理是指:在一个有效运行的金融市场中,套利机会不可能(长时间)存在。
()参考答案:正确7.远期价格总是围绕着远期价值上下波动。
()参考答案:错误8.二叉树定价的看涨期权价格与物理测度下资产价格上涨概率p的大小有关系。
()参考答案:错误9.标的资产的价格波动是影响衍生品价格的重要因素。
()参考答案:正确10.以下说法错误的有()。
参考答案:若以ln(K/Ft)为横坐标,波动率微笑曲线平价点右边的点通常对应着虚值看跌期权_由于期限越长,不确定性越高,因此隐含波动率期限结构总是向上倾斜的_波动率曲面分为隐含波动率曲面和实际波动率曲面_若以ln(K/Ft)为横坐标,波动率微笑曲线平价点左边的点通常对应着虚值看涨期权11.BS模型包括下列哪些前提假设()。
参考答案:标的资产价格服从几何布朗运动_证券允许卖空_证券可以任意分割且交易没有成本_市场上不存在无风险套利机会12.使用风险中性定价法的前提包括()。
参考答案:可以自由卖空_没有套利机会_没有交易成本13.假设W是标准布朗运动,在随机微积分的计算中,下列哪些计算规则是正确的()参考答案:dt * dt = 0_dw * dw= dt_dt * dw =014.B-S期权定价方程求解的思路是()。
参考答案:热扩散方程15.从交易层面来看,属于零和游戏的有()。
参考答案:互换_期货_期权16.金融产品今天的价值,应该等于未来收益的贴现。
()参考答案:正确17.Vasicek模型是一个满足均值回复特征的随机利率模型。
金融数学引论北大版第4章答案
![金融数学引论北大版第4章答案](https://img.taocdn.com/s3/m/b99dcd2cf68a6529647d27284b73f242336c31df.png)
金融数学引论北大版第4章答案第四章习题答案1 现有1000 元贷款计划在5 年内按季度偿还。
已知季换算名利率6%,计算第2 年底的未结贷款余额。
解:设每个季度还款额是R ,有Ra(4)5p6%¬= 1000解得R ,代入B2 的表达式B2 = Ra(4)3p6%¬= 元2 设有10000 元贷款,每年底还款2000 元,已知年利率12% ,计算借款人的还款总额等于原贷款额时的未结贷款余额。
解:n =100002000= 5B5 = 10000 ×(1 + i)n ?2000s n p12% ¬= 元3 某贷款在每季度末偿还1500 元,季换算名利率10% ,如果已知第一年底的未结贷款余额为12000 元,计算最初的贷款额。
解:以季度为时间单位,i = % 。
B0 = B1 ? v + 1500a4p i ¬= 元4 某贷款将在15 年内分期偿还。
前5 年每年底还4000 元,第二个5 年每年底还3000 元,最后5 年每年底还2000 元。
计算第二次3000 元还款后的未结贷款余额的表达式。
解:对现金流重新划分,有B7 = 2000a¬8p + 1000a¬3p北京大学数学科学学院金融数学系第1 页版权所有,翻版必究5 某贷款将以半年一次的年金方式在3 年半内偿还,半年名利率8% 。
如果已知第4 次还款后的未结贷款余额为5000 元,计算原始贷款金额。
解:设原始贷款额为L ,每次还款为R ,以半年为时间单位,有5000 = Ra3p4% ¬L = Ra7p4% ¬整理得:L = 5000 ? a¬7pa¬3p= 元6 现有20000 元贷款将在12 年内每年底分期偿还。
若(1+i)4 = 2 ,计算第4 次还款后的未结贷款余额。
解:设第4 次还款后的未结贷款余额为L ,每次还款为R ,有20000 = R ? a12p i ¬L = R ? a8p i ¬把(1 + i)4 = 2 代入整理得:L = 5000 ? 1 ?(1 + i)?81 ?(1 + i)?12= 元7 20000 元抵押贷款将在20 年内每年分期偿还,在第5 次还款后,因资金短缺,随后的两年内未进行正常还贷。
金融数学-课后习题答案4
![金融数学-课后习题答案4](https://img.taocdn.com/s3/m/ba92fe0fe87101f69e3195da.png)
16. 某贷款为期 5 年,每半年末还款额为 1,每年计息 2 次的年名义利率为 i,计算第 8 次还款中的 本金部分。
i P8 = Rv10+1−8 = v 3 = (1 + ) −3 2
17. 甲借款人每年末还款 3000 元。若第三次还款中的利息部分为 2000 元,每年计息 4 次的年名义利 率为 10%,计算第 6 次还款中的本金部分。
12. 某借款人每年末还款额为 1,为期 20 年,在第 7 次还款时,该借款人额外偿还一部分贷款,额 外偿还的部分等于原来第 8 次偿还款中的本金部分, 若后面的还款照原来进行, 直到贷款全部清偿, 证明整个贷款期节约的利息为 1- v 。
13
P = P8 = Rv13 = v13 B7 = a13 − v13 = a12 I1 = 13 − a13 ⇒ ∆I = I1 − I 2 = 1 − (a13 − a12 ) = 1 − v13 I = 12 − a 2 12
g = 1.002 1.002 = 0.9979 1 1 ⇒ gv = 12 = 12 1.05 v = 1.05 1 + i 361 125000 = Pv + Pgv 2 + L + Pg 359 v 360 = P × gv − ( gv) g 1 − gv ⇒ P = 125000 × 1.002 × 1 − 0.9979 = 493.85 0.9979 − 0.9979361
5. 某贷款期限为 15 年,每年末还款一次,钱 5 次还款每次换 4000 元,中间 5 次还款每次还 3000 元, 后 5 次还款每次换 2000 元,分别按过去发和未来发,给出第二次 3000 元还款之后的贷款余额表达
《_金融数学-课后习题答案》
![《_金融数学-课后习题答案》](https://img.taocdn.com/s3/m/45729f7b590216fc700abb68a98271fe900eaf64.png)
金融数学-课后习题答案本文档为金融数学课后习题的参考答案。
在解答问题时,我会尽量给出详细的步骤和推导过程,帮助读者更好地理解金融数学的概念和方法。
1. 第一章:时间价值1.1 问题一题目:如果我现在存入1000元,年利率是5%,请问5年后我能得到多少钱?解答:首先需要计算每年的复利,即每年利息和本金的总和。
根据复利计算公式:年末总金额 = 本金 * (1 + 年利率)^时间年数代入数据进行计算:年末总金额 = 1000 * (1 + 0.05)^5 = 1000 * 1.2762815625 ≈ 1281.28元因此,5年后你能得到大约1281.28元。
1.2 问题二题目:如果我希望在5年后拥有2000元,年利率是5%,请问我需要存入多少钱?解答:首先需要计算本金与利息的比例,然后根据比例计算需要的本金。
根据复利计算公式:年末总金额 = 本金 * (1 + 年利率)^时间年数可以将该式转化为:本金 = 年末总金额 / (1 + 年利率)^时间年数代入数据进行计算:本金 = 2000 / (1 + 0.05)^5 = 2000 / 1.2762815625 ≈ 1567.45元因此,你需要存入大约1567.45元。
2. 第二章:贴现与现值2.1 问题一题目:如果一笔未来支付3000元的现金流在5年后,年利率是6%,请问它的现值是多少?解答:为了计算现值,我们需要使用贴现率(年利率)和时间年数。
根据贴现计算公式:现值 = 未来支付金额 / (1 + 年利率)^时间年数代入数据进行计算:现值= 3000 / (1 + 0.06)^5 = 3000 / 1.33822557689 ≈ 2241.53元所以,该未来支付的现金流的现值大约为2241.53元。
2.2 问题二题目:如果我希望在5年后得到3000元的现金流,年利率是6%,请问我愿意支付多少现值?解答:为了计算现值,我们使用贴现率(年利率)和时间年数。
孟生旺《金融数学基础》参考答案
![孟生旺《金融数学基础》参考答案](https://img.taocdn.com/s3/m/7269efb204a1b0717fd5ddd7.png)
孟生旺《金融数学基础》参考答案(中国人民大学出版社,2015年2月第一版)第1章 利息度量1.1360021500.125,2000(1)2848i i i ⨯=⇒=+=1.2 /121/1218/121004314271141.6T v v v T =+⇒= 1.3:(2)2i A X i X =⋅, ()()1615:1/21/2B X i X i +-+ 1615[(1/2)(1/2)]0.09458X i i i X i +-+=⋅⇒=1.427.72e 20.025δδ=⇒=, 当0.5i δ= 时, /2(12)7.0480n n δ+=⇒=1.5 1/42100(146%)114.71-⨯⨯-⨯=1.6 ()()11118//mmm m i i d d m m m -+=+=-=-⇒=⎡⎤⎡⎤⎣⎦⎣⎦1.7 12:()(1.01)tA a t =, 2/12:()e tB a t =, 212/12(1.01)e 1.43t tt =⇒=1.8 2:()exp()/2A a t an bn =+, 2:()exp()/2B a t gn hn =+, 2()/()n a g h b =--1.9 8512()100(1)exp /4(1)d 2600.129a t d t t d --=-⋅⎡⎤+=⇒=⎢⎥⎣⎦⎰ 1.10 11/(1)t δ=+, 222/(1)t t δ=+, 0.41t = 1.11 2()(1)a t t =+1111300(3)600(6)200(2)(5)=315.82a a a X a X ----⨯+⨯=⨯+⨯⇒1.12 ()10.2025330(3)exp e/100d a t t --==-⎰.1.13 20.5()0.040.031,(0.5)/(0.5)0.068a t t t a a δ'=++== 1.14 ()320(3)100exp/100d 109.42A t t X X=⋅+=+⎰()623(6)(109.42)exp /100 1.8776(109.42)A X t dt X =+⋅=+⎰(6)(3)(109.42)(0.87761)784.61A A X X X -=+=⇒=1.15 t = 4时的累积值为:()30.04501000exp0.02d e 1144.54t t ⋅=⎰令名义利率为x , 则 161000(1/4)1144.540.03388x x +=⇒=1.16 ()20.075i=, (4)(2)(2)21/2/2/2ln (1)41(1)0.1466d i i δ⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦+=++-+= 1.17 ()()510205expd exp/25d 2.71830.414kt t kt t k ⋅=⇒=⎰⎰1.18 0()exp d (2)/2,()(0)/216tt a t t t a n a n n δδ⎡⎤==+=-=⇒=⎢⎥⎣⎦⎰ 1.19 201000exp 1068.94d t t δ⋅=⎡⎤⎢⎥⎣⎦⎰ 1.20 1010267.5, 10(1.0915)30(1.0915), 2.3254nn A B n --==+=第2章等额年金2.1 1363元 2.2 279430元 2.3260052.4 基金在第30年初的现值为658773.91, 如果限期领取20年, 每次可以领取57435, 如果无限期地领下去, 每次可以领取39526 2.5 31941.68元, 21738.97元, 46319.35元 2.6 9年 2.7 29月末2.8 0.1162 2.9 8729.23 2.10 45281.05 2.11 0.2 2.12 302 2.13 4.06%2.14假设最后一次付款的时间为n , 则有:4410000010000(10.05)23.18n a n --=+⇒=假设在23年末的非正规付款额为X , 则有4231910000010000(10.05)(10.05)1762.3a X X --=+++⇒=2.15 601004495.503860000.749329k k a v v k ==⇒=⇒=2.16 20101020153810721072153846600.08688a a v v i =⇒-+=⇒=2.17 设j 为等价利率, 则0.040604j =, 1681000()32430s s =+=&&&&累积值 2.18 以每半年为一个时期, 每个时期的实际利率为/2i , 两年为一个时期的实际利率为()411/2j i =-+, 故 5.891/0.08j i ⇒==2.19 ()20101012126410.7520.09569i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=2.20 {}ln(1)1exp d d 1n nta n r t r==+-+⎰⎰2.21 20()exp d (10.5)tr a t r t δ==+⎡⎤⎣⎦⎰, 5(5)(5)(5)...12.828(1)(2)(5)a a a s a a a =+++=2.22()8888111188100d (1)d tt v a a t v t δδδδ-==-=-=⎛⎫- ⎪⎝⎭⎰⎰()()5/48101810018100v v δδδδ=--⋅⇒=--⎡⎤⎣⎦()[]5/410101181001v a δδδδ----==2.23 1/302.24 1[ln(/)]/i δδ- 2.25 4e 12e 3n n δδ=⇒=, e 112121/6n n s δδδ-=⇒=⇒=第3章变额年金3.1 ()29/229229 /22972.8865.440.1/2j j j s j Is j s j j -⎡⎤=⋅=⋅⇒=⇒=⎢⎥⎢⎥⎣⎦&&&& 3.2 1010900100()a I a += 1088.693.3 2312(1)23......n n n nn i a a v v v nv nv nv id++++++++++==3.4 335792222468...49.89(1)v X v v v v v =++++==-3.5A 的现值为:102010105555()X a a v a ==+B 的现值为:1020101010306090X a v a v a =++ 故 10102055(1)3060900.07177574.74v v vi X +=++⇒=⇒=3.6 1()()n n n n nIa v Da a a -+=⋅&& 3.7 71520()1602146.20Da a +=3.8 11846.663.9每季度复利一次的利率为0.0194, 所有存款在第八年末的终值为40.019480.08()183.01s Is =&&, /0.08183.0114.64X X =⇒= 3.10 3433203.11 166073.12 现值为5197.50, 累积值为9333.98.3.13 111193070()9998.16a Ia +=&&&&, 终值为23312.11. 3.14 现值为111120()2803246.03Da a +=, 在第20年末的终值为10410.46. 3.15 212.343.16 此项投资在第10年末的终值为:106%106%80000(5000)500()X s Ds =-+&&&&80000(5000)(13.97164)500(83.52247)7736.88X X =-+⇒=3.17 ()4106%116%100()200015979.37X v Da a =+=. 3.18 第20年末的终值为:16115%(1)200()19997.38i Ia +=3.19 前5年的现值为77.79, 从第6年开始, 以后各年付款的现值为:()510.092010.09v k k +⎛⎫+ ⎪-⎝⎭, 总现值为335, 故 3.76%k =.3.20 104%104%9010()1735.96s I s +=3.21 第8年的终值为:87%87%605()894.48478s Ds +=第10年末的终值为1024.10. 3.22100(43)exp (0.030.04)d d 89.97t t s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 3.23 在时刻5的现值为:102255(1.22)exp (0.00060.001)d d 382.88tt t s s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 时刻零的现值为:50382.88exp (0.0040.01)d 346.44t t⎡⎤-+=⎢⎥⎣⎦⎰ 3.24 ()10100250009exp 1/(9)d d 190131.58t k tk s s t k k ⎡⎤=++=⇒=⎢⎥⎣⎦⎰⎰第4章收益率4.10.1483 4.2 1221.99 4.3 时间加权收益率0.5426, 币值加权收益率0.5226, 两者之差0.0236.4.4 93000 4.5 −10%4.6 120100506565(10050)136,0.1834100120100501009/12503/12D D i D D --+-⋅⋅=⇒===-+-+⨯-⨯ 4.7 0.1327 4.8 7.5% 4.9 236.25 4.100.06194.11 5年末投资者共得到56245.5元. 设购买价格为P , 要得到4%的收益率, 有5(1.04)56245.546229.7P P =⇒=4.12 20.0820/220/25000100000(5000)()34.710.1i i s i Is s i =+⇒=⇒=&&&& 4.13 再投资利率为8.73%. 投资者B 的利息再投资后的积累值为6111.37.4.14 ()10200.75100.7512126410.7520.09569i i i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=4.15 3项投资在2015年初的余额为320.46万元, 在2015年末的余额为344.56万元, 故2015年中所获利息为24.10万元.第5章 贷款偿还方法5.1 X = 704.065.2 设每年的等额分期付款金额为R , 由已知28(1)135R v -=, 147(1)108(1)72R v R v -=⇒-=5.3 301301(1)/32/322.69t t R vR v t -+-+-=⇒=⇒=故在第23年分期付款中利息金额最接近于付款金额的三分之一. 5.4 109832290.35,408.55Rv Rv Rv Rv Rv Rv =++=++0.05,150.03,1158.4i R L ⇒===. 支付的利息总金额为10341.76R L -=5.5 1510.65.6 (1)借款人第2年末向偿债基金的储蓄额应为4438.42(2)第2年末的余额为9231.91 (3)第2年末的贷款净额为10768.095.7 0| 4| 6104.56/20000/8.4911%k i i R L a a i ===⇒= 5.8 第5次偿还中的利息为66.89万元.5.9 22912125,0001 1.02(1.02)(1.02)526i Ra v v v R ⎡⎤=+++⋅⋅⋅⋅+⇒=⎣⎦5.10 各期还款的积累值为 20200.0510*******(1)0.0616s i i =+⇒=5.11 121212155000500.3812 0.09173077.9455000(1)500.38jn njn a i j j s -=⎧⎪⇒==⎨=+-⎪⎩ 5.12 第一笔贷款偿还的本金为490.34, 第二笔贷款偿还的本金为243.93, 两笔贷款的本金之和为 734.27. 5.13 3278.5.14 第3次支付的本金金额为784.7, 第5次支付的利息金额为51.4. 5.15 0.1196. 5.16 64.74.5.17 调整后最后一次的偿还额为1239.1. 5.18 第11年末.5.19 调整后借款人增加的付款为112.5.20 20301019100001900100()5504.7Xa v a v Ia X =++⇒=. 5.21 11190.11.第6章证券定价6.1 价格为957.88元, 账面值为973.27元.6.2价格为974.82元, 账面值为930.26元(理论方法), 929.82(半理论方法), 1015(实践方法.6.37.227% . 6.4 6.986% .6.5 10201010101000.11000.091000.0897.74P a v a v a --=⨯+⨯+⨯=元.6.6债券每年末的息票收入为80元, 故有()()()54321082.27(1)801801801099.84(1)80(1)80 6.5%V V i V i i i i i ==+-=+-+-⎡⎤⎣⎦=+-+-⇒=(3)3 8010001099.8412n n i a v n --⋅+=⇒= 1212 0.065801000(1.065)1122.38P a -=⋅+=元.6.7应用债券定价的溢价公式可以建立下述三个等式:20202040(1) 45(2) 50(3) 2X C i a C Y C i a C X C i a C ⎛⎫-=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭由(3)/(1)得:501302403Ci Ci Ci --=⇒=-由(1)(3)+得:2020(902)902XX Ci a a Ci=-⇒=-所以有 20(45)/25Y Ci a X =-==元. 6.8 t = 7/12, 理论方法的账面值为87.35元, 实践方法的账面值为87.35元.6.9110019019/110910/33n n n v v a =⇒=⇒= 0.0311********.03n n P v a =+=.6.10 40n n P a M v =+⋅, 30n n Q a M v =+⋅, 令债券C 的价格为X , 则有8054n n X a M v X P Q =+⋅⇒=-.6.11 ()()()()1010 0.041010 0.0510*******.040.03581.49100011001.05P r a r P r a --⎧=+⎪⇒=⎨-=+⎪⎩ ()1010 0.0351*******.0351371100 1.0351371070.80X a -=⨯+⨯=6.12 ()()()219202320105050 1.03 1.03 1.03837.78P v v v v v ⎡⎤=+++++=⎣⎦L .6.13 偿还值的现值为55200584.68()v a =元, 未来息票收入的现值为5556012()355.99()a v Da +=元, 故债券的价格为940.67元. 也可以应用Makeham公式计算, 即0.06/0.07(1000584.68)584.68940.67P =⨯-+=元.6.14 2020 10104010001071.06401041.58P a v P P a X v X ⎧=+=⎧⎪⇒⎨⎨=+⋅=⎪⎩⎩6.15 债券每年末的息票收入为60元, 修正息票率为60/1050 = 5.7143%, 小于投资者所要求的收益率8%, 所以赎回越晚(即到期时赎回), 债券的价格越低. 由此可得该债券的价格为1010501050(5.7143%8%)888.94P a =+⨯-⨯=元.6.16 股票在第六年的红利为60.50.2(1.10)⨯⨯, 以后每年增长10%. 应用复递增永续年金的公式, 该股票的价格为6510.50.2(1.10) 1.1110.510.110.1P -=⨯⨯⨯⨯=-元.6.17 投资者每个季度的实际收益率为 2.47%j =, 应用复递增永续年金的公式, 投资者购买该股票的价格为0.3/(2.47%2%)63.83P =-=元. 6.18 1.5/305%10%i =+=. 6.19 30元.6.20 每股利润为109.500.50-=元, 保证金为100.505⨯=元, 保证金所得利息为50.0500.25⨯=元, 每股红利为0.1元, 卖空收益率为(0.50.250.1)/513%+-=.6.21 8.59%第7章利率风险7.115D =马, 基于名义收益率的修正久期为15/(11%)14.85D =+=. 年实际收益率为12.68%i =, 基于实际收益率的修正久期为15/(112.68%)13.31D =+=.7.2 1()/()e 1n nD P P δδδδ'==--7.3 假设债券的面值为100, 则92.648.027.57P D D ===马,, 7.4债券的马考勒久期可以表示为nm j a D m=&&马, 其中()/m j im =. 变形可得:()()()11(1)1(1)(1)n n m m m nm jni v D j a j a m i d--+-=+=+==&&马. 7.5 对年金的现值关于利率i 求导, 应用修正久期的定义公式可得111n nnv D i v +=--.7.6对于期末付永续年金, 现值为()1/P i i =, 2()1/P i i '=-, 所以修正久期为1/D i =, 马考勒久期为=(1)(1)/D D i i i +=+马.7.7对于期初付永续年金, 现值为()(1)/P i i i =+, 2()1/P i i '=-, 所以修正久期为1/[(1]D i i =+), 马考勒久期为=(1)1/D D i i +=马.7.8 24 /2()510096.53()169.29 1.75()i P i P a v P i D P i ''=+=⇒=-⇒=-= 7.97.49D =效7.10 7.8861D D i ==+马, () 1.18%Pi D P∆=-∆⋅= ⇒ 新的债券价格近似为:75.98 1.01876.88⨯= 7.11 8.92D =效, 13.35C =效.2()0.5()8.85%Pi D i C P∆=-∆⋅+⋅∆⋅=-, 债券的新价格近似为95.59元. 7.12 修正久期为8.12, 凸度为101.24. 7.13 马考勒凸度为105.15.7.14 22231d 1d 216.67d d P P P i i i i i==⇒=- = ()116.67()P i D P i i'⇒=-==2()2555.55()P i C P i i''⇒=== 7.152()0.5() 4.28%Pi D i C P∆=-∆⋅+⋅∆⋅=- 7.16 负债的现值为12418.43L P =, 负债的马考勒久期为5LD =马, 负债的马考勒凸度为25L C =马. 不妨假设两种零息债券的面值均为1000元, 则4年期零息债券的价格为441000/(1)683.01P i =+=元, 10年期零息债券的价格为10101000/(1)385.54P i =+=元. 假设有%x 的债券投资4年期的零息债券, (1%)x -的债券投资10年期的零息债券, 由ALD D =马马, 有:(%)(4)(1%)(10)5%83.33%x x x +-=⇒=投资4年期零息债券的金额为10348.28元, 投资10年期零息债券的金额2070.15元. 7.17 债券A 的价格为982.17元, 马考勒久期为1.934, 马考勒凸度为3.8. 债券B 的价格为1039.93元, 马考勒久期为4.256, 马考勒凸度为19.85. 在债券A 上投资11.02%, 在债券B 上投资88.98%, 则债券组合的马考勒久期等于负债的马考勒久期, 均为4年, 债券组合的马考勒凸度为18.08, 大于负债的马考勒凸度16, 满足免疫的条件. 7.18 各种债券的购买数量分别如下:购买5年期债券的数量 80000 购买4年期债券的数量 300000 购买2年期债券的数量 600000 购买1年期零息债券100000购买各种债券以后净负债的现金流如下(单位:万元): 年度 1 2 3 4 5 负债的现金流1794 6744 144 3144 824 5年期债券的现金流 24 24 24 24 824 净负债的现金流 1770 6720 120 3120 0 4年期债券的现金流 120 120 120 3120 0 净负债的现金流 1650 6600 0 0 0 2年期债券的现金流 600 6600 0 0 0 净负债的现金流 1050 0 0 0 0 1年期债券的现金流 1050 0 0 0 0 净负债的现金流第8章利率的期限结构8.1一年期债券的价格为102.78P =;两年期债券的价格为92.96P =;三年期债券的价格为112.43P =.11111102.788%1s s =⇒=+ 2212323123510592.969.03%1(1)1515115112.4310.20%1(1)(1)s s s s s s s =+⇒=++=++⇒=+++8.2现金流分别按对应的即期利率折现得债券的价格为:231010110105.751.05 1.06 1.08P =++= 8.3 各年远期利率分别为8%、10.1%和12.6%. 8.4假设债券的面值为100元, 计算5年期债券的价格:2345234512345234123410101010110101010101101.07 1.07 1.07 1.07 1.071(1)(1)(1)(1)1111 3.741(1)(1)(1)s s s s s s s s s ++++=+++++++++⇒+++=++++每年支付40元的5年期期初付年金按对应的即期利率折现即得其现值为:23412341111401189.751(1)(1)(1)s s s s ⎡⎤++++=⎢⎥++++⎣⎦8.5由远期利率计算的债券价格为:1010110107.251.07(1.07)(1.05)(1.07)(1.05)(1.1)++=(元)8.6假设债券的面值为100元, 则有:001041004%(1)f f =⇒=+1001200101261061008.16%(1)(1)(1)8810810012.69%(1)(1)(1)(1)(1)(1)f f f f f f f f f f f ⇒=+⇒=+++⇒=++⇒=++++++8.7 应用即期利率和远期利率的关系, 有101022012330123116%(1)(1)(1) 5.50%(1)(1)(1)(1) 6.98%s f s f s f f s s f f f s +=+⇒==+=++⇒=+=+++⇒=8.8用t C 表示债券在t 年末的现金流入, 则有:111120%1.21C Cs s =⇒=+ 1212222220%1.2 1.2 1.2(1)C C C C s s +=+⇒=+ 33121232323320%1.2 1.2 1.2 1.2 1.2(1)C C C C C Cs s ++=++⇒=+ 8.91001120%s f f +=+⇒=3211221.21.2(1.2)(1)20%,120%1.2f f f =+⇒==-=8.10 00110106 3.77%1f f =⇒=+ 1001200101251059512.20%1(1)(1)991091029.37%1(1)(1)(1)(1)(1)f f f f f f f f f f f =+⇒=+++=++⇒=++++++用远期利率计算年息票率为15%, 面值为100元的3年期债券的价格:0010121515115117.651(1)(1)(1)(1)(1)P f f f f f f =++=++++++ 8.11 用远期利率分别计算3年期和4年期零息债券的价格可得:01210082(1)(1)(1)f f f =+++,30123100759.33%(1)(1)(1)(1)f f f f f =⇒=++++8.12 21012012115%,(1)(1)(1)6%s f s s f f s +=+⇒=+=++⇒=假设债券的面值为100元, 则有:3233881081008.2%1.05 1.06(1)s s =++⇒=+8.13 通过收益率计算的债券价格为 2610693.061.1(1.1)P =+= 通过即期利率计算的债券价格为2610694.831.07(1.09)P =+= 债券价格被低估了1.77元, 故可以按94.83元的价格购买一个2年期债券, 同时按即期利率出售一个1年期的面值为6元的零息票债券和一个2年期的面值为106元的零息票债券.8.14 与远期利率一致的债券价格为5510597.421.05(1.05)(1.06)(1.05)(1.06)(1.07)P =++=(元) 债券的市场价格为100元, 说明债券被高估了, 因而存在套利机会.套利者可以按100元的价格卖出一个三年期债券, 同时将97.42元按4%的利率投资一年. 在第一年末, 支付已出售债券的5元利息后, 把剩余的资金在第二年按6%的远期利率再投资一年. 在第二年末, 支付已出售债券的5元利息后, 把剩余的资金在第三年按8%的远期利率进行投资. 在第三年末的累积值正好用于支付套利者所售债券在第三年末的偿还值. 完成上述步骤后, 套利者即可在当前时刻获得100 - 97.42 = 2.58元的无风险收益.第9章远期、期货和互换9.1股票多头的回收和盈亏如下表所示: 1年后的股票价格多头的回收多头的盈亏50 50 −16 60 60 −6 70704如果1年后的股票价格为66元时, 则股票多头的回收为66元. 购买股票的初始费用在1年后的累积值为66元, 所以盈亏为0元. 9.2股票空头的回收和盈亏如下表所示, 与多头的回收和盈亏正好相反. 1年后的股票价格空头的回收 空头的盈亏50 −50 16 60 −60 6 70−70−4如果1年后股票的价格是66元时, 则空头的回收为−66元. 初始所得在1年后的累积值为66元, 所以盈亏为 0元. 9.3 40.06/40.061(105 1.7e )e 104.54t t F -==-⨯=∑(元)9.4日股利为0.02/3651050.00575⨯=元. 若在年初持有一单位股票, 年末将持有0.02e 1.0202=单位. 若要在年末持有一单位股股票, 年初应持有0.02e 0.9802-=单位,故投资额为0.02105e 102.92-=元. 9.5(1)0.060.570e 72.13F ⨯=⨯=元. (2)0.0670e 720.032δδ-⨯=⇒=.9.6无套利的远期价格为 0.060.5105108.20F e ⨯==(元)(1)远期价格115 > 108.20, 所以投资者可以先签出一份远期合约, 约定在6个月末以115元的价格卖出股票. 同时借入105元购买股票, 承诺在6个月末还款. 到6个月末, 以115元卖出手中的股票, 同时偿还借款108.20元, 最终无风险获利6.80元. (2)远期价格107 < 108.20, 所以投资者可以先签订一份远期合约, 约定在6个月末以107元购买股票. 同时将手中持有的股票卖出, 获得105元, 将这105元投资于5%的零息债券, 6个月末可以获得108.20元. 6个月末利用远期合约买入股票, 最终获得无风险利润1.20元.9.7 22838483.491.05 1.055 1.05 1.055x xx +=+⇒= 9.8(1)232382838482.981.05 1.055 1.06 1.05 1.055 1.06x x xx ++=++⇒= (2)2323838483.501.055 1.06 1.055 1.06x xx +=+⇒= 9.9四个时期的浮动利率分别为0.06、 0.07、 0.08和 0.09. 互换利率为0.0745.9.10 应用债券组合的定价方法:0.13/120.1059/120.1115/120.13/124e 4e 104e 98.24(5.1100)e 102.5198.24102.51 4.27B B f B B -⨯-⨯-⨯-⨯=++==+==-=-=-固浮浮固第10章 期权10.1 远期多头的回收分别为−10元、−5元、0元、5元和10元, 空头的回收是其相反数. 看涨期权多头的回收分别为0元、0元、0元、5元和10元. 看跌期权的回收分别为10元、5元、0元、0元和0元.10.2 回收分别为0元、0元和5元. 盈亏分别为−6.01元、−6.01元和−1.01元.10.3 看跌期权的回收分别为5元、0元和0元. 盈亏分别为3.96元、−1.04元和−1.04元. 10.4 组合的回收分别为105元、105元、110元和115元. 组合的盈亏分别为−7.56元、−7.56元、−2.56元和2.44元.10.5 组合的回收分别为−105元、−105元、−110元和−115元. 组合的盈亏分别为12.81元、12.81元、7.81元和2.81元.10.6 多头的盈亏为0.95元, 盈亏平衡点为42.05元. 10.7 多头的盈亏为3.47元, 盈亏平衡点为28.53元. 10.8 看跌期权的期权费是3.13元. 10.9 10.2417d =, 20.09167d =.根据Black−Scholes 公式, 欧式看涨期权价格为:12()e () 3.61rTC S d K d -=Φ-Φ=根据平价公式, 欧式看跌期权价格为e 2.38rT P C K S -=+-=10.10 1.0905u =, 1/0.9170d u ==, 0.5266r t e dp u d∆-==- 欧式看跌期权的价值为2.62, 相应的二叉树如下:美式看跌期权的价值为2.71, 相应的二叉树如下:10.11 1.0524u =, 1/0.9502d u ==, ()0.5118r tedp u dτ-∆-==-欧式看涨期权的价值为19.63, 相应的二叉树如下:10.12 回收和盈亏如下表:股票价格 看跌期权回收总回收 成本及其利息 盈亏 90 5 95 −105.98 −10.98 100100−105.98−5.9810.13回收和盈亏如下表:股票价格看涨期权回收股票空头回收总回收净收入及其利息盈亏90 0 −90 −90 94.03 4.03100 5 −100 −95 94.03 −0.97 10.14回收和盈亏如下表:股票价格看涨期权回收空头回收总回收净收入及其利息盈亏100 0 −100 −100 97.44 −2.56 110 5 −110 −105 97.44 −7.5610.15回收和盈亏如下表:股票价格看涨期权回收看跌期权回收贷出资金回收总回收净成本及其利息盈亏90 0 −5 95 90 −105 −15100 5 0 95 100 −105 −5 10.16回收和盈亏如下表:股票价格看涨期权回收看跌期权回收借入资金的回收总回收净收入及其利息盈亏100 0 5 −105 −100 105 5 110 −5 0 −105 −110 105 −510.17105(9.31 1.69) 1.0597--⨯=10.18通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 −2.46 −2.5100 5 0 5 −2.46 2.54 10.19通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 3.41 3.41 100 0 −5 −5 3.41 −1.59第11章随机利率11.1 A 10的完整分布如下:概率 A 10 (A 10)2 0.20 1.63 2.65 0.40 2.10 4.41 0.402.918.48(1) 十年末累积值的期望为2330.05元.(2) 十年末累积值的方差为255027.66, 标准差为505.11.2 期望累积值为2593.74元. 累积值的方差为83865.54, 标准差为289.60. 11.3 期望累积值为1560.9元. 11.4 公式(3)和(4)是正确的.11.5 三个投资额的期望累积值分别为6350.4元, 3528元和2240元. 第3年末该账户的期望累积值为12118.4元.11.6 期望累积值为1.1449, 累积值的方差为0.000916.11.7 (1) ln(1)t i +的期望为0.073189, ln(1)t i +的方差为0.000122.(2) ()()25050ln 50, var ln 50E A A μσ==⎡⎤⎡⎤⎣⎦⎣⎦()()()[][]5050Pr 100040000Pr ln ln 40Pr 0.3761Pr 0.376A A Z Z >=> ≈> =-<⎡⎤⎣⎦ []Pr 0.3760.65Z <=, ()50Pr 1000AV 400000.35>= 11.8 累积价值的95%置信区间为(0.81, 1.34). 11.9 (1)t i +的期望和方差分别为222/22E(1)e , var(1)e (e 1)t t i i μσμσσ+++=+=-, 故有E()0.0844, var()0.00235t t i i ==假设年收益率的中位数为k , 则有()ln(1)Pr()0.5Pr ln(1)ln(1)0.5Pr 0.5t t k i k i k Z μσ+-⎛⎫<=⇒+<+=⇒<= ⎪⎝⎭ln(1)08.33%k k μσ+-=⇒=.11.10 利率树:现金流和各节点的价值:可赎回债券的价格为99.19元.11.11 第1年末的即期利率由当前的即期利率发展而来, 在当前利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 第2年末的即期利率由第1年末的即期利率发展而来, 在第1年末利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 利率树如下:[]()()()()()()()()()()()()2E 0.750.750.08450.750.250.050.250.750.050.250.250.029596.813%i =+++=。
《数理金融》习题参考答案
![《数理金融》习题参考答案](https://img.taocdn.com/s3/m/2c42792cbc64783e0912a21614791711cc7979b4.png)
《数理金融》习题参考答案第一章〔P52〕题1-1 希德劳斯基模型的金融学含义是什么?解:参考方程〔1.2.13〕式后面的一个自然段。
题1-2 欧拉方程的经济学和金融学的含义是什么?解:参考方程〔1.5.9〕式和方程〔1.5.10〕式后面的一个自然段。
题1-3 假如你借款1000美元,并以年利率8%按每季度计息一次的复利形式支付利息,借期为一年。
那么一年后你欠了多少钱?解: 每季度计息一次的8%的年复合利率,等价于每个季度以2%的单利利率支付一次利息,而每个季度索要的利息,不仅要考虑原有的本金,而且还要加上累计到该时刻的利息。
因此,一个季度后你的欠款为: 1000(1+0.02)两个季度后你的欠款为: 21000(1+0.02)(1+0.02)1000(1+0.02)=三个季度后你的欠款为: 231000(1+0.02)(10.02)1000(1+0.02)+=四个季度后你的欠款为:341000(1+0.02)(10.02)1000(1+0.02)1082.40+==题1-4 许多信用卡公司均是按每月计息一次的18%的年复合利率索要利息的。
假如在一年的年初支付金额为P ,而在这一年中并没有发生支付,那么在这一年的年末欠款将是多少? 解:如此的复合利率相当于每个月以月利率1812%1.5%=支付利息,而累计的利息将加到下一个月所欠的本金中。
因此,一年后你的欠款为:12P(1+0.015)1.1956P =题1-5 假如一家银行所提供的利息是以名义利率5%连续地运算利息,那么每年的有效利率应该是多少?解:有效利率应为:0.050.05eff Pe P r e 10.05127P-==-≈ 即有效利率是每年5.127%。
题1-6 一家公司在以后的5年中需要一种特定型号的机器。
这家公司当前有一台这种机器,价值6000美元,以后3年内每年折旧2000美元,在第三年年末报废。
该机器开始使用后,第一年运转费用在该年年初值为9000美元,之后在此基础上每年增加2000美元。
金融数学引论答案 .docx
![金融数学引论答案 .docx](https://img.taocdn.com/s3/m/01c0a273580216fc700afd8e.png)
第一章习题答案1.设总量函数为A(t) = t2 + 2/ + 3 o试计算累积函数a(t)和第n个吋段的利息【仇°解:把t =()代入得4(()) = 3于是:4(t) t? + 2t + 3啲=丽=3In = 4(北)一A(n一1)=(n2 + 2n + 3) — ((n — I)2 + 2(n — 1) + 3))= 2n+l2.对以下两种情况计算从t时刻到冗(£ < n)时刻的利息:(1)厶(0 < r < n);(2)/r =2r(0<r <n).解:(1)I = A(n) - A(t)—In + in-1+ • • • + A+l n(n + 1) t(t + 1)=2 2I = A(n) - A(t)n n=乞h = 土hk=t+l A:=t+13.已知累积函数的形式为:Q(t) = at2 +几若0时刻投入的100元累积到3吋刻为172元,试计算:5时刻投入的10()元在10时刻的终值。
解:由题意得。
(0) = 1, «(3) = = L72=> a = 0.0& 6=14(5) = 100>1(10) = 4(0) • «(10) = 4⑸• W = 100 x 3 = 300.a(5)4.分别对以下两种总量函数计算订和讪:(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1尸・解:(1)_ 4(5) - 4(4)5 _ 4(4)5二面-.17% . 4(10)-4(9)210 =—4(9)—5=—^ 3.45%145⑵_ 4(5) - 4(4)5 - 4⑷_ 100(1 + 0.1)5 - 100(1 + 0.1)4 = 100(1+ 0.1)4=10%. 4(10) —4(9)皿=_ 100(1+ O.1)10-100(1+ 0.1)9 = 100(1 + 0.1)9=10%5•设4(4) = 1000, i n = O.Oln.试计算4(7)。
金融数学课后答案
![金融数学课后答案](https://img.taocdn.com/s3/m/bf64dafa5022aaea998f0fff.png)
金融数学课后答案【篇一:金融数学(利息理论)复习题练习题】购买一张3年期,面值为1000元的国库券,每年末按息票率为8%支付利息,第三年末除支付80元利息外同时偿付1000元的债券面值,如果该债券发行价为900元,请问他做这项投资是否合适? 2.已知:1) 1?i2) 1?由于(1?m)?(1?n)?1?i 由于(1?)?(1?)?1?d3. 假设银行的年贷款利率12%,某人从银行借得期限为1年,金额为100元的贷款。
银行对借款人的还款方式有两种方案:一、要求借款人在年末还本付息;二、要求借款人每季度末支付一次利息年末还本。
试分析两种还款方式有何区别?哪一种方案对借款人有利?4. 设m?1,按从小到大的顺序排列i,i(m)(m)(m)(m)m?(1?i5)(1?i6)?1 求m?? ?(1?d(5)d(6)?1)(1?6) 求m?? 5(5)(6)d(m)mm(n)nm(n)n,d,d(m),?解:由i?d?i?d? i?dd(m?1)?d(m) ? d?d(m) i(m)?d(n) ? d(m)?i(m) i(m?1)?i(m)?i(m)?ii(m)?limd(m)?? 1?i?e??1?? , limm??m???d?d(m)???i(m)?i5. 两项基金x,y以相同的金额开始,且有:(1)基金x以利息强度5%计息;(2)基金y以每半年计息一次的名义利率j计算;(3)第8年末,基金x中的金额是基金y中的金额的1.5倍。
求j.6. 已知年实际利率为8%,乙向银行贷款10,000元,期限为5年,计算下列三种还款方式中利息所占的额度:1)贷款的本金及利息积累值在第五年末一次还清; 2)每年末支付贷款利息,第五年末归还本金; 3)贷款每年年末均衡偿还(即次用年金方式偿还)。
三种还款方式乙方支付的利息相同吗? 请你说明原因?7.某人在前两年中,每半年初在银行存款1000元,后3年中,每季初在银行存款2000元,每月计息一次的年名义利率为12% 计算5年末代储户的存款积累值。
孟生旺《金融数学基础》参考答案
![孟生旺《金融数学基础》参考答案](https://img.taocdn.com/s3/m/7269efb204a1b0717fd5ddd7.png)
孟生旺《金融数学基础》参考答案(中国人民大学出版社,2015年2月第一版)第1章 利息度量1.1360021500.125,2000(1)2848i i i ⨯=⇒=+=1.2 /121/1218/121004314271141.6T v v v T =+⇒= 1.3:(2)2i A X i X =⋅, ()()1615:1/21/2B X i X i +-+ 1615[(1/2)(1/2)]0.09458X i i i X i +-+=⋅⇒=1.427.72e 20.025δδ=⇒=, 当0.5i δ= 时, /2(12)7.0480n n δ+=⇒=1.5 1/42100(146%)114.71-⨯⨯-⨯=1.6 ()()11118//mmm m i i d d m m m -+=+=-=-⇒=⎡⎤⎡⎤⎣⎦⎣⎦1.7 12:()(1.01)tA a t =, 2/12:()e tB a t =, 212/12(1.01)e 1.43t tt =⇒=1.8 2:()exp()/2A a t an bn =+, 2:()exp()/2B a t gn hn =+, 2()/()n a g h b =--1.9 8512()100(1)exp /4(1)d 2600.129a t d t t d --=-⋅⎡⎤+=⇒=⎢⎥⎣⎦⎰ 1.10 11/(1)t δ=+, 222/(1)t t δ=+, 0.41t = 1.11 2()(1)a t t =+1111300(3)600(6)200(2)(5)=315.82a a a X a X ----⨯+⨯=⨯+⨯⇒1.12 ()10.2025330(3)exp e/100d a t t --==-⎰.1.13 20.5()0.040.031,(0.5)/(0.5)0.068a t t t a a δ'=++== 1.14 ()320(3)100exp/100d 109.42A t t X X=⋅+=+⎰()623(6)(109.42)exp /100 1.8776(109.42)A X t dt X =+⋅=+⎰(6)(3)(109.42)(0.87761)784.61A A X X X -=+=⇒=1.15 t = 4时的累积值为:()30.04501000exp0.02d e 1144.54t t ⋅=⎰令名义利率为x , 则 161000(1/4)1144.540.03388x x +=⇒=1.16 ()20.075i=, (4)(2)(2)21/2/2/2ln (1)41(1)0.1466d i i δ⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦+=++-+= 1.17 ()()510205expd exp/25d 2.71830.414kt t kt t k ⋅=⇒=⎰⎰1.18 0()exp d (2)/2,()(0)/216tt a t t t a n a n n δδ⎡⎤==+=-=⇒=⎢⎥⎣⎦⎰ 1.19 201000exp 1068.94d t t δ⋅=⎡⎤⎢⎥⎣⎦⎰ 1.20 1010267.5, 10(1.0915)30(1.0915), 2.3254nn A B n --==+=第2章等额年金2.1 1363元 2.2 279430元 2.3260052.4 基金在第30年初的现值为658773.91, 如果限期领取20年, 每次可以领取57435, 如果无限期地领下去, 每次可以领取39526 2.5 31941.68元, 21738.97元, 46319.35元 2.6 9年 2.7 29月末2.8 0.1162 2.9 8729.23 2.10 45281.05 2.11 0.2 2.12 302 2.13 4.06%2.14假设最后一次付款的时间为n , 则有:4410000010000(10.05)23.18n a n --=+⇒=假设在23年末的非正规付款额为X , 则有4231910000010000(10.05)(10.05)1762.3a X X --=+++⇒=2.15 601004495.503860000.749329k k a v v k ==⇒=⇒=2.16 20101020153810721072153846600.08688a a v v i =⇒-+=⇒=2.17 设j 为等价利率, 则0.040604j =, 1681000()32430s s =+=&&&&累积值 2.18 以每半年为一个时期, 每个时期的实际利率为/2i , 两年为一个时期的实际利率为()411/2j i =-+, 故 5.891/0.08j i ⇒==2.19 ()20101012126410.7520.09569i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=2.20 {}ln(1)1exp d d 1n nta n r t r==+-+⎰⎰2.21 20()exp d (10.5)tr a t r t δ==+⎡⎤⎣⎦⎰, 5(5)(5)(5)...12.828(1)(2)(5)a a a s a a a =+++=2.22()8888111188100d (1)d tt v a a t v t δδδδ-==-=-=⎛⎫- ⎪⎝⎭⎰⎰()()5/48101810018100v v δδδδ=--⋅⇒=--⎡⎤⎣⎦()[]5/410101181001v a δδδδ----==2.23 1/302.24 1[ln(/)]/i δδ- 2.25 4e 12e 3n n δδ=⇒=, e 112121/6n n s δδδ-=⇒=⇒=第3章变额年金3.1 ()29/229229 /22972.8865.440.1/2j j j s j Is j s j j -⎡⎤=⋅=⋅⇒=⇒=⎢⎥⎢⎥⎣⎦&&&& 3.2 1010900100()a I a += 1088.693.3 2312(1)23......n n n nn i a a v v v nv nv nv id++++++++++==3.4 335792222468...49.89(1)v X v v v v v =++++==-3.5A 的现值为:102010105555()X a a v a ==+B 的现值为:1020101010306090X a v a v a =++ 故 10102055(1)3060900.07177574.74v v vi X +=++⇒=⇒=3.6 1()()n n n n nIa v Da a a -+=⋅&& 3.7 71520()1602146.20Da a +=3.8 11846.663.9每季度复利一次的利率为0.0194, 所有存款在第八年末的终值为40.019480.08()183.01s Is =&&, /0.08183.0114.64X X =⇒= 3.10 3433203.11 166073.12 现值为5197.50, 累积值为9333.98.3.13 111193070()9998.16a Ia +=&&&&, 终值为23312.11. 3.14 现值为111120()2803246.03Da a +=, 在第20年末的终值为10410.46. 3.15 212.343.16 此项投资在第10年末的终值为:106%106%80000(5000)500()X s Ds =-+&&&&80000(5000)(13.97164)500(83.52247)7736.88X X =-+⇒=3.17 ()4106%116%100()200015979.37X v Da a =+=. 3.18 第20年末的终值为:16115%(1)200()19997.38i Ia +=3.19 前5年的现值为77.79, 从第6年开始, 以后各年付款的现值为:()510.092010.09v k k +⎛⎫+ ⎪-⎝⎭, 总现值为335, 故 3.76%k =.3.20 104%104%9010()1735.96s I s +=3.21 第8年的终值为:87%87%605()894.48478s Ds +=第10年末的终值为1024.10. 3.22100(43)exp (0.030.04)d d 89.97t t s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 3.23 在时刻5的现值为:102255(1.22)exp (0.00060.001)d d 382.88tt t s s s t ⎡⎤+-+=⎢⎥⎣⎦⎰⎰ 时刻零的现值为:50382.88exp (0.0040.01)d 346.44t t⎡⎤-+=⎢⎥⎣⎦⎰ 3.24 ()10100250009exp 1/(9)d d 190131.58t k tk s s t k k ⎡⎤=++=⇒=⎢⎥⎣⎦⎰⎰第4章收益率4.10.1483 4.2 1221.99 4.3 时间加权收益率0.5426, 币值加权收益率0.5226, 两者之差0.0236.4.4 93000 4.5 −10%4.6 120100506565(10050)136,0.1834100120100501009/12503/12D D i D D --+-⋅⋅=⇒===-+-+⨯-⨯ 4.7 0.1327 4.8 7.5% 4.9 236.25 4.100.06194.11 5年末投资者共得到56245.5元. 设购买价格为P , 要得到4%的收益率, 有5(1.04)56245.546229.7P P =⇒=4.12 20.0820/220/25000100000(5000)()34.710.1i i s i Is s i =+⇒=⇒=&&&& 4.13 再投资利率为8.73%. 投资者B 的利息再投资后的积累值为6111.37.4.14 ()10200.75100.7512126410.7520.09569i i i s i s i i ⋅⋅+⋅⋅=⇒+=⇒=4.15 3项投资在2015年初的余额为320.46万元, 在2015年末的余额为344.56万元, 故2015年中所获利息为24.10万元.第5章 贷款偿还方法5.1 X = 704.065.2 设每年的等额分期付款金额为R , 由已知28(1)135R v -=, 147(1)108(1)72R v R v -=⇒-=5.3 301301(1)/32/322.69t t R vR v t -+-+-=⇒=⇒=故在第23年分期付款中利息金额最接近于付款金额的三分之一. 5.4 109832290.35,408.55Rv Rv Rv Rv Rv Rv =++=++0.05,150.03,1158.4i R L ⇒===. 支付的利息总金额为10341.76R L -=5.5 1510.65.6 (1)借款人第2年末向偿债基金的储蓄额应为4438.42(2)第2年末的余额为9231.91 (3)第2年末的贷款净额为10768.095.7 0| 4| 6104.56/20000/8.4911%k i i R L a a i ===⇒= 5.8 第5次偿还中的利息为66.89万元.5.9 22912125,0001 1.02(1.02)(1.02)526i Ra v v v R ⎡⎤=+++⋅⋅⋅⋅+⇒=⎣⎦5.10 各期还款的积累值为 20200.0510*******(1)0.0616s i i =+⇒=5.11 121212155000500.3812 0.09173077.9455000(1)500.38jn njn a i j j s -=⎧⎪⇒==⎨=+-⎪⎩ 5.12 第一笔贷款偿还的本金为490.34, 第二笔贷款偿还的本金为243.93, 两笔贷款的本金之和为 734.27. 5.13 3278.5.14 第3次支付的本金金额为784.7, 第5次支付的利息金额为51.4. 5.15 0.1196. 5.16 64.74.5.17 调整后最后一次的偿还额为1239.1. 5.18 第11年末.5.19 调整后借款人增加的付款为112.5.20 20301019100001900100()5504.7Xa v a v Ia X =++⇒=. 5.21 11190.11.第6章证券定价6.1 价格为957.88元, 账面值为973.27元.6.2价格为974.82元, 账面值为930.26元(理论方法), 929.82(半理论方法), 1015(实践方法.6.37.227% . 6.4 6.986% .6.5 10201010101000.11000.091000.0897.74P a v a v a --=⨯+⨯+⨯=元.6.6债券每年末的息票收入为80元, 故有()()()54321082.27(1)801801801099.84(1)80(1)80 6.5%V V i V i i i i i ==+-=+-+-⎡⎤⎣⎦=+-+-⇒=(3)3 8010001099.8412n n i a v n --⋅+=⇒= 1212 0.065801000(1.065)1122.38P a -=⋅+=元.6.7应用债券定价的溢价公式可以建立下述三个等式:20202040(1) 45(2) 50(3) 2X C i a C Y C i a C X C i a C ⎛⎫-=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭⎛⎫=- ⎪⎝⎭由(3)/(1)得:501302403Ci Ci Ci --=⇒=-由(1)(3)+得:2020(902)902XX Ci a a Ci=-⇒=-所以有 20(45)/25Y Ci a X =-==元. 6.8 t = 7/12, 理论方法的账面值为87.35元, 实践方法的账面值为87.35元.6.9110019019/110910/33n n n v v a =⇒=⇒= 0.0311********.03n n P v a =+=.6.10 40n n P a M v =+⋅, 30n n Q a M v =+⋅, 令债券C 的价格为X , 则有8054n n X a M v X P Q =+⋅⇒=-.6.11 ()()()()1010 0.041010 0.0510*******.040.03581.49100011001.05P r a r P r a --⎧=+⎪⇒=⎨-=+⎪⎩ ()1010 0.0351*******.0351371100 1.0351371070.80X a -=⨯+⨯=6.12 ()()()219202320105050 1.03 1.03 1.03837.78P v v v v v ⎡⎤=+++++=⎣⎦L .6.13 偿还值的现值为55200584.68()v a =元, 未来息票收入的现值为5556012()355.99()a v Da +=元, 故债券的价格为940.67元. 也可以应用Makeham公式计算, 即0.06/0.07(1000584.68)584.68940.67P =⨯-+=元.6.14 2020 10104010001071.06401041.58P a v P P a X v X ⎧=+=⎧⎪⇒⎨⎨=+⋅=⎪⎩⎩6.15 债券每年末的息票收入为60元, 修正息票率为60/1050 = 5.7143%, 小于投资者所要求的收益率8%, 所以赎回越晚(即到期时赎回), 债券的价格越低. 由此可得该债券的价格为1010501050(5.7143%8%)888.94P a =+⨯-⨯=元.6.16 股票在第六年的红利为60.50.2(1.10)⨯⨯, 以后每年增长10%. 应用复递增永续年金的公式, 该股票的价格为6510.50.2(1.10) 1.1110.510.110.1P -=⨯⨯⨯⨯=-元.6.17 投资者每个季度的实际收益率为 2.47%j =, 应用复递增永续年金的公式, 投资者购买该股票的价格为0.3/(2.47%2%)63.83P =-=元. 6.18 1.5/305%10%i =+=. 6.19 30元.6.20 每股利润为109.500.50-=元, 保证金为100.505⨯=元, 保证金所得利息为50.0500.25⨯=元, 每股红利为0.1元, 卖空收益率为(0.50.250.1)/513%+-=.6.21 8.59%第7章利率风险7.115D =马, 基于名义收益率的修正久期为15/(11%)14.85D =+=. 年实际收益率为12.68%i =, 基于实际收益率的修正久期为15/(112.68%)13.31D =+=.7.2 1()/()e 1n nD P P δδδδ'==--7.3 假设债券的面值为100, 则92.648.027.57P D D ===马,, 7.4债券的马考勒久期可以表示为nm j a D m=&&马, 其中()/m j im =. 变形可得:()()()11(1)1(1)(1)n n m m m nm jni v D j a j a m i d--+-=+=+==&&马. 7.5 对年金的现值关于利率i 求导, 应用修正久期的定义公式可得111n nnv D i v +=--.7.6对于期末付永续年金, 现值为()1/P i i =, 2()1/P i i '=-, 所以修正久期为1/D i =, 马考勒久期为=(1)(1)/D D i i i +=+马.7.7对于期初付永续年金, 现值为()(1)/P i i i =+, 2()1/P i i '=-, 所以修正久期为1/[(1]D i i =+), 马考勒久期为=(1)1/D D i i +=马.7.8 24 /2()510096.53()169.29 1.75()i P i P a v P i D P i ''=+=⇒=-⇒=-= 7.97.49D =效7.10 7.8861D D i ==+马, () 1.18%Pi D P∆=-∆⋅= ⇒ 新的债券价格近似为:75.98 1.01876.88⨯= 7.11 8.92D =效, 13.35C =效.2()0.5()8.85%Pi D i C P∆=-∆⋅+⋅∆⋅=-, 债券的新价格近似为95.59元. 7.12 修正久期为8.12, 凸度为101.24. 7.13 马考勒凸度为105.15.7.14 22231d 1d 216.67d d P P P i i i i i==⇒=- = ()116.67()P i D P i i'⇒=-==2()2555.55()P i C P i i''⇒=== 7.152()0.5() 4.28%Pi D i C P∆=-∆⋅+⋅∆⋅=- 7.16 负债的现值为12418.43L P =, 负债的马考勒久期为5LD =马, 负债的马考勒凸度为25L C =马. 不妨假设两种零息债券的面值均为1000元, 则4年期零息债券的价格为441000/(1)683.01P i =+=元, 10年期零息债券的价格为10101000/(1)385.54P i =+=元. 假设有%x 的债券投资4年期的零息债券, (1%)x -的债券投资10年期的零息债券, 由ALD D =马马, 有:(%)(4)(1%)(10)5%83.33%x x x +-=⇒=投资4年期零息债券的金额为10348.28元, 投资10年期零息债券的金额2070.15元. 7.17 债券A 的价格为982.17元, 马考勒久期为1.934, 马考勒凸度为3.8. 债券B 的价格为1039.93元, 马考勒久期为4.256, 马考勒凸度为19.85. 在债券A 上投资11.02%, 在债券B 上投资88.98%, 则债券组合的马考勒久期等于负债的马考勒久期, 均为4年, 债券组合的马考勒凸度为18.08, 大于负债的马考勒凸度16, 满足免疫的条件. 7.18 各种债券的购买数量分别如下:购买5年期债券的数量 80000 购买4年期债券的数量 300000 购买2年期债券的数量 600000 购买1年期零息债券100000购买各种债券以后净负债的现金流如下(单位:万元): 年度 1 2 3 4 5 负债的现金流1794 6744 144 3144 824 5年期债券的现金流 24 24 24 24 824 净负债的现金流 1770 6720 120 3120 0 4年期债券的现金流 120 120 120 3120 0 净负债的现金流 1650 6600 0 0 0 2年期债券的现金流 600 6600 0 0 0 净负债的现金流 1050 0 0 0 0 1年期债券的现金流 1050 0 0 0 0 净负债的现金流第8章利率的期限结构8.1一年期债券的价格为102.78P =;两年期债券的价格为92.96P =;三年期债券的价格为112.43P =.11111102.788%1s s =⇒=+ 2212323123510592.969.03%1(1)1515115112.4310.20%1(1)(1)s s s s s s s =+⇒=++=++⇒=+++8.2现金流分别按对应的即期利率折现得债券的价格为:231010110105.751.05 1.06 1.08P =++= 8.3 各年远期利率分别为8%、10.1%和12.6%. 8.4假设债券的面值为100元, 计算5年期债券的价格:2345234512345234123410101010110101010101101.07 1.07 1.07 1.07 1.071(1)(1)(1)(1)1111 3.741(1)(1)(1)s s s s s s s s s ++++=+++++++++⇒+++=++++每年支付40元的5年期期初付年金按对应的即期利率折现即得其现值为:23412341111401189.751(1)(1)(1)s s s s ⎡⎤++++=⎢⎥++++⎣⎦8.5由远期利率计算的债券价格为:1010110107.251.07(1.07)(1.05)(1.07)(1.05)(1.1)++=(元)8.6假设债券的面值为100元, 则有:001041004%(1)f f =⇒=+1001200101261061008.16%(1)(1)(1)8810810012.69%(1)(1)(1)(1)(1)(1)f f f f f f f f f f f ⇒=+⇒=+++⇒=++⇒=++++++8.7 应用即期利率和远期利率的关系, 有101022012330123116%(1)(1)(1) 5.50%(1)(1)(1)(1) 6.98%s f s f s f f s s f f f s +=+⇒==+=++⇒=+=+++⇒=8.8用t C 表示债券在t 年末的现金流入, 则有:111120%1.21C Cs s =⇒=+ 1212222220%1.2 1.2 1.2(1)C C C C s s +=+⇒=+ 33121232323320%1.2 1.2 1.2 1.2 1.2(1)C C C C C Cs s ++=++⇒=+ 8.91001120%s f f +=+⇒=3211221.21.2(1.2)(1)20%,120%1.2f f f =+⇒==-=8.10 00110106 3.77%1f f =⇒=+ 1001200101251059512.20%1(1)(1)991091029.37%1(1)(1)(1)(1)(1)f f f f f f f f f f f =+⇒=+++=++⇒=++++++用远期利率计算年息票率为15%, 面值为100元的3年期债券的价格:0010121515115117.651(1)(1)(1)(1)(1)P f f f f f f =++=++++++ 8.11 用远期利率分别计算3年期和4年期零息债券的价格可得:01210082(1)(1)(1)f f f =+++,30123100759.33%(1)(1)(1)(1)f f f f f =⇒=++++8.12 21012012115%,(1)(1)(1)6%s f s s f f s +=+⇒=+=++⇒=假设债券的面值为100元, 则有:3233881081008.2%1.05 1.06(1)s s =++⇒=+8.13 通过收益率计算的债券价格为 2610693.061.1(1.1)P =+= 通过即期利率计算的债券价格为2610694.831.07(1.09)P =+= 债券价格被低估了1.77元, 故可以按94.83元的价格购买一个2年期债券, 同时按即期利率出售一个1年期的面值为6元的零息票债券和一个2年期的面值为106元的零息票债券.8.14 与远期利率一致的债券价格为5510597.421.05(1.05)(1.06)(1.05)(1.06)(1.07)P =++=(元) 债券的市场价格为100元, 说明债券被高估了, 因而存在套利机会.套利者可以按100元的价格卖出一个三年期债券, 同时将97.42元按4%的利率投资一年. 在第一年末, 支付已出售债券的5元利息后, 把剩余的资金在第二年按6%的远期利率再投资一年. 在第二年末, 支付已出售债券的5元利息后, 把剩余的资金在第三年按8%的远期利率进行投资. 在第三年末的累积值正好用于支付套利者所售债券在第三年末的偿还值. 完成上述步骤后, 套利者即可在当前时刻获得100 - 97.42 = 2.58元的无风险收益.第9章远期、期货和互换9.1股票多头的回收和盈亏如下表所示: 1年后的股票价格多头的回收多头的盈亏50 50 −16 60 60 −6 70704如果1年后的股票价格为66元时, 则股票多头的回收为66元. 购买股票的初始费用在1年后的累积值为66元, 所以盈亏为0元. 9.2股票空头的回收和盈亏如下表所示, 与多头的回收和盈亏正好相反. 1年后的股票价格空头的回收 空头的盈亏50 −50 16 60 −60 6 70−70−4如果1年后股票的价格是66元时, 则空头的回收为−66元. 初始所得在1年后的累积值为66元, 所以盈亏为 0元. 9.3 40.06/40.061(105 1.7e )e 104.54t t F -==-⨯=∑(元)9.4日股利为0.02/3651050.00575⨯=元. 若在年初持有一单位股票, 年末将持有0.02e 1.0202=单位. 若要在年末持有一单位股股票, 年初应持有0.02e 0.9802-=单位,故投资额为0.02105e 102.92-=元. 9.5(1)0.060.570e 72.13F ⨯=⨯=元. (2)0.0670e 720.032δδ-⨯=⇒=.9.6无套利的远期价格为 0.060.5105108.20F e ⨯==(元)(1)远期价格115 > 108.20, 所以投资者可以先签出一份远期合约, 约定在6个月末以115元的价格卖出股票. 同时借入105元购买股票, 承诺在6个月末还款. 到6个月末, 以115元卖出手中的股票, 同时偿还借款108.20元, 最终无风险获利6.80元. (2)远期价格107 < 108.20, 所以投资者可以先签订一份远期合约, 约定在6个月末以107元购买股票. 同时将手中持有的股票卖出, 获得105元, 将这105元投资于5%的零息债券, 6个月末可以获得108.20元. 6个月末利用远期合约买入股票, 最终获得无风险利润1.20元.9.7 22838483.491.05 1.055 1.05 1.055x xx +=+⇒= 9.8(1)232382838482.981.05 1.055 1.06 1.05 1.055 1.06x x xx ++=++⇒= (2)2323838483.501.055 1.06 1.055 1.06x xx +=+⇒= 9.9四个时期的浮动利率分别为0.06、 0.07、 0.08和 0.09. 互换利率为0.0745.9.10 应用债券组合的定价方法:0.13/120.1059/120.1115/120.13/124e 4e 104e 98.24(5.1100)e 102.5198.24102.51 4.27B B f B B -⨯-⨯-⨯-⨯=++==+==-=-=-固浮浮固第10章 期权10.1 远期多头的回收分别为−10元、−5元、0元、5元和10元, 空头的回收是其相反数. 看涨期权多头的回收分别为0元、0元、0元、5元和10元. 看跌期权的回收分别为10元、5元、0元、0元和0元.10.2 回收分别为0元、0元和5元. 盈亏分别为−6.01元、−6.01元和−1.01元.10.3 看跌期权的回收分别为5元、0元和0元. 盈亏分别为3.96元、−1.04元和−1.04元. 10.4 组合的回收分别为105元、105元、110元和115元. 组合的盈亏分别为−7.56元、−7.56元、−2.56元和2.44元.10.5 组合的回收分别为−105元、−105元、−110元和−115元. 组合的盈亏分别为12.81元、12.81元、7.81元和2.81元.10.6 多头的盈亏为0.95元, 盈亏平衡点为42.05元. 10.7 多头的盈亏为3.47元, 盈亏平衡点为28.53元. 10.8 看跌期权的期权费是3.13元. 10.9 10.2417d =, 20.09167d =.根据Black−Scholes 公式, 欧式看涨期权价格为:12()e () 3.61rTC S d K d -=Φ-Φ=根据平价公式, 欧式看跌期权价格为e 2.38rT P C K S -=+-=10.10 1.0905u =, 1/0.9170d u ==, 0.5266r t e dp u d∆-==- 欧式看跌期权的价值为2.62, 相应的二叉树如下:美式看跌期权的价值为2.71, 相应的二叉树如下:10.11 1.0524u =, 1/0.9502d u ==, ()0.5118r tedp u dτ-∆-==-欧式看涨期权的价值为19.63, 相应的二叉树如下:10.12 回收和盈亏如下表:股票价格 看跌期权回收总回收 成本及其利息 盈亏 90 5 95 −105.98 −10.98 100100−105.98−5.9810.13回收和盈亏如下表:股票价格看涨期权回收股票空头回收总回收净收入及其利息盈亏90 0 −90 −90 94.03 4.03100 5 −100 −95 94.03 −0.97 10.14回收和盈亏如下表:股票价格看涨期权回收空头回收总回收净收入及其利息盈亏100 0 −100 −100 97.44 −2.56 110 5 −110 −105 97.44 −7.5610.15回收和盈亏如下表:股票价格看涨期权回收看跌期权回收贷出资金回收总回收净成本及其利息盈亏90 0 −5 95 90 −105 −15100 5 0 95 100 −105 −5 10.16回收和盈亏如下表:股票价格看涨期权回收看跌期权回收借入资金的回收总回收净收入及其利息盈亏100 0 5 −105 −100 105 5 110 −5 0 −105 −110 105 −510.17105(9.31 1.69) 1.0597--⨯=10.18通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 −2.46 −2.5100 5 0 5 −2.46 2.54 10.19通过下表可以看到两种交易的盈亏相同:股票价格买进看涨期权的回收卖出看涨期权的回收总回收净成本及其利息盈亏90 0 0 0 3.41 3.41 100 0 −5 −5 3.41 −1.59第11章随机利率11.1 A 10的完整分布如下:概率 A 10 (A 10)2 0.20 1.63 2.65 0.40 2.10 4.41 0.402.918.48(1) 十年末累积值的期望为2330.05元.(2) 十年末累积值的方差为255027.66, 标准差为505.11.2 期望累积值为2593.74元. 累积值的方差为83865.54, 标准差为289.60. 11.3 期望累积值为1560.9元. 11.4 公式(3)和(4)是正确的.11.5 三个投资额的期望累积值分别为6350.4元, 3528元和2240元. 第3年末该账户的期望累积值为12118.4元.11.6 期望累积值为1.1449, 累积值的方差为0.000916.11.7 (1) ln(1)t i +的期望为0.073189, ln(1)t i +的方差为0.000122.(2) ()()25050ln 50, var ln 50E A A μσ==⎡⎤⎡⎤⎣⎦⎣⎦()()()[][]5050Pr 100040000Pr ln ln 40Pr 0.3761Pr 0.376A A Z Z >=> ≈> =-<⎡⎤⎣⎦ []Pr 0.3760.65Z <=, ()50Pr 1000AV 400000.35>= 11.8 累积价值的95%置信区间为(0.81, 1.34). 11.9 (1)t i +的期望和方差分别为222/22E(1)e , var(1)e (e 1)t t i i μσμσσ+++=+=-, 故有E()0.0844, var()0.00235t t i i ==假设年收益率的中位数为k , 则有()ln(1)Pr()0.5Pr ln(1)ln(1)0.5Pr 0.5t t k i k i k Z μσ+-⎛⎫<=⇒+<+=⇒<= ⎪⎝⎭ln(1)08.33%k k μσ+-=⇒=.11.10 利率树:现金流和各节点的价值:可赎回债券的价格为99.19元.11.11 第1年末的即期利率由当前的即期利率发展而来, 在当前利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 第2年末的即期利率由第1年末的即期利率发展而来, 在第1年末利率水平的基础上上调30%的概率为0.75, 下降30%的概率为0.25. 利率树如下:[]()()()()()()()()()()()()2E 0.750.750.08450.750.250.050.250.750.050.250.250.029596.813%i =+++=。
金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年
![金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年](https://img.taocdn.com/s3/m/57e39318492fb4daa58da0116c175f0e7cd119a5.png)
金融数学_中国人民大学中国大学mooc课后章节答案期末考试题库2023年1.一个合约的回收是指合约到期时可以实现的现金价值,不考虑合约签订时发生的初始费用。
答案:正确2.在利率互换合约中,互换利率等于浮动利率的加权平均数。
答案:正确3.假设当前的期货价格为30,年波动率为30%,无风险连续复利为5%。
用两步二叉树计算6个月期的执行价格为31的欧式看涨期权的价格答案:大于24.股票当前的价格为50元,波动率为每年10%。
一个基于该股票的欧式看跌期权,有效期为2个月,执行价格为50元。
连续复利的无风险年利率为5%。
构造一个二步(每步为一个月)的二叉树为该期权定价。
答案:小于0.65.期权价格也称作执行价格答案:错误6.美式看涨期权多头的盈利可以无限大答案:正确7.假设股票的现价为100元,一年期看涨期权的执行价格为105元,期权费为9.4元,年有效利率为5%。
如果一年后的股票价格为115元,则该看涨期权的盈亏为0.13元。
答案:正确8.假设股票的现价为100元,一年期看跌期权的执行价格为105元,期权费为8元,年有效利率为5%。
如果一年后的股票价格为105元,则该看跌期权的盈亏为3元。
答案:错误9.债券的面值为1000元,息票率为6%,期限为5年,到期按面值偿还,到期收益率为8%。
应用理论方法计算该债券在购买9个月后的账面值。
答案:大于93010.一份股票看涨期权的执行价格为40元,期权费为2元,期权的有效期是半年,无风险的连续复利为5%。
假设期权到期时的股票价格为43元,在期权到期时,多头可以达到盈亏平衡点的股票价格为多少?答案:大于40,小于5011.股票现价为60,一份2个月到期的该股票美式看涨期权的交割价格为60,连续复利为5%,股票无红利支付,波动率为30%,应用两阶段二叉树模型计算该期权的价值。
答案:2.8412.期权的回收小于期权的盈亏答案:错误13.美式看涨期权和看跌期权的价格之间存在一种平价关系答案:错误14.标的资产的现价越高,欧式看涨期权与看跌期权的价格之差越大答案:正确15.债券的面值,为1000,期限为20年,到期偿还值为1050元,每年末支付一次利息。
金融数学附答案
![金融数学附答案](https://img.taocdn.com/s3/m/433de9be195f312b3169a58c.png)
1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数50 60 40 55 0.55 1/2 1000(1)求看涨期权的公平市场价格。
(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少?答案:(1)d u d r S S S e S q --=τ0=56.0406040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='0083.2> τr e S -∆+∆'0 406005--=--=∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元 则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元 所以无风险利润为1.85835.005.0=⨯e 美元2、假定 S 0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。
(答案见课本46页)3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。
波动率σ为0.318.问题:(1)、他要支付多少的期权费?【参考N (0.506)=0.7123;N (0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。
给出最后结果为0.6084、若股票指数点位是702,其波动率估计值σ=0.4,指数期货合约将在3个月后到期,并在到期时用美元按期货价格计算,期货合约的价格是715美元。
金融数学附答案修订版
![金融数学附答案修订版](https://img.taocdn.com/s3/m/e354584c9e314332396893da.png)
金融数学附答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数50 60 40 55 0.55 1/2 1000(1)求看涨期权的公平市场价格。
(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少?答案:(1)d u d r S S S e S q --=τ0=56.0406040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='0083.2> τr e S -∆+∆'0 406005--=--=∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元所以无风险利润为1.85835.005.0=⨯e 美元2、假定 S 0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。
(答案见课本46页)3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。
波动率σ为0.318.问题:(1)、他要支付多少的期权费?【参考N(0.506)=0.7123;N(0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。
金融数学智慧树知到课后章节答案2023年下宁波大学
![金融数学智慧树知到课后章节答案2023年下宁波大学](https://img.taocdn.com/s3/m/422179fff021dd36a32d7375a417866fb84ac017.png)
金融数学智慧树知到课后章节答案2023年下宁波大学宁波大学第一章测试1.利息是资金的 ( ) 。
A:指标B:水平C:价格D:价值答案:价格2.现值也叫 ( ) 。
A:贴现值B:贴现C:终值D:贴现系数答案:贴现值3.假定满足下列条件(i) 10 年末支付 X 和20 年末支付 Y 的现值之和等于 15 年末 X + Y 付款的现值。
(ii) X + Y = 100(iii) 年利率i = 5%则X=()A:44B:48C:52D:50答案:444.杰夫将10元存入一个基金,15 年后又存入20元。
利息以名义贴现率d计息,前 10 年每季度复利一次,名义利率为6%,此后每半年一次。
该基金在30年末的累计余额为100。
则名义贴现率()A:4.43%B:4.63%C:4.53%D:4.33%答案:4.53%5.六个月后到期的$1.00 的现值为$0.97。
则按每年贴现4次的名义年贴现率为()A:6.05%B:6.55%C:6.75%D:5.95%答案:6.05%第二章测试1.一项投资需要首付1万元,前10年每年年底支付1000元。
从第11年年底开始,该投资连续5年在每年底回报相等的金额X。
试确定X使得在15年期间产生10%的年回报率()。
A:10,900B:11,050C:11,200D:10,750答案:11,0502.若年利率为6.3%,每年末付款1000元的4N期年金现值为14113,试确定第一个N年付款的现值和第三个N年付款的现值的百分比为()。
A:66%B:57%C:60%D:63%答案:63%3.如果2010年至2021年(含)每年1月1日缴存1500元,实际利率为每年1.75%,试确定这些存款在2030年1月1日的累计价值为()。
A:23,290B:23,390C:23,490D:23,190答案:23,1904.李明将在每季度末存入账户450元,为期10年。
15年后,李明使用账户资金在每年年初支付Y,为期4年,之后账户余额为0,假设年利率为7%。
《金融数学》(第二版)习题参考答案(修订版)
![《金融数学》(第二版)习题参考答案(修订版)](https://img.taocdn.com/s3/m/f9ccb6840c22590103029d16.png)
1 i
(an−1
− vnan−1
+1− vn)
=
1 i
(1
−
v
n
)(a n
−1
+ 1)
=a n
⋅a n
3.8
1000
×
1
−
⎛ ⎜⎝
1.1 1.05
⎞10 ⎟⎠
= 11846.66
0.05 − 0.10
10 − a
3.9 300a + 50(Da) = 300a + 50
10 0.08 = 6250 − 325A
故最后一次付款的时间是 23 年末,付款额为 1176.23 元。
2.16 100a = 4495.5038 = 6000vk ⇒ vk = 0.7493 ⇒ k = 29 60
2.17
1− vn
a=
= x,
a = 1− v2n = y
n
i
2n
i
⇒ 1− (1− ix)2 i
=
y
⇒i
=
2x + x2
第三部分是自55年开始支付5次每次支付2x故有050545500001051053278516由已知115045869228001001由过去法第2期后未偿还本金金额为10001018692288453852次支付的本金金额为001784689由将来法第4期后未偿还本金金额为次支付的利息金额为0015138212517第69期还款额中本金金额为3606929269rvrv故由已知292292094473rv和70期偿还的本金金额比为944186970同样解得01196518由已知前10次付款等于应付利息故十年末的未偿还贷款余额仍为1000第11至20次付款等于应付利息的两倍即本金偿还值等于应付利息值有11101110111011101211101010201000809209209209209210004343885后10期每期付款等于x故206474008104343885519分别用将来法计算两种偿还方式在第5次付款之后的未偿还本金有10005100050051000800kvia487914
金融数学课后习题答案
![金融数学课后习题答案](https://img.taocdn.com/s3/m/8f9946380b1c59eef9c7b415.png)
第一章习题答案1. 设总量函数为A(t) = t2 + 2t + 3 。
试计算累积函数a(t) 和第n 个时段的利息In 。
解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)A(0)=t2 + 2t + 33In = A(n) − A(n −1)= (n2 + 2n + 3) −((n −1)2 + 2(n −1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)Ir(0 < r <n); (2)Ir = 2r(0 < r < n).解:(1)I = A(n) − A(t)= In + In¡1 + ・・・+ It+1=n(n + 1)2− t(t + 1)2(2)I = A(n) − A(t)=Σnk=t+1Ik =Σnk=t+1Ik= 2n+1 −2t+13. 已知累积函数的形式为: a(t) = at2 + b 。
若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。
第1 页解: 由题意得a(0) = 1, a(3) =A(3)A(0)= 1.72⇒ a = 0.08, b = 1∴A(5) = 100A(10) = A(0) ・ a(10) = A(5) ・ a(10)a(5)= 100 ×3 = 300.4. 分别对以下两种总量函数计算i5 和i10 :(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1)t.解:(1)i5 =A(5) − A(4)A(4)=5120≈4.17%i10 =A(10) − A(9)A(9)=5145≈3.45%(2)i5 =A(5) − A(4)A(4)=100(1 + 0.1)5 −100(1 + 0.1)4100(1 + 0.1)4= 10%i10 =A(10) − A(9)A(9)=100(1 + 0.1)10 −100(1 + 0.1)9100(1 + 0.1)9= 10%第2 页5.设A(4) = 1000, in = 0.01n. 试计算A(7) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g = 1.002 1.002 = 0.9979 1 1 ⇒ gv = 12 = 12 1.05 v = 1.05 1 + i 361 125000 = Pv + Pgv 2 + L + Pg 359 v 360 = P × gv − ( gv) g 1 − gv ⇒ P = 125000 × 1.002 × 1 − 0.9979 = 493.85 0.9979 − 0.9979361
Bkr = L(1 + i ) k − Psk |i ⇒ B5r = 10 4 × (1 + 12%)5 − 2000 × (1 + 12%)5 − 1 = 4917.72 12%
2. 甲借款 X,为期 10 年,年利率 8%,若他在第 10 年末一次性偿还贷款本利和,其中的利息部分要 比份 10 年期均衡偿还的利息部分多 468.05 元,计算 X。
10. 张某借款 1000 元,年利率为 i,计划在第 6 年末还款 1000 元,第 12 年末还款 1366.87 元。在第 一次还款后第三年,他偿还了全部贷款余额,计算这次偿还额。
6 12 1000 = 1000v + 1366.87v ⇒ P = 1366.87v 3 = 1366.87 × 0.75131 = 1027 6 9 1000 = 1000v + Pv
解:假设贷款额为1 1 L L:Rt = a 30 1 31 − t 1 1 31 − t N + i⇒ = + i ⇒ t = 12.63 N : Rt = 30 30 a30 30 30 RtL = RtN 故,t = 13时L首次超过N贷款偿还款。
15. 某项贷款为 125000 元,期限为 30 年,每月末分期偿还,每次偿还额比前一次偿还额多 0.2%, 第一次还款额为 P,年利率为 5%,计算 P。
12. 某借款人每年末还款额为 1,为期 20 年,在第 7 次还款时,该借款人额外偿还一部分贷款,额 外偿还的部分等于原来第 8 次偿还款中的本金部分, 若后面的还款照原来进行, 直到贷款全部清偿, 证明整个3 = v13 B7 = a13 − v13 = a12 I1 = 13 − a13 ⇒ ∆I = I1 − I 2 = 1 − (a13 − a12 ) = 1 − v13 I = 12 − a 2 12
作者: 作者:刘绮轩 QQ:2629458002
金融数学—— 金融数学——课后习题参考 ——课后习题参考
(中国精算师资格考试用书) 中国精算师资格考试用书)
第四章:债券偿还
20122012-2-16
1. 某人借款 1 万元,年利率 12%,采用分期还款方式,每年末还款 2000 元,剩余不足 2000 元的部分 在最后一次 2000 元的下一年偿还。计算第 5 次偿还款后的贷款余额。
Pk = 190 + 10k
6 2 6 2 6 B4 = P5v + P6v 2 + L + P 10 v = 230(v + v + L + v ) + 10(v + 2v + L + 6v ) = 230a6 + 10( Ia ) 6
I 5 = iB4 = i[230a6 + 10( Ia) 6 ] = 5% × (230 × 5.08 + 10 × 17.04) = 66.89
2000 = I 3 = iRan−2 = 3000(1 − v n−2 ) ⇒ v n−2 =
1 3
1 10% 3×4 P6 = Rv n−5 = 3000v n−5 = 3000 × × v −3 = 103 × (1 + ) = 1344.89 3 4
18. 某投资人购买一种确定年金,每季末可得 500 元,共 10 年,年利率为 8%,计算该投资人的利息 收入。
4. 某人贷款 1 万元,为期 10 年,年利率为 i,按偿债基金方式偿还贷款,每年末支付款为 X,其中包 括利息支出和偿债基金存款支出,偿债基金存款利率为 8%。若贷款利率为 2i,则该借款人每年需 支出款为 1.5X,计算 i.
1 4 + i) X = 10 × ( s 2 0.069 + i 10|8% ⇒ = ⇒ i = 6 .9 % 1 3 0 . 069 + 2 i 4 1.5 X = 10 × ( + 2i ) s10|8%
21. 某贷款分 10 年偿还,首年末偿还额为当年贷款利息 P,第二年末偿还额为 2P,第 3 年末偿还额 为 3P,依此类推,贷款利率为 i,证明: (
Ia ) 10 = a
∞
P = I1 = iL L 1 L = P( Ia)10 ⇒ ( Ia)10 = = = a∞ P i 1 a∞ = i ⇒ ( Ia)10 = a∞
= 49799.48 − 36047.09 = 13752.39
-2-
作者: 作者:刘绮轩 QQ:2629458002
9. 某贷款分 20 年均衡偿还,年利率为 9%,在哪一次偿还款中,偿还的利息部分最接近于偿还的本金 部分。
I k = iBkp−1 = iRa21−k 1 21− k ⇒ v 21−k = 1 − v 21−k ⇒ v 21−k = Pk = Rv 2 I = P ln 2 ⇒ k = 21 − = 13 ln(1 + 9%)
I1 = X (1 + 8%)10 − X X X − X ⇒ X (1 + 8%)10 = 10 × + 468.05 I 2 = 10 × a a 10|8% 10|8% I − I = 468.05 1 2 ⇒X= 468.05 10 (1 + 8%) − a10|8%
105 R= = 530.06 a360 B120 = Ra240 = 81068.47 g = 325.4, k = R + g = 855.46 B120 = kan ⇒ an = 94.77 ⇒ n = 120 I = 120k + 120 R − 105 = 66261.25
20. 乙贷款利率每年为 5%,每年末还款一次,共 10 年,首期还款为 200 元,以后每期还款比前期增 加 10 元,计算第 5 次还款中的利息部分。
10
= 700
3. 一笔贷款每季度末偿还一次,每次还款 1500 元,每年计息 4 次的年名义利率为 10%。若第 1 年末 的贷款余额为 12000 元,计算最初贷款额。
B0 =
R 12000 + 1500a4|2.5% = + 1500 × 3.76 = 16514.4 ( 4) i 4 (1 + 2.5%) 4 (1 + ) 4
i = 4 1.08 − 1 I = 10 × 4 × 500 − 500a40|i = 2 × 10 4 − 500 × 27.63 = 6183.69
-4-
作者: 作者:刘绮轩 QQ:2629458002
19. 甲购买住宅,价值 10 万元,分期按月付款,为期 30 年。首次付款发生在购房第 1 月末,年利率 为 5%。10 年后,每次付款额增加 325.40 元,以便较快还完购房款,计算整个还款期间的利息支出。
7. 某人购买住房,贷款 10 万元,分 10 年偿还,每月末还款一次,年利率满足 (1 + i ) 4 = 1.5 。计算还 款 40 次后的贷款余额。
80 p 105 − 5 48 B = Ra = a80| j 80| j 10 × ( 1 − 1 . 5 ) 40 p a120| j ⇒ B40 = = 77103.81 120 − 48 48 4 1 − 1 .5 (1 + j ) = (1 + i ) = 1.5
B7f = 103 × (2a8|i + a3|i )
6. 一笔贷款按均衡偿还方式分期偿还,若 Bt , Bt +1, Bt + 2, Bt +3 为 4 个连续期间末的贷款余额,证明: (1) ( Bt ( 2) B t
− Bt +1, )( Bt +2 − Bt +3 ) = ( Bt +1 − Bt +2 ) 2
8. 某可调利率的抵押贷款额为 23115 元,为期 10 年,每季度末还款 1000 元,初始贷款利率为年计息 4 次的年名义利率 12%。 在进行完第 12 次还款后, 贷款利率上调为每年计息 4 次的年名义利率 14%, 每季度末保持还款 1000 元,计算第 24 次还款后的贷款余额。
r B24 = 23115 × (1 + 3%)12 × (1 + 3.5%)12 − 103[(1 + 3.5%)12 s12|3% + s12|3.5% ]
-3-
作者: 作者:刘绮轩 QQ:2629458002
14. L,N 两笔贷款额相同,分 30 年偿还,年利率 4%,L 贷款每次还款相同,N 贷款的 30 次还款中, 每次还款所包含的本金部分相同,包含的另一部分是基于贷款余额所产生的利息,L 贷款的偿还款 首次超过 N 贷款偿还款的时间为 t,计算 t。
16. 某贷款为期 5 年,每半年末还款额为 1,每年计息 2 次的年名义利率为 i,计算第 8 次还款中的 本金部分。
i P8 = Rv10+1−8 = v 3 = (1 + ) −3 2
17. 甲借款人每年末还款 3000 元。若第三次还款中的利息部分为 2000 元,每年计息 4 次的年名义利 率为 10%,计算第 6 次还款中的本金部分。
+ B t + 3 < B t +1 + B t + 2