计算机进制之间相互转换

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机进制之间的相互转换

一、进位计数制

所谓进位计数制是指按照进位的方法进行计数的数制,简称进位制。在计算机中主要采用的数制是二进制,同时在计算机中还存在八进制、十进制、十六进制的数据表示法。下面先来介绍一下进制中的基本概念:

1、基数

数制是以表示数值所用符号的个数来命名的,表明计数制允许选用的基本数码的个数称为基数,用R表示。例如:二进制数,每个数位上允许选用0和1,它的基数R=2;十六进制数,每个数位上允许选用1,2,3,…,9,A,…,F共16个不同数码,它的基数R=16。

2、权

在进位计数制中,一个数码处在数的不同位置时,它所代表的数值是不同的。每一个数位赋予的数值称为位权,简称权。

权的大小是以基数R为底,数位的序号i为指数的整数次幂,用i表示数位的序号,用Ri表示数位的权。例如,543.21各数位的权分别为102、101、100、10-1和10-2。

3、进位计数制的按权展开式

在进位计数制中,每个数位的数值等于该位数码与该位的权之乘积,用Ki表示第i位的系数,则该位的数值为KiRi。任意进位制的数都可以写成按权展开的多项式和的形式。

二、计算机中的常用的几种进制。

在计算机中常用的几种进制是:二进制、八进制、十进制和十六进制。二进制数的区分符用字母B表示,八进制数的区分符用字母O表示,十进制数的区分符用字母D表示或不用区分符,十六进制数的区分符用字母H表示。

1、二进制(Binary System)

二进制数中,是按“逢二进一”的原则进行计数的。其使用的数码为0,1,二进制数的基为“2”,权是以2为底的幂。

2、八进制(Octave System)

八进制数中,是按“逢八进一”的原则进行计数的。其使用的数码为0,1,2,3,4,5,6,7,八进制数的基为“8”,权是以8为底的幂。

3、十进制(Decimal System)

十进制数中,是按“逢十进一”的原则进行计数的。其使用的数码为1,2,3,4,5,6,7,8,9,0,十进制数的基为“10”,权是以10为底的幂。

4、十六进制(Hexadecimal System)

十六进制数中,是按“逢十六进一”的原则进行计数的。其使用的数码为0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,十进制数的基为“16”,权是以16为底的幂。

三、进位计数制相互转换

1、二进制转换成八进制

转换原则:以小数点为中心,整数部分从右向左,小数部分从左向右,“三位一体,不足补零。”

举例:(10101010.1111)B =(010 101 010.111 100)O=(252.74)O

二、进制与编码

四种常用的数制及它们之间的相互转换:

二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法

1.二进制与十进制间的相互转换:

(1)二进制转十进制

方法:“按权展开求和”

例:(1011.01)2=(1×23+0×22+1×21+1×20+0×2-1+1×2-2)10

=(8+0+2+1+0+0.25)10

=(11.25)10

规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。

注意:不是任何一个十进制小数都能转换成有限位的二进制数。

(2)十进制转二进制

·十进制整数转二进制数:“除以2取余,逆序排列”(短除反取余法)

例:(89)10=(1011001)2

2 89

2 44 (1)

2 22 0

2 11 0

2 5 (1)

2 2 (1)

2 1 0

0 (1)

·十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)

例: (0.625)10= (0.101)2

0.625

X 2

1.25 1

X 2

0.5 0

X 2

1.0 1

2.八进制与二进制的转换:

二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。

八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。

例:将八进制的37.416转换成二进制数:

3 7 .

4 1 6

011 111 .100 001 110

即:(37.416)8 =(11111.10000111)2

例:将二进制的10110.0011 转换成八进制:

0 1 0 1 1 0 . 0 0 1 1 0 0

2 6 . 1 4

即:(10110.011)2=(26.14)8

3.十六进制与二进制的转换:

二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。

十六进制数转换成二进制数:把每一个八进制数转换成4位的二进制数,就得到一个二进制数。

例:将十六进制数5DF.9 转换成二进制:

5 D F . 9

0101 1101 1111 .1001

即:(5DF.9)16=(10111011111.1001)2

例:将二进制数1100001.111 转换成十六进制:

0110 0001 . 1110

6 1 . E

即:(1100001.111)2=(61.E)16

相关文档
最新文档