线性代数 第五 相似矩阵及二次型
线性代数 第五章 相似矩阵与二次型 第1节
就正交。
显然,零向量与任何向量正交。
定义 一组两两正交的非零向量,称为正交向量组。
定理 如果 n 维向量 1, 2 ,..., m 为正交向量组, 则1, 2 ,..., m 线性无关。
证明 设有1,2,m 使11 2 2 ... m m 0
以
T 1
左乘上式两端,得
1
T 1
1
0
因1 0, 故1T1 1 2 0,从而1 0。
1 3 1
4 6
1 2 1
5 3
1 1 ; 1
3
3
[ 3, 1] [1, 1]
1
[ 3, 2] [2, 2 ]
2
4 1 0
1
3
1 2 1
5
3
1 1 1
2 0
2
再把它们单位化,取
e1
1
1
1 6
1 2 , 1
e3
3
3
r1,n , 把1,r ,r1,n 正交规范化
就得到 Rn 的一个正交规范基。
五、正交矩阵与正交变换
定义 若 n 阶方阵A 满足 AT A E (即A1 AT )
则称 A 是正交矩阵。
若记 A 1 2 n ,则 AT A可表示为:
12TT
1
2
n E
T n
即
iT j
1 0
当i 当i
四、施密特正交化方法
把基 1, 2 ,..., n 化成标准正交基的具体步骤:
先正交化:
令
1
,
1
2
2
[ 2 , [1,
1] 1]
1
3
3
2 i 1
[ 3 [i
第五章 相似矩阵及二次型
第五章:相似矩阵及二次型本章要求:1. 理解矩阵特征值、特征向量及有关性质,熟练掌握求矩阵特征值和特征向量的方法。
2. 理解相似矩阵的概念和矩阵相似于对角矩阵的条件。
3. 掌握实对称矩阵化为对角阵的方法。
4. 理解二次型的定义,掌握二次型在实数域上化标准形、规范形的方法。
5. 理解正定矩阵与正定二次型、会判定二次型的定性。
§1 向量的内积、长度及正交性内容:向量的内积;内积的性质;向量的长度(范数);长度的性质;单位向量;施瓦茨不等式[][][]y y x x y x , ,,2≤;n维向量x 与y 的夹角[]yx y x ,arccos=θ;正交;正交的向量组一定线性无关;规范正交基;基的规范正交化;施密特正交化过程;正交矩阵;方阵 A 为正交矩阵的充分必要条件是A 的列向量都是单位向量,且两两正交;方阵 A 为正交矩阵的充分必要条件是A 的行向量都是单位向量,且两两正交;正交矩阵A 的n 个列(行)向量构成向量空间 R n 的一个规范正交基;正交变换;正交变换不改变线段的长度。
重点:正交的向量组一定线性无关;施密特正交化法;基的规范正交化;正交阵判定的两种方法。
§2 方阵的特征值与特征向量内容:矩阵的特征值与特征向量;A 的特征方程;A 的特征值就是特征方程的解;A 的特征多项式()λλλλ---=nn n n n n a a a a a a a a a f212222111211;若λ是 A 的特征值,则 ()λϕ也是()A ϕ的特征值;特征值互不相等,则对应的特征向量线性无关。
重点:熟练掌握特征值和特征向量的求解方法;特征值的性质;特征值互不相等,则对应的特征向量线性无关。
§3 相 似 矩 阵内容:相似矩阵;相似变换;相似变换矩阵;若 n 阶矩阵 A 与 B 相似,则 A 与 B 的特征多项式相同,从而 A 与 B 的特征值也相同;设⎪⎪⎪⎪⎪⎭⎫⎝⎛=Λn λλλ21,则有 1),21⎪⎪⎪⎪⎪⎭⎫⎝⎛=Λknkkk λλλ()()()().21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=Λn λϕλϕλϕϕ2)若n 阶矩阵A 与Λ相似,则n λλλ,,,21 即为A 的n 个特征值。
大学线性代数课件相似矩阵及二次型第五章 相似矩阵及二次型
|[, ] | [, ][ , ]
长为 1 的向量称为单位向量.
例1
01,
1
0
2
,
0
1
2
若向量
1
3
x ≠0 ,
则
1 x
x
1 都是3 维单位向量.
3
1
是 单 位 向 量.
3
例 已知
1
2
2
,
3
,
1
1
0
0
计算两个向量单位化后的内积.
解:
12 22 (1)2 02
1 0 2
所以A的特征值为 1 2,2 3 1
当 1 2解齐次线性方程组 (2E A)x 0 即
3x1 x2 0 4x1 x2 0 x1 0
3 1 0 1 0 0
由
2E
A
4 1
1 0
00
0 0
1 0
0 0
0
得基础解系
p1
10
故对应于 1 2的全体特征向量为 k1 p1(k1 0)
y yT y xT PT Px xT x x
说明经正交变换向量长度保持不变,这是正交变换的优 良特性.
2 方阵的特征值 特征向量
内容分布 一、特征值与特征向量 二、特征值与特征向量的性质
基本要求 会求特征值与特征向量
2.1 特征值与特征向量
定义8 设A是n阶方阵,如果数 和n维非零向量x使
量为
k11 k22 kss (k1, ···,ks不同时为0)
例1 求矩阵
A
2 1
解: A的特征方程为
1 2
的特征值和特征向量
2 1
| E A |
第五章 相似矩阵及二次型 线性代数 含答案
第五章 相似矩阵及二次型5.4.1 基础练习 1. (1223),(3151),(,)αβαβ==∠求.2. 若λ=2为可逆阵A的特征值,则1213A -⎛⎫⎪⎝⎭的一个特征值为 .3. 试证n阶方阵A的满足2A A =,则A的特征值为0或者1.4.已知三维向量空间中,12(111),(121)TTαα==-正交,试求3123,,αααα,使得是三维向量空间的一个正交基.5. 已知向量1(111)T α=,求3R 的一个标准正交基.6. 已知122224242A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,问A 能否化为对角阵?若能对角化,则求出可逆矩阵P ,使1P AP -为对角阵.7. 将二次型222123121323171414448f x x x x x x x x x =++---,通过正交变换x Py =化成标准型.8. 判别二次型()222123123121323,,55484f x x x x x x x x x x x x =+++--是否正定?5.4.2 提高练习1. 设n 阶实对称矩阵A 满足2A A =,且A 的秩为r ,试求行列式det(2E -A).2. 设460350361A ⎛⎫⎪=-- ⎪ ⎪--⎝⎭,问A 能否对角化?若能对角化,则求出可逆矩阵P ,使得-1P AP 为对角阵.3. 已知实对称矩阵220212020A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,分别求出正交矩阵P ,使1P AP -为对角阵. 4. 化二次型()123121323,,f x x x x x x x x x =++为标准形,并求所作的可逆线性变换.5. 设A,B分别为m阶,n阶正定矩阵,试判定分块矩阵ACB⎛⎫= ⎪⎝⎭是否为正定矩阵?6. 判别二次型22256444f x y z xy xz=---++的正定性.7. 判断下列两矩阵A,B是否相似11100111100,111100nA B⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭第五章 参考答案5.4.1 基础练习 1.[,]cos ||||||||4αβπθθαβ===∴=2.34. 3.略.4. 设3123()0Tx x x α=≠,则[][]1223,0,,0αααα==,即 12313312321002001x x x x x x x x x α-⎛⎫++==-⎧⎧ ⎪⇒⇒=⎨⎨ ⎪-+==⎩⎩ ⎪⎝⎭5. 设非零向量23,αα都与2α正交,即满足方程11230,0T x x x x α=++=或者,其基础解 系为: 12100,111ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 令 121321101,0,1111ααξαξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭1)正交化令 121122121111[,]1,0,[,]11βαβαβαβαββ⎛⎫⎛⎫⎪⎪===-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭1323233312321122221[,][,][,]12[,][,][,]21βαβαβαβαββαβββββββ-⎛⎫⎪=--=-= ⎪ ⎪-⎝⎭2)标准化令1||||i i i ςββ=,则1231111,0,2111ςςς-⎛⎫⎛⎫⎛⎫⎪⎪⎪===⎪⎪⎪⎪⎪⎪--⎭⎭⎭6. 由2122224(2)(7)242A E λλλλλλ---=---=--+--得,1232,7λλλ===-将12λ=λ=2代入()1A-λE x=0,得方程组 12312312322024402440x x x x x x x x x --+=⎧⎪--+=⎨⎪+-=⎩解值得基础解系 12200,111αα⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 同理,对3λ=-7,由()3A-λE x=0,求得基础解系()31,2,2Tα=,由于201120112≠,所以123,,ααα线性无关,即A 有3个线性无关得特征向量,因而A 可对角化,可逆矩阵为:123201(,,)012112P ααα⎛⎫⎪== ⎪ ⎪⎝⎭7. 第一步,写出对应得二次型矩阵,并求其特征值 172221442414A --⎛⎫ ⎪=-- ⎪⎪--⎝⎭, ()()2172221441892414A E λλλλλλ---⎛⎫⎪-=---=-- ⎪⎪---⎝⎭,从而A 的全部特征值为1239,18λλλ===。
工程数学线性代数课后答案详解
似
证明 取 PA 则 即 AB 与 BA 相似
P1ABPA1ABABA
14
设矩阵 A432
0 1 0
15x 可相似对角化
求 x
解由
2 0 1 | AE| 3 1 x ( 1)2( 6)
022
x1 x2 x3
0
得特征向量(1 2 2)T
单位化得
p1
(1, 3
2, 3
2)T 3
对于21, 解方程(AE)x0 即
1 2 0
2 0
2
201
x1 x2 x3
0
得特征向量(2 1 2)T
特征值341 的线性无关特征值向量
6 设 A 为 n 阶矩阵 证明 AT 与 A 的特征值相同 证明 因为
|ATE||(AE)T||AE|T|AE| 所以 AT 与 A 的特征多项式相同 从而 AT 与 A 的特征值相同
7 设 n 阶矩阵 A、B 满足 R(A)R(B)n 证明 A 与 B 有公共的特征值 有公 共的特征向量
b1
011
b3
a3
[[bb11,,ab13]]b1
[[bb22,,ab23]]b2
1 3
211
(2) (a1,
a2,
a3)
1 0 1 1
1 1 0
1
11 01
解 根据施密特正交化方法
1
b1
a1
第五章 相似矩阵及二次型
首页
上页
返回
下页
结束
向量间的夹角 当x0 y0时
天 津 师 范 大 学 计 算 机 与 信 息 工 程 学 院
arccos
[ x, y] || x |||| y ||
称为n维向量x与y的夹角 当[x y]0时 称向量x与y正交 显然 若x0 则x与任何向 量都正交
首页 上页 返回 下页 结束
正交阵 如果n阶矩阵A满足ATAE(即A1AT) 那么称A为正交矩 阵 简称正交阵
天 津 师 范 大 学 计 算 机 与 信 息 工 程 学 院 郑 陶 然
方阵A为正交阵的充分必要条件是A的列(行)向量都是单 位向量 且两两正交 n阶正交阵A的n个列(行)向量构成向量空间Rn 的一个规 范正交基
范 大 学 计 算 机 与 信 息 工 程 学 院
内积的性质 设x y z为n维向量 为实数 则 (1)[x y][y x] (2)[x y][x y] (3)[xy z][x z][y z] 郑 (4)当x0时 [x x]0 当x0时 [x x]0 陶 然 (5)[x y]2[x x][y y] ——施瓦茨不等式
范 大 学 计 算 机 与 信 息 工 程 学 院 郑 陶 然
说明 内积是两个向量之间的一种运算 其结果是一个实数 用 矩阵记号表示 当x与y都是列向量时 有 [x y]xTy
首页 上页 返回 下页 结束
向量的内积 设有n维向量x(x1 x2 xn)T y(y1 y2 yn)T 令 [x y]x1y1x2y2 xnyn 天 津 师 [x y]称为向量x与y的内积
天 津 师 范 大 学 计 算 机 与 信 1 1 4 5 b2 a2 b1 3 2 1 1 6 1 3 1 [b1, b1] [b1, a2 ] 4 1 1 1 1 5 b3 a3 b1 b2 1 2 1 2 0 0 3 1 3 1 1 [b1, b1] [b2, b2 ] [b1, a3] [b2, a]
线性代数第五章答案
l1b1l2b2 lnrbnr0 与b1 b2 bnt线性无关相矛盾
因此 0 是A的也是B的关于0的特征向量 所以A与B有公共的特征值 有 公共的特征向量
8 设A23A2EO 证明A的特征值只能取1或2 证明 设是A的任意一个特征值 x是A的对应于的特征向量 则
(A23A2E)x2x3x2x(232)x0 因为x0 所以2320 即是方程2320的根 也就是说1或2
9 设A为正交阵 且|A|1 证明1是A的特征值 证明 因为A为正交矩阵 所以A的特征值为1或1 (需要说明) 因为|A|等于所有特征值之积 又|A|1 所以必有奇数个特征值为1 即1 是A的特征值
10 设0是m阶矩阵AmnBnm的特征值 证明也是n阶矩阵BA的特征值 证明 设x是AB的对应于0的特征向量 则有
(AB)xx 于是 B(AB)xB(x) 或 BA(B x)(Bx) 从而是BA的特征值 且Bx是BA的对应于的特征向量
11 已知3阶矩阵A的特征值为1 2 3 求|A35A27A| 解 令()3527 则(1)3 (2)2 (3)3是(A)的特征值 故
|A35A27A||(A)|(1)(2)(3)32318
12 已知3阶矩阵A的特征值为1 2 3 求|A*3A2E| 解 因为|A|12(3)60 所以A可逆 故
A*|A|A16A1 A*3A2E6A13A2E 令()6132 则(1)1 (2)5 (3)5是(A)的特征值 故 |A*3A2E||6A13A2E||(A)|
6 设A为n阶矩阵 证明AT与A的特征值相同 证明 因为
线性代数第五章答案
线性代数第五章答案第五章相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)=931421111) , ,(321a a a ;解根据施密特正交化方法,==11111a b ,-=-=101],[],[1112122b b b a b a b ,-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)---=011101110111) , ,(321a a a .解根据施密特正交化方法,-==110111a b ,-=-=123131],[],[1112122b b b a b a b , ?-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)---121312112131211;解此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)------979494949198949891.解该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明因为A ,B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由--???? ??---=-00021101113333823289~E A ,得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考)解22)1()1(001010010100||+-=----=-λλλλλλλE A ,故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1,由=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由------=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7.设n阶矩阵A、B满足R(A)+R(B)<n,证明a与b有公共的特征值,有公共的特征向量.< p="">证明设R(A)=r,R(B)=t,则r+t<n.< p="">若a1,a2,,a n-r是齐次方程组A x=0的基础解系,显然它们是A的对应于特征值λ=0的线性无关的特征向量.类似地,设b1,b2,,b n-t是齐次方程组B x=0的基础解系,则它们是B的对应于特征值λ=0的线性无关的特征向量.由于(n-r)+(n-t)=n+(n-r-t)>n,故a1,a2,,a n-r,b1,b2,,b n-t 必线性相关.于是有不全为0的数k1,k2,,k n-r,l1,l2,,l n-t,使k1a1+k2a2++k n-r a n-r+l1b1+l2b2++l n-r b n-r=0.记γ=k1a1+k2a2++k n-r a n-r=-(l1b1+l2b2++l n-r b n-r),则k1,k2,,k n-r不全为0,否则l1,l2,,l n-t不全为0,而l1b1+l2b2++l n-r b n-r=0,与b1,b2,,b n-t线性无关相矛盾.因此,γ≠0,γ是A的也是B的关于λ=0的特征向量,所以A与B有公共的特征值,有公共的特征向量.8.设A2-3A+2E=O,证明A的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m?n B n?m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令?(λ)=λ3-5λ2+7λ, 则?(1)=3, ?(2)=2, ?(3)=3是?(A )的特征值, 故 |A 3-5A 2+7A |=|?(A )|=?(1)??(2)??(3)=3?2?3=18.12. 已知3阶矩阵A 的特征值为1, 2, -3, 求|A *+3A +2E |. 解因为|A |=1?2?(-3)=-6≠0, 所以A 可逆, 故 A *=|A |A -1=-6A -1, A *+3A +2E =-6A -1+3A +2E .令?(λ)=-6λ-1+3λ+2, 则?(1)=-1, ?(2)=5, ?(-3)=-5是?(A )的特征值, 故 |A *+3A +2E |=|-6A -1+3A +2E |=|?(A )|=?(1)??(2)??(-3)=-1?5?(-5)=25.13. 设A 、B 都是n 阶矩阵, 且A 可逆, 证明AB 与BA 相似.证明取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵=50413102x A 可相似对角化, 求x .解由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由-???? ??=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值;解设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即=???? ??-???? ??------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由-???? ??----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)----020212022;解将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=-----x x x , 得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p . 对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即=???? ?????? ??----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即=???? ?????? ??-------000542452228321x x x ,得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵------=12422421x A 与-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵?--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T , p 2=(1, 1, 1)T , p 3=(1,1, 0)T , 求A .解令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1.因为---=???? ??=--11011101101111111011P ,所以---???? ??-???? ??=Λ=-1101110111000200020111111101P P A------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解设=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 =++=++=++222222122653542321x x x x x x x x x , ---① =-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x ,314=x , 325=x . 因此-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解设=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有=???? ??1116111A , 即?=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出--???? ??---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此=411141114A .21. 设a =(a 1, a 2, , a n )T , a 1≠0, A =aa T . (1)证明λ=0是A 的n -1重特征值;证明设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ? ? ?, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ? ? ?, a n 2, 所以a 12+a 22+ ? ? ? +a n 2=a T a =λ1+λ2+ ? ? ? +λn ,这说明在λ1, λ2, ? ? ?, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解设λ1=a Ta , λ2= ? ? ? =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ? ? ? =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ? ? ? +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, , 0)T ,p 3=(-a 3, 0, a 1, , 0)T , ? ? ?,p n =(-a n , 0, 0, , a 1)T .因此n 个线性无关特征向量构成的矩阵为--=112212100), , ,(a a a aa a a nn n p p p . 22. 设-=340430241A , 求A 100. 解由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ, A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),--=???? ??-=--1202105055112021012111P ,所以--???? ?????? ??-=12021050555112021012151100100100A-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式??=??++n n n n y x A y x 11中的矩阵A ;解由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为--=??? ??++n n n n y x q p q p y x 1111,因此--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即??? ??=??? ??5.05.000y x , 求?n n y x .解由??=??++n n n n y x A y x 11可知??=??00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r ,解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令??-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1.于是 11100111-??-??? ????? ??-=p q r p q A n n-??? ????? ??-+=q p r p q q p n 11001111+--++=n n n n qr p pr p qr q pr q q p 1,+--++=??? ??5.05.01n n n n n n qr p pr p qr q pr q q p y x ??-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设??--=3223A , 求?(A )=A 10-5A 9; 解由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵?-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此?(A )=P ?(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1-??? ??-??? ??-=1111210004111121-=??? ??----=111122222.(2)设=122221212A , 求?(A )=A 10-6A 9+5A 8.解求得正交矩阵为---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是?(A )=P ?(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0,0)P -1---???? ?---=222033*********223123161----=4222112112. 25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解------=432143211021013223111211) , , ,(x x x x x x x x f .26. 写出下列二次型的矩阵: (1)x x x ?=1312)(T f ;解二次型的矩阵为=1222A .(2)x x x=987654321)(T f .解二次型的矩阵为=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解二次型的矩阵为=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由-???? ??---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解二次型矩阵为----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解二次型的矩阵为----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p . 对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p .于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换--=???? ??w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ? ? ?, λn )=Λ成立, 其中λ1, λ2, ? ? ?, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ? ? ? +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ? ? ? +y n 2=1.因此f =λ1y 12+λ2y 22+ ? ? ? +λn y n 2≤λ1,又当y 1=1, y 2=y 3=? ? ?=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3;解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ??+==-+=323223211222x x y x y x x x y , 即+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 +==+=32322311x x y x y x x y , 即+-==-+=3 23223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.</n.<></n,证明a与b有公共的特征值,有公共的特征向量.<>。
线性代数 第五章 相似矩阵与二次型 第3节
又特征值就是特征方程的根,从而有相同的特征值.
推论 若 n 阶矩阵 A 与对角矩阵 diag(1, 2,n )
相似 则 1 ,2 ,,n 是A 的n 个特征值。
三、相似变换矩阵的求法
问题:
对一个 n 阶方阵 A,是否存在相似变换
1
矩阵
P,
使
P 1 AP
2Байду номын сангаас
求特征向量 将 1 5 代入 (E - A)X 0
得
42xx1 124xx2 222xx3 300
解得特征向量
1 X11 1
2x1 2x2 4x3 0
1
再将 2 1 代入 (E - A)X 0
得
2 x1 2 x1
2x2 2x2
2x3 2x3
0 0
2 x1 2x2 2x3 0
于是有 Api i pi i 1,2,, n.
可见 i 是A的特征值,而P的列向量 pi 就是 A的对应于特征值i的特征向量.
反之, 如果 n 阶方阵 A 有n 个线性无关的特征向量 P1, P2 ,, Pn 满足 APi iPi , i 1,2,, n
那么令 P (P1, P2 ,, Pn ) 则 P 可逆,且 P 1 AP diag(1 ,2 ,n )
1
则A有3个线性无关的特征向量 ,因而A可对角化.
例设
1 A 2
2 1
2 2
判断A是否可以对角化,
2
2
1
若可以对角化,求出可逆阵P,
使得 P 1 AP 为对角阵,并求 A100
解 (1)求特征值 1 2 2
E A 2 1 2 5 12
2 2 1
解得 : 1 5, 2 3 1
《线性代数》第五章相似矩阵及二次型精选习题及解答
故, β 3 = ( −
1 3
1 3
1 3
1) T ⇒ γ 3 =
β3 3 = (− 6 β3
3 6
3 3
3 T ) 2
⎛ 3 2 4⎞ ⎜ ⎟ 例 5.3 计算 3 阶矩阵 A= 2 0 2 的全部特征值和特征向量. ⎜ ⎟ ⎜ 4 2 3⎟ ⎝ ⎠
n n
f ( x) = xT Ax ,其中 A T = A .
6.熟悉矩阵 A 合同(或相合)于 B 的定义,理解合同关系是等价关系. 7.熟练掌握化二次型 xT Ax 为平方和(标准形)或求实对称矩阵 A 的相合标准形的 3 种方法:正交变换法;配方法;和同型初等行、列变换法. 8.了解惯性定理,会求矩阵 A 的正、负惯性指数和符号差,会求二次型的规范形. 9.熟练掌握正定二次型(正定矩阵)的定义和判别方法. 10.熟悉实对称矩阵 A 正定(二次型正定)的各种等价命题(正定的充要条件). 11.理解 A 正定的必要条件: a ii > 0( i = 1, 2, L , n ); det( A ) > 0 . 12. 会利用正交变换化二次型为标准型和极坐标平移方法判别一般二次曲线和曲面的类 型.
故 A 是正交矩阵. 例 5.2 已知向量 α 1 = (1,1, 0, 0 ) , α 2 = (1, 01, 0 ) , α 3 = ( − 1, 0, 0,1) 是线性无关向
T T T
量组,求与之等价的正交单位向量组. 解法一 先正交化,再单位化 (1) 取 β 1 =
α1
(2) 令 β 2 = k β 1 + α 2 ,使得 β2 与 β 1 正交
T −1 ∗
5.3 例题分析
例 5.1 设 a 是 n 阶列向量, E 是 n 阶单位矩阵,证明 A = E −
同济大学线性代数课件__第五章相似矩阵及二次型
p3
0 4
30
设
1 0 1
P ( p1, p2 , p3 ) 0 1 0
1 1 4
则
1
P 1AP 2
2
31
性质:若l 是 A 的特征值, 即 Ax = lx (x≠0),则
(1) kl 是 kA 的特征值(k是常数),且 kAx = klx (2) lm 是 Am 的特征值(m是正整数),且 Amx = lmx (3) 若 A可逆,则l-1是 A-1的特征值, 且 A-1x = l-1x
16
定义4 若 n 阶矩阵 A 满足 A A E 则称 A 为正交矩阵, 且 A1 A
令 A (1,2 , ,n )
A
A
1
2
(1
,
2
,
n
,n
)
11
21
n1
故
[i , j ] i j
ij
1, 0,
i i
j j
1 2 2 2
n 2
1 n 2 n
nn
17
特征值及二次型问题是线性代数的重要问题。
[ x ty, x ty] 0, t [ x, x] 2[ x, y]t [ y, y]t 2 0
(1) [ x, y ] = [ y, x ]; [ x, y]2 [x, x][ y, y]
(2) [lx, y] = l[ x, y ];
(3) [ x + y, z ] = [ x, z ] + [ y, z ];
解: (1) A2 2A 3E 有特征值 l 2 2l 3
(2) 3阶阵 A有特征值 1, -1, 2,故 | A | 2,A可逆。 A 3A 2E 有特征值 -1,-3,3
《线性代数》教学课件—第5章 二次型 第三节 相似矩阵
定理 若定矩阵理A 与若矩矩阵阵 AB与相似矩,阵且B矩相阵似A, 且矩阵
可逆, 则矩可阵逆B, 也则可矩逆阵, B且也A可-1 逆与,B且-1A相-1似与. B-1 相似.
三、矩阵对角化的步骤
设 n 阶方阵 A 可对角化,则把 A对角化的 步骤如下:
步骤 1 :求出矩阵 A 的所有特征值,设 A
有 s 个不同的特征值 1 , 2 , ···, s ,它们的重
数分别为 n1, n2 , ···, ns , 有 n1 + n2 + ···+ ns = n.
步骤 2 : 对 A 的每个特征值 i ,求(A - iE)x = 0
证毕
在矩阵的运算中, 对角矩阵的运算很简便, 如
果一个矩阵能够相似于对角矩阵, 则可能简化某
些运算. 例如, 如果令
P 11
32
,
A
7 9
86
.
不难验算,
P
1
AP
1 0
02 记为
.
如果我们要计算 A10 或 An , 直接计算, 运算 量很大也不易找出规律. 利用 A 相似于对角矩阵 的性质,可得
相似矩阵具有下列性质:下设 A,B 是同阶 矩阵.
定理 3 若矩阵 A 与矩阵 B 相似, 则
|A - E| = |B - E| ,
因而 A 与 B 有相同的特征值、相同的行列式.
证明 只需证证明A 与只需B 证有相A 同与的B特有征相多同项的式特即征多项 可. 推由论于 A可若与. nB由阶相于方似A阵,与所AB以与相, 对必似角有, 所矩可以阵逆,矩必阵有可P,使逆得矩阵 P
相似矩阵及二次型
0
T 1
1
1
2
0,
从而有1
0.
同理可得2 r 0. 故1,2 ,,r线性无关.
4 向量空间旳正交基
若
1
,
2
,
,
是向量空间
r
V的一个基
,
且
1
,
2
,
, r是两两正交的非零向量 组,则称1, 2 ,, r是
向量空间V的正交基.
例1 已知三维向量空间中两个向量
1
1 1,
1
1
2 2
为A的特征方程 .
记 f A E ,它是的n次多项式, 称其
为方阵A的 特征多项式 .
4. 设 n阶方阵 A aij 的特征值为1, 2 ,,
n ,则有 (1) 1 2 n a11 a22 ann; (2) 12 n A .
例5 求A 3 1的特征值和特征向量 . 1 3
] ]
b2
[br 1 [br1 ,
,ar ] br1 ]
br
1
那么b1 ,,br两两正交,且b1 ,,br与a1 ,ar等价.
(2)单位化,取
e1
b1 b1
,
e2
b2 b2
,
,er
br br
,
那么 e1 ,e2 ,,er为V的一个规范正交基 .
上述由线性无关向量组 a1 ,,ar构造出正交 向量组b1 ,,br的过程,称为 施密特正交化过程 .
2. 齐次性 x x ;
3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时,称 x为单位向量 .
2当 x 0, y 0时, arccos x, y
线性代数第五章(答案)
第五章 相似矩阵及二次型一、 是非题(正确打√,错误打×)1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组kαα,,1 与向量组r ββ,,1 等价. (√)2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. (√)3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. (√)4.若A 和B 都是正交阵,则AB 也是正交阵. (√)5.若A 是正交阵, Ax y =,则x y =. (√)6.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. (×) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. (×) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. (×) 9. 矩阵A 有零特征值的充要条件是0=A . (√) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式).(√)11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. (×) 12. T A 与A 的特征值相同. (√)13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. (×) 14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B有相同的特征值. (√)15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. (√)16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. (√) 17.实对称矩阵A 的非零特征值的个数等于它的秩. (√)18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. (√)19. 实对称阵A 与对角阵 Λ相似:Λ=-AP P 1,这里P 必须是正交阵 。
线性代数习题册(第五章 相似矩阵及二次型参考答案)
二、计算题
7. 用施密特(Schimidt)正交化过程将向量= 组α1
1 = 1 ,α2 1
1 = 2 ,α3 3
1
4
规范正交化.
9
解:根据施密特正交化方法,
1
b=1
a=1
1
,
1
−1
b2
= a2 − [[bb11,,ab12
−1
=
1 2
0 1
,
b3
=
= b3 | b3 |
1
1 6
−2 1
。
三、证明题
8. 设α 是一个 n 维非零列向量,试证 A=
E
−
α
2 Tα
αα
T
是一个正交矩阵.
解:
AT
A
= E − α2Tα αα
T
T
E
−
2 αTα
αα
T
( A) λ −1 A n
(B) λ −1 A
(C ) λ A
( D) λ −1 A n−1
分析:设 Aξ = λξ ,又 A 可逆,所以 A−1ξ = 1 ξ , | A | A−1ξ =| A | 1 ξ
λ
λ
⇒ A*ξ = | A | ξ , λ
5. 设 3 阶矩阵 A 的特征值为1, 3, 5 ,则 A 的行列式 A 等于( D ).
第五章 相似矩阵及二次型
单元 12 向量的内积与正交性
一、选择题
1. 设 x, y ∈ Rn , [ x, y] 表示向量 x 与 y 的内积,则下列不正确的是( D ).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3的 特 征 向 量, 故 它 们 必 两 两 正 交.
第四步 将特征向量单位化
令
i
i i
,
i 1,2,3.
得
2 3
1 2 3 ,
2 3
2 1 3 ,
1 3
2 3
1 3
3 2 3.
2 3
2 2 1
作
P
1, 2 , 3
1
3
2 1
1 2
2, 2
4 0 0
则
P1AP P1P
其中对角矩阵的对角元素含r1 个 1, , rs 个s , 恰
是A的n个特征值.
二、利用正交矩阵将对称矩阵对 角化 的方法
根据上述结论,利用正交矩阵将对称矩阵化 为对角矩阵,其具体步骤为:
1. 求A的特征值;
2. 由A i Ex 0,求出A的特征向量;
3. 将特征向量正交化;
线性代数
第五章 相似矩阵及二次型
一、对称矩阵的性质
说明:本节所提到的对称矩阵,除非特别说 明,均指实对称矩阵.
定理1 对称矩阵的特征值为实数.
证明 设复数为对称矩阵A的特征值 ,复向量x为
对应的特征向量,
即
Ax x , x 0.
用 表示的共轭复数, x表示x的共轭复向量 ,
则 A x A x Ax x x.
由于对称矩阵A的特征值 i 为实数,所以齐次
线性方程组
(A i E)x 0 是实系数方程组,由 A i E 0知必有实的基础解
系, 从 而 对 应 的 特 征 向 量 可以 取 实 向 量.
定理2 设1 , 2 是对称矩阵A的两个特征值 , p1 , p2是对应的特征向量,若1 2 ,则p1与p2正交. 证明 1 p1 Ap1, 2 p2 Ap2 , 1 2 ,
A对称, A AT ,
1 p1T 1 p1 T Ap1 T p1T AT p1T A,
于是 1 p1T p2 p1T Ap2 p1T 2 p2 2 p1T p2 ,
1 2 p1T p2 0.
1 2 , p1T p2 0. 即p1与p2正交.
定理3 设 A为 n阶对称矩阵, 是A的特征方程的r 重根,则矩阵 A E 的秩 R( A E) n r,从而
0 2 得 1 4, 2 1, 3 2.
第二步 由A i E x 0,求出A的特征向量
对 1 4,由A 4E x 0,得
2
2x1 2x2 0 x1 3 x2 2 x3
0
解之得基础解系
1
2 2 .
2x2 4x3 0
1
对 2 1,由A E x 0,得
1
2 0,
0
0
3 1.
1
2与3恰好正交 ,
所以 1, 2 , 3两两正交.
再将 1, 2 , 3单位化,令i
i i
i
1,2,3得
0
1 1 2 ,
1 2
1
2 0,
0
0
3 1 2.
1 2
于是得正交阵
P1,2源自,310 2
1 0 0 1 2
1 2 0 1 2
理3( 如上)可得:
对应特征值 i (i 1,2, , s),恰有 r i 个线性无
关的实特征向量,把它们正交化并单位化,即得 r i 个 单位正交的特征向量. 由r1 r2 rs n知, 这样的特征向量共可得 n个.
由定理2知对应于不同特征值的特征向量正交, 故这 n 个单位特征向量两两正交. 以它们为列向量构成正交矩阵 P ,则
于是有 xT Ax xT Ax xT x xT x,
及 xT Ax xT AT x Ax T x xT x xT x.
两式相减,得
xT x 0.
但因为 x 0,
所以
xT
x
n
xi xi
n
xi
2
0,
0,
i 1
i 1
即 , 由此可得是实数.
定理1的意义
则
P 1 AP
2 0
0 4
0 0.
0 0 4
三、小结
1. 对称矩阵的性质: (1)特征值为实数; (2)属于不同特征值的特征向量正交; (3)特征值的重数和与之对应的线性无关的
特征向量的个数相等; (4)必存在正交矩阵,将其化为对角矩阵,
且对角矩阵对角元素即为特征值.
2. 利用正交矩阵将对称阵化为对角阵的步骤: (1)求特征值;(2)找特征向量;(3)将特征向
对应特征值 恰有 r 个线性无关的特征向量.
定理4 设A为n阶对称矩阵,则必有正交矩阵P,使
P 1 AP ,其中 是以 A的 n 个特征值为对角元
素的对角矩阵.
证明 设A 的互不相等的特征值为 1,2 , ,s ,
它们的重数依次为r1 , r2 , , rs (r1 r2 rs n). 根据定理1(对称矩阵的特征值为实数)和定
2
x1 x1
2 x2 2 x3
0 0
2x2 x3 0
2
解之得基础解系
2
1
.
2
对 3 2,由A 2E x 0,得
2
x1
4 x1 3x2
2x2 2x3
0
0
解之得基础解系 3
1 2.
2x2 2x3 0
2
第三步 将特征向量正交化
由于1,2 ,3是属于A的3个不同特征值1, 2 ,
P
1
AP
0
1
0 .
0 0 2
4 0 0 (2) A 0 3 1
0 1 3
4 0 A E 0 3
0
1 2 4 2,
0 1 3
得特征值 1 2, 2 3 4.
0
对 1 2,由A 2E x 0,得基础解系
1 1
1
对 2 3 4,由 A 4E x 0,得基础解系
量单位化;(4)最后正交化.
思考题
设n阶实对称矩阵A满足A2 A,且A的秩为r,
试求行列式det2E A的值.
思考题解答
解 由 A2 A可得A的特征值为1或0,又A是实对称
阵, 且秩为r , 故存在可逆阵P , 使得
P 1 AP E r 0 , 0 0
其中E r 是r阶单位阵. 从而 det(2E A) det(2P P1 P P1)
4. 将特征向量单位化.
例 对下列各实对称矩阵,分别求出正交矩阵 P, 使 P1AP为对角阵.
2 2 0
4 0 0
(1)A 2 1 2, (2) A 0 3 1
0 2 0
0 1 3
解 (1)第一步 求 A 的特征值
2 2 0
A E 2 1 2 4 1 2 0