最新中考数学必备专题目几何三大变换之平移

合集下载

认识简单的几何变换平移旋转和翻转的基本变换

认识简单的几何变换平移旋转和翻转的基本变换

认识简单的几何变换平移旋转和翻转的基本变换认识简单的几何变换-平移、旋转和翻转的基本变换几何变换是指对图形的位置、形状或方向进行改变的操作。

在几何学中,平移、旋转和翻转是最基本且常用的几何变换。

它们有着广泛的应用,能够帮助我们理解和描述图像的变化。

在本文中,我们将探讨这三种基本变换的概念和特点。

一、平移变换平移变换是指将图形整体沿着一个方向移动一定的距离,而图形的形状、大小和方向保持不变。

平移变换可以用矩阵、向量或坐标的形式表示。

对于平面上的点(x, y),其平移变换可以表示为:(x', y') = (x + a, y + b)其中(a, b)表示平移的距离,(x', y')表示变换后的点。

通过平移变换,图形在平面上的位置发生了移动,但其他属性保持不变。

例如,考虑一个正方形,其四个顶点坐标分别为(0, 0),(1, 0),(1, 1),(0, 1)。

如果将这个正方形沿x轴正方向平移2个单位,y轴正方向平移3个单位,那么变换后的正方形顶点坐标为(2, 3),(3, 3),(3, 4),(2, 4)。

二、旋转变换旋转变换是指将图形绕着一个点旋转一定的角度,而图形的大小和形状保持不变。

旋转变换可以使用旋转矩阵或旋转公式来表示。

对于平面上的点(x, y),其旋转变换可以表示为:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中(θ)表示旋转的角度。

通过旋转变换,图形在平面上绕着某个点进行旋转,但其他属性保持不变。

例如,考虑一个直角三角形,其三个顶点坐标分别为(0, 0),(1, 0),(0, 1)。

如果将这个直角三角形绕着原点逆时针旋转90度,那么变换后的三角形顶点坐标为(0, 0),(0, 1),(-1, 0)。

三、翻转变换翻转变换是指将图形沿着一个轴对称翻转,而图形的大小和形状保持不变。

翻转变换可以沿着x轴、y轴或者某条对角线进行。

初中数学知识归纳平移旋转和对称变换

初中数学知识归纳平移旋转和对称变换

初中数学知识归纳平移旋转和对称变换初中数学知识归纳:平移、旋转和对称变换数学是一门具有广泛应用的学科,也是培养学生逻辑思维和解决问题能力的重要学科之一。

在初中数学中,平移、旋转和对称变换是数学中常见的几何变换操作,对于学生们的几何观念理解和图形思维的培养具有重要意义。

本文将对初中数学中的平移、旋转和对称变换进行归纳和总结。

一、平移(Translation)平移是指在平面内按照一定的方向和距离将图形移动到另一个位置的几何变换操作。

平移操作不改变图形的大小和形状,只是改变了图形的位置。

在平移中,每个点都按照相同的方向和距离进行移动。

平移的基本要素有:平移向量和被平移图形。

平移向量是指平移的方向和距离,可以用箭头表示。

被平移图形是指需要进行平移操作的图形。

二、旋转(Rotation)旋转是指按照某个中心点和旋转角度将图形绕这个中心点进行旋转的几何变换操作。

旋转不改变图形的大小和形状,只是改变了图形的方向。

在旋转中,每个点都绕着中心点按照相同的角度进行旋转。

旋转的基本要素有:旋转中心、旋转角度和被旋转图形。

旋转中心是指旋转的中心点,旋转角度是指旋转的角度大小,可以用度数表示。

被旋转图形是指需要进行旋转操作的图形。

三、对称变换(Symmetry)对称变换是指通过某条线、某个点或某个面将图形镜像成另一个图形的几何变换操作。

对称变换不改变图形的大小和形状,只是改变了图形的位置或方向。

在对称变换中,每个点通过指定的对称轴或对称中心得到对应的镜像点。

常见的对称变换有关于x轴、y轴和原点的对称等。

关于x轴的对称是指图形在x轴上下对称,即图形上的每个点与其镜像点关于x轴对称;关于y轴的对称是指图形在y轴左右对称,即图形上的每个点与其镜像点关于y轴对称;关于原点的对称是指图形在原点内外对称,即图形上的每个点与其镜像点关于原点对称。

综上所述,初中数学中的平移、旋转和对称变换是数学几何中常见的几何变换操作。

通过学习和理解这些几何变换,学生们可以更好地把握图形的性质和形态,同时培养几何思维和问题解决能力。

初中数学三大变换

初中数学三大变换

初中数学三大变换
嘿,小伙伴们!今天咱们来聊聊初中数学里超级有趣的三大变换之一——平移。

平移这玩意儿,简单来说就是把一个图形在平面上沿着某个方向移动一段距离,图形的形状和大小都不变哦。

比如说,把一个三角形往左平移 5 个单位长度,它的三条边长度和三个角的大小都不会变,只是位置变了。

平移在解决几何问题的时候可有用啦,能帮咱们找到图形之间的关系,计算线段长度或者角度大小。

而且哦,平移还和坐标有关系呢,通过平移前后点的坐标变化规律,能轻松搞定很多难题。

初中数学三大变换之旋转
轮到旋转登场啦!旋转就是让图形绕着一个固定点按照一定的方向转动一定的角度。

像钟表的指针转动就是典型的旋转。

旋转可有意思了,它有很多特点和规律呢。

比如说,旋转前后图形的形状和大小也不变,对应点到旋转中心的距离相等,对应线段的长度相等,对应角也相等。

在做题的时候,利用这些特点就能巧妙地求出很多未知的角度和线段长度。

而且,旋转还经常和三角形、四边形结合在一起,那题目可就更有挑战性啦!
初中数学三大变换之轴对称
咱们来说说轴对称。

轴对称就是把一个图形沿着一条直线对折后,直线两旁的部分能够完全重合。

这条直线就叫做对称轴。

轴对称图形可美啦,像蝴蝶、五角星都是轴对称图形。

在数学中,轴对称也有很多用处呢。

通过对称轴,咱们可以找到对称点的坐标,还能利用
轴对称的性质来证明一些几何定理。

初中数学的这三大变换真是太有趣太有用啦,小伙伴们一定要好好掌握哦!。

初中几何变换——平移

初中几何变换——平移

初中数学几何变换之平移一、知识梳理1、平移基本要素:平移方向 平移距离 。

2、基本性质:(1)对应点所连的线 段平行且相等 (2)对应线段平行且相等 (3)对应角相等 3、应用:平行四边形存在性等二、常考题型 类型一:平移性质1、如图,矩形OABC 的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为 (用含n 的代数式表示)第1题第2题2、如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )3、如图①,在平面直角坐标系中,已知点A (2,0),点B (0,4),点E (0,1),如图②,将△AEO 沿x 轴向左平移得到△A ′E ′O ′,连接A ′B 、BE ′。

(1)设AA ′=m (m >0),试用含m 的式子表示22BE B A 、、+,并求出使22BE B A 、、+取得最小值时点E ′的坐标;(2)当A ′B+BE ′取得最小值时,求点E ′的坐标。

类型二:综合应用1、在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C 、D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,过点Q 作QH BD ⊥于H ,连接AH ,PH 。

(1)若点P 在线段CD 上,如图1。

①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线段CD 的延长线上,且152AHQ ∠=︒,正方形ABCD 的边长为1,请写出求DP 长的思路。

(可以不写出计算结果)ABABC D图1 备用图2、类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究①小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。

中考数学知识点 平移定义知识点

中考数学知识点 平移定义知识点

中考数学知识点平移定义知识点平移是数学中的一个基本概念,也是中考数学考试中常见的一个知识点。

平移是指在平面上将一个图形按照规定的方向和距离移动,但保持其大小、形状和方向不变。

在中考数学中,我们需要掌握平移的定义、性质以及相关的数学运算。

在平面几何中,平移可以通过向量来描述。

假设有一个向量v(a, b),其中a代表横坐标的位移量,b代表纵坐标的位移量。

对于一个图形上的任意点P(x, y),它在平移后的位置P'(x', y')与原位置的坐标关系可以通过向量的运算得出:P'(x', y') = P(x, y) + v(a, b)即新的坐标等于原来的坐标加上位移向量。

根据平移的定义,我们可以得出平移的几个性质:1. 平移不改变图形的大小、形状和方向。

只是将图形移动到新的位置,但保持其原有的特征不变。

2. 平移是可逆的,即可以通过相反的位移向量将图形移回到原来的位置。

3. 平移可以与其他几何变换进行组合,如平移和旋转、平移和缩放等。

在中考数学中,平移是一个基础的几何变换,它与图形的对称、相似等概念密切相关。

掌握平移的定义和性质,能够帮助我们解决与平移相关的几何问题。

平移在解题中的应用相当广泛。

例如,在计算图形的面积或周长时,我们可以利用平移来简化计算。

通过将图形平移,使其边界与坐标轴对齐,可以更方便地计算图形的尺寸。

此外,平移还可以用于解决线段、角度、三角形等几何性质的证明问题。

通过将线段沿着坐标轴平移,可以更直观地观察到线段的平行性或垂直性。

通过平移角度,可以更方便地比较角度的大小关系。

在中考数学中,我们还需要掌握如何进行具体的数学运算。

例如,给定两个平面上的图形A和B,如果B是A的平移,我们可以通过观察图形的坐标关系来确定平移的向量。

也可以通过已知的平移向量来求解图形的坐标。

除了计算平移向量,我们还需要注意平移的一些特殊情况。

当平移向量的横纵坐标均为0时,即位移向量为零向量,表示图形没有发生移动,仍保持原位。

平移知识点总结

平移知识点总结

平移知识点总结平移是中学数学中一个非常重要的概念,它是几何变换中的一种。

在数学课堂上,学生需要掌握平移的基本概念、性质、方法和应用等知识点,以便能够解决各种几何问题。

在本文中,我们将对平移的相关知识进行总结,并分析其重要性和实际应用。

一、平移的基本概念平移是指将一个图形沿着直线方向上移动一定的距离,使其保持形状、大小和方向不变。

平移是一种基本的几何变换,也是一种基本的运动变换。

平移的基本概念包括:平移距离、平移向量、平移向量的表示方法、平移变换的性质等。

1. 平移距离平移距离指的是图形沿着直线方向上移动的距离,通常用正数表示。

如果平移距离为正数,则表示将图形向右移动;如果平移距离为负数,则表示将图形向左移动。

2. 平移向量平移向量是指将一个向量作为平移的方向和距离,从而确定平移的方式。

平移向量的表达式是一个二维向量,其中第一项表示水平方向上的平移距离,第二项表示垂直方向上的平移距离。

如果平移向量的二维向量表示为(a,b),则表示将图形向右移动a个单位,向上移动b个单位。

3. 平移向量的表示方法平移向量可以通过坐标系中两个点的坐标差来表示。

假设点A(x1,y1)和点B(x2,y2)分别表示图形的初始位置和平移后的位置,则平移向量的坐标表示为(x2-x1,y2-y1)。

4. 平移变换的性质平移变换具有以下性质:(1) 保形性:平移变换不改变图形的形状。

(2) 保角性:平移变换不改变图形的内角度数。

(3) 保距性:平移变换保持图形上任何两点之间的距离不变。

(4) 可逆性:平移变换是可逆的,即可以通过对称平移变回原来的位置。

二、平移的方法和应用平移变换的方法和应用非常广泛,可用于解决各种几何问题,如图形的位置关系、重心的位置、对称点的位置、垂足的位置等。

1. 平移的方法平移的方法有以下两种:(1) 点法平移法:通过将平移向量作为一个点来确定图形的位置。

(2) 向量法平移法:通过将平移向量作为向量来确定图形的位置。

几何变换平移旋转翻转

几何变换平移旋转翻转

几何变换平移旋转翻转几何变换:平移、旋转、翻转几何变换是几何学中常用的一种操作,能够改变图形的位置、形状或方向。

其中,平移、旋转和翻转是最基本的几何变换方法。

本文将就这三种几何变换进行详细讨论,探讨它们的定义、特点以及在实际问题中的应用。

第一部分:平移平移是指将一个图形在平面上沿着直线方向保持形状和大小不变地移动一段距离。

平移变换的性质如下:1. 平移变换是保形变换,即平移后的图形与原图形相似。

2. 平移变换不改变图形的方向。

3. 平移变换的向量表示为 t(x,y),其中 t 表示平移向量,(x,y) 表示原图形上的一个点,t(x,y) 表示平移后的对应点。

平移变换的应用十分广泛,常见于计算机图形学、建筑设计和机械工程等领域。

在计算机图形学中,平移操作常用于图像处理和图形动画制作,在建筑设计中,平移操作用于确定建筑物的位置和布局,在机械工程中,平移操作用于确定机器零件的位置和运动轨迹。

第二部分:旋转旋转是指将一个图形绕着一个固定点进行转动,使图形在平面上发生方向和角度的改变。

旋转变换的性质如下:1. 旋转变换是保形变换,即旋转后的图形与原图形相似。

2. 旋转变换改变了图形的方向和角度。

3. 旋转变换的中心点称为旋转中心,旋转角度表示图形绕旋转中心逆时针旋转的角度。

旋转变换在许多领域被广泛应用。

在航空航天领域,飞机和卫星的轨道计算需要使用旋转变换,在地图制作中,经纬度的转换也离不开旋转变换,在计算机图形学中,旋转操作是实现3D图像旋转和3D模型建模的重要手段。

第三部分:翻转翻转是指将一个图形沿着某条轴线进行对称,使得图形在平面上发生左右或上下的镜像变化。

翻转变换的性质如下:1. 翻转变换是保形变换,即翻转后的图形与原图形相似。

2. 翻转变换改变了图形的方向,使得左右或上下位置互换。

翻转变换在日常生活中也十分常见,如镜子中的人脸照片即为左右翻转的图像。

在计算机视觉和图像处理领域,翻转操作常用于图像增强、图像识别和人脸匹配等应用中。

中考数学 专题21 几何三大变换问题之平移问题(含解析)

中考数学 专题21 几何三大变换问题之平移问题(含解析)

专题21几何三大变换问题之平移问题轴对称、平移、旋转是平面几何的三大变换。

平移变换是指在同一平面内,将一个图形(含点、线、面)整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移。

平移由两大要素构成:①平移的方向,②平移的距离。

平移有如下性质:1、经过平移,平移前后图形的形状、大小不变,只是位置发生改变,即平移前后的图形全等;2、平移前后图形的对应点所连的线段平行且相等;3、平移前后图形的对应线段平行且相等,对应角相等。

中考压轴题中平移问题,包括直线(线段)的平移问题;曲线的平移问题;三角形的平移问题;四边形的平移问题;其它曲面的平移问题。

一.直线(线段)的平移问题1.定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.【答案】(1)2;5(2)()()2m8m122m4d24m6<⎧-+-≤⎪=⎨≤≤⎪⎩(3)①16+4π②存在,m=1,m=3,m=143【解析】解:(1)2;5。

(2)∵点B落在圆心为A,半径为2的圆上,∴2≤m≤6。

当4≤m≤6时,根据定义, d=AB=2。

当2≤m<4时,如图,过点B作BE⊥OA于点E,则根据定义,d=EB。

初三数学几何三大变换(旋转、平移、翻折)知识点汇总

初三数学几何三大变换(旋转、平移、翻折)知识点汇总

初三数学几何三大变换(旋转、平移、翻折)知识点汇总初三数学——几何变换平移、旋转和翻折是几何变换中的三种基本变换。

所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。

旋转一、旋转的定义二、常见的几种模型三、旋转类型题目1、正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转60°,使得AB与AC重合。

经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。

2、正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转90°,使得BA与BC重合。

经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。

3、等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转90°,使得AC与BC重合。

经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。

平移1、平移的定义把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动简称为平移。

2、平移的两个要素:(1)平移方向;(2)平移距离。

3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。

4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A. 若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。

中考数学平移定义知识点

中考数学平移定义知识点

中考数学平移定义知识点在中考数学中,平移是一个重要的知识点。

理解平移的定义对于解决相关的几何问题、建立空间观念以及培养数学思维都有着至关重要的作用。

平移,简单来说,就是在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。

这就好比我们在桌子上平移一本书,书的每个部分都沿着相同的方向移动了相同的距离。

平移具有以下几个关键特点:首先,平移不改变图形的形状和大小。

也就是说,经过平移后的图形与原来的图形是完全一样的,只是位置发生了变化。

比如一个三角形平移后,它的三条边的长度、三个角的大小都不会改变。

其次,平移是沿着直线进行的。

这个直线的方向可以是水平的、垂直的,或者是倾斜的。

再者,图形上的每个点移动的距离和方向都是相同的。

在实际解题中,我们常常会遇到判断一个图形是否经过平移得到另一个图形的情况。

这时候,我们就需要根据平移的定义和特点来进行分析。

例如,给出两个相似的图形,我们需要仔细观察它们的对应点之间的位置关系。

如果对应点的连线平行且相等,那么就可以判断这个图形是经过平移得到的。

平移在坐标系中的表现也很重要。

假设我们有一个点 A(x, y),将其向右平移 a 个单位,那么它的新坐标就变成了(x + a, y);向左平移 a个单位,新坐标为(x a, y);向上平移 b 个单位,新坐标为(x, y + b);向下平移 b 个单位,新坐标为(x, y b)。

通过这种坐标的变化规律,我们可以更方便地在坐标系中研究图形的平移。

在解决一些几何证明题时,平移也能发挥很大的作用。

有时候,通过将一个图形平移,可以使原本复杂的图形关系变得更加清晰,从而更容易找到解题的思路。

例如,对于一些平行四边形的证明问题,如果直接从已知条件入手比较困难,我们可以尝试通过平移其中的一条线段,构造出一个新的平行四边形,然后利用平行四边形的性质来证明。

再比如,在计算图形的面积时,如果图形的形状不规则,我们可以通过平移将其转化为规则的图形,从而更方便地进行计算。

中考数学专题分类复习: 平移变换(解析版)

中考数学专题分类复习: 平移变换(解析版)

中考数学专题分类复习:平移变换涉及图形平移的问题一般在选择题或填空题中出现的比较多,相对比较容易,在解答题中会和轴对称,旋转相结合,是区分度较大的一类几何问题。

平移的性质:①平移不改变图形的形状和大小,只改变图形的位置;②对应线段平行(或在同一条直线上)且相等;③平移的距离即是对应点的连线段的长度.如图△ABC 平移到△DEF 时,点A ,B ,C 的对应点分别是点D ,E ,F ,根据平移的性质有:①△ABC ≌△DEF ;②AB ∥DE 且AB =DE ,BC ∥EF 且BC =EF ,CA ∥FD 且CA =FD ;③AD =BE =CF .1.抓住平移前后的对应点,对应线段,对应点之间的距离是平移的距离,对应线段平行且相等或在同一条直线上;2.如果图形上的一个点沿一定的方向移动一定的距离后,那么这个图形上所有点移动的方向和距离都相同;3.点P (a ,b )在坐标系内的移动,遵循“正方向+,负方向-”的规律;4.线段AB 的中点是C ,已知A (1x ,1y ),B (2x ,2y )C (x ,y )中任意两个点的坐标,即可利用中点坐标公式:122x x x +=,122y y y +=,求第三个点的坐标.例1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF ,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A . 20cmB . 22cmC . 24cmD .26cm【答案】D例2.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A. (4,3)B. (3,4)C. (﹣1,﹣2)D. (﹣2,﹣1)【答案】B【精细解读】直接利用平移中点的变化规律求解即可.解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.例3.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.【答案】阴影部分的面积为48.1.如图,图形W,X,Y,Z是形状和大小相同,能完全重合的图形.根据图中数据可计算的图形W的面积是()A. 4-πB. 1-0.25πC. 4-0.25πD. 1-16【答案】C【解析】试题分析:根据题意可知,通过平移知四个小图形占四个小正方形,且中间缺少一个圆,正方形的边长为1,圆的半径为0.5,然后可求面积为2×2-π×0.5×0.5=4-0.25π.故选:C .2.在平面直角坐标系中,将点A 先向左平移3个单位,再向下平移2个单位,得到点B (﹣2,1),则点A 的坐标为( )A . (﹣5,3)B . (﹣5,﹣1)C . (1,3)D . (1,﹣3)【答案】C【解析】设点A 的坐标是(x ,y ),∵将点A 先向左平移3个单位,再向下平移2个单位得点B ,可得B 的坐标为(x ﹣3,y ﹣2),∵点B 的坐标是(﹣2,1),∴x ﹣3=﹣2,y ﹣2=1,∴x =1,y =3,∴A 的坐标是(1,3),故选C .3.某楼梯的侧面视图如图所示,其中4AB =米, 30BAC ∠=︒, 90C ∠=︒,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为________.【答案】(2+3)米;1.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到B ,则点B 的坐标为( )A . (-2,-1)B . (-1,0)C . (-1,-1)D . (-2,0)【答案】C【解析】根据坐标点的平移,上加下减,左减右加,可得B 点的坐标为(1-2,3-4),即(-1,-1). 故选:C .2.如图,将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3. 将△ECD 沿直线l 向左平移到图(2)的位置,使E 点落在AB 上,则CC ′=( )A 、1 B、23C 、13-D 、32- 【答案】C 3.如图,直角边长为3的等腰直角三角形ABC 沿直角边BC 所在直线向上平移1个单位,得到三角形A'B'C',则阴影部分的面积为____________。

专题38几何三大变换问题之平移问题-2022年中考数学备考百日捷进提升系列(原卷版)

专题38几何三大变换问题之平移问题-2022年中考数学备考百日捷进提升系列(原卷版)

考点概述:轴对称、平移、旋转是平面几何的三大变换。

平移变换是指在同一平面内,将一个图形〔含点、线、面〕整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移。

平移由移动的方向和距离决定。

几何图形经过平移,平移前后图形的形状、大小不变,只是位置发生改变;平移前后图形的对应点所连的线段平行且相等;平移前后的对应线段平行且相等,对应角相等。

一、选择题A . 把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格B . 把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格C . 把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°D . 把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°二、填空题 1.【山东省定陶县】如图,∠APB=30°,圆心在PB 上的⊙O 的半径为1cm ,OP=3cm ,假设⊙O 沿BP 方向平移,当⊙O 与PA 相切时,圆心O 平移的距离为 _________ cm .1.【山东省台儿庄区】如图, 在平面直角坐标系中,每个小正方形的边长为1cm ,△ABC 各顶点都在格点上,点A ,C 的坐标分别为〔﹣1,2〕、〔0,-1〕,结合所给的平面直角坐标系解答以下问题:〔1〕AC 的长等于 ;〔2〕画出△ABC 向右平移2个单位得到的△111C B A ,那么A 点的对应点1A 的坐标是 ; 〔3〕将△ABC 绕点C 按逆时针方向旋转90°,画出旋转后的△222C B A ,那么A 点对应点2A 的坐标是 。

2.【无锡市南长区】有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=43,将这副直角三角板按如图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M ,那么∠EMC= 度;(3)在三角板DEF 运动过程中,当D 在BA 的延长线上时,设BF=x ,两块三角板重迭局部的面积为y .求y 与x 的函数关系式,并求出对应的x 取值范围.3.【广东珠海十中】如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点 C '顺时针旋转90,得到A B C '''''△请你画出A B C '''△和A B C '''''△〔不要求写画法〕4.【福建福州】如图,方格纸中的每个小方格是边长为1个单位长度的正方形.① 画出将Rt△ABC 向右平移5个单位长度后的Rt△A 1B 1C 1;② 再将Rt△A 1B 1C 1绕点C 1顺时针旋转90°,画出旋转后的Rt△A 2B 2C 1,并求出旋转过程中线段A 1C 1所扫过的面积(结果保存π).5.【江苏省泰兴市】如图△ABC 中,∠C=90°,∠A=30°,B C=5cm ;△DEF 中∠D=90°,∠E=45°,DE=3cm .现将△DEF 的直角边DF 与△A BC 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1) 当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行.(2) 在△DEF 的移动过程中,是否存在某个位置,使得∠EBD=22.5°?如果存在,求出AD 的长度;如果不存在,请说明理由.。

中考攻略专题10:几何三大变换之平移探讨

中考攻略专题10:几何三大变换之平移探讨

专题10:几何三大变换之平移探讨轴对称、平移、旋转是平面几何的三大变换。

平移变换是指在同一平面内,将一个图形(含点、线、面)整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移。

平移由移动的方向和距离决定。

经过平移,平移前后图形的形状、大小不变,只是位置发生改变;平移前后图形的对应点所连的线段平行且相等;平移前后图形的对应线段平行且相等,对应角相等。

在初中数学以及日常生活中有着大量的平移变换的知识,是中考数学的必考内容。

结合全国各地中考的实例,我们从下面七方面探讨平移变换:(1)构造平移图形;(2)点的平移;(3)直线(线段)的平移;(4)曲线的平移;(5)三角形的平移;(6)四边形的平移。

一、构造平移图形:典型例题:例1.如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;(2)写出A1、C1的坐标;(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留π)。

例2.(2012海南省8分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与成中心对称,其对称中心的坐标为.练习题:1.如图,在方格纸中(小正方形的边长为1)A、B均在格点上,根据所给的直角坐标系(点O是坐标原点),解答下列问题:(1)分别写.出点A、B的坐标后,把直线AB向右平移平移5个单位,再在向上平移5个单位,画.出平移后的直线A′B′.(2)若点C ABC是以AB为底边的等腰三角形,请写出点C的坐标.2.如图,在平面直角坐标系中,点A、B的坐标分别为(-1,3)、(-4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1 绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1、A2B2;(2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.3.(2012辽宁丹东8分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中...画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.二、点的平移:典型例题:例1. 在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点P1,则点P1的坐标为.例2.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是【】A.一直增大B.一直减小C.先减小后增大D.先增大后减小(2,y)为反比例函数例3.如图所示,已知B2点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是【】A. B. (1,0) C. D.例4.(2012辽宁大连3分)如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为【】A.1B.2C.3D.4练习题:1. 将点A(2,1)向左..平移2个单位长度得到点A′,则点A′的坐标是【】A.(2,3) B.(2,-1)C.(4,1) D. (0,1)2.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为▲ .3. 如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴的正半轴上的动点,满足∠PQO=60º.(1)点B的坐标是,∠CAO=º,当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.4.如图,在O A B C中,点A在x轴上,∠A O C=60o,O C=4c m.O A=8c m.动点P从点O出发,以1cm/s的速度沿线段OA→AB运动;动点Q同时..从点O出发,以a c m/s的速度沿线段OC→CB运动,其中一点先到达终点B时,另一点也随之停止运动.设运动时间为t秒.(1)填空:点C的坐标是(______,______),对角线OB的长度是_______cm;(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB相似,求a与t的函数关系式,并直接写出t的取值范围.三、直线(线段)的平移:典型例题:例1.将直线y=2x向上平移1个单位长度后得到的直线是例2. 如图,A.B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=.例3.如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连结PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.例4.(2012福建福州14分)如图①,已知抛物线y =ax 2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠ABO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).练习题:1. 将直线y 2x =向右平移1个单位后所得图象对应的函数解析式为【 】A .y 2x 1=-B .y 2x 2=-C .y 2x 1=+D .y 2x 2=+ 2. 如图所示,在平面直角坐标系中,四边形ABCD 是直角梯形,BC ∥AD ,∠BAD=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N . (1)求抛物线的解析式.(2)抛物线上是否存在点P ,使得PA=PC ,若存在,求出点P 的坐标;若不存在,请说明理由.(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE-QC|最大?并求出最大值.3.如图,直线y =m3x +m(m≠0)交x 轴负半轴于点A 、交y 轴正半轴于点B 且AB =5,过点A 作直线AC ⊥AB交y 轴于点C.点E 从坐标原点O 出发,以0.8个单位/秒的速度沿y 轴向上运动;与此同时直线l 从与直线AC 重合的位置出发,以1个单位/秒的速度沿射线AB 方向平行移动. 直线l 在平移过程中交射线AB 于点F 、交y 轴于点G.设点E 离开坐标原点O 的时间为t(t≥0)s.(1)求直线AC 的解析式;(2)直线l 在平移过程中,请直接写出△BOF 为等腰三角形时点F 的坐标; (3)直线l 在平移过程中,设点E 到直线l 的距离为d ,求d 与t 的函数关系.备用图四、曲线的平移: 典型例题:例1. 将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是 ▲ .例2.在平面直角坐标系中,将抛物线2y x x 6=--向上(下)或向左(右)平移了m 个单位,使平移后的】A .1B .2C .3D .6例3.如图,把抛物线2平移得到抛物线m ,抛物线m 经过点A (﹣6,0)和原点O (0,0),它的顶点为P ,它的对称轴与抛物线2交于点Q ,则图中阴影部分的面积为.例4.如图,经过点A(0,-4)的抛物线y = 12x 2+bx +c 与x 轴相交于点B(-0,0)和C ,O 为坐标原点.(1)求抛物线的解析式;(2)将抛物线y = 1 2x 2+bx +c 向上平移 72个单位长度、再向左平移m(m >0)个单位长度,得到新抛物线.若新抛物线的顶点P 在△ABC 内,求m 的取值范围;(3)设点M 在y 轴上,∠OMB +∠OAB =∠ACB ,求AM 的长.练习题:1.在平面直角坐标系中,若将抛物线y=2x 2 - 4x+3先向右平移3个单位长度,再 向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是【 】 A.(-2,3)B.(-1,4)C.(1,4)D.(4,3)2.将抛物线y =x 2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是【 】A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-23.已知直线y=2x 5-与x 轴和y 轴分别交于点A 和点B ,抛物线2y=x +bx+c -的顶点M 在直线AB 上,且抛物线与直线AB 的另一个交点为N . (1)如图①,当点M 与点A 重合时,求:①抛物线的解析式;(4分)②点N 的坐标和线段MN 的长;(4分)(2)抛物线2y=x +bx+c -在直线AB 上平移,是否存在点M ,使得△OMN 与△AOB 相似?若存在, 直接写出点M 的坐标;若不存在,请说明理由.(4分)4. 已知抛物线y=x 2+4x+m (m 为常数)经过点(0,4). (1) 求m 的值;(2) 将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:的 对称轴(设为直线l 2)与平移前的抛物线的对称轴(设为直线l 1)关于y 轴对称;它所对应的函数的最小值为-8.① 试求平移后的抛物线的解析式;② 试问在平移后的抛物线上是否存在点P ,使得以3为半径的圆P 既与x 轴相切,又与直线l 2相交?若存在,请求出点P 的坐标,并求出直线l 2被圆P 所截得的弦AB 的长度;若不存在,请说明理由.5. 如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.五、三角形的平移:典型例题:例1.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于H,则GH的长等于▲cm.例2.如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连结AD,求证:四边形ACFD是菱形。

中考数学专题复习 专题32 中考几何平移类问题(教师版含解析)

中考数学专题复习 专题32  中考几何平移类问题(教师版含解析)

中考专题32 中考专题几何平移类问题1.平移的定义:平面图形的每个点沿着某一方向移动相同的距离,这样的图形运动称为平移.平移是由移动的方向和移动的距离所决定.平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

2.平移的特点:经平移运动后的图形图形的位置发生变化, 形状和大小不变.3.理解并掌握平移的三个特征:(1)对应线段平行(或在一条直线上)且相等;对应角相等.(2)对应点所连的线段平行(或在一条直线上)且相等.(3)图形在平移后形状和大小都不变.4.图形平移的画法:(1)确定点;(2)定方向;(3)定距离。

【经典例题1】(2020年•广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为( ) A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)【标准答案】D【答案剖析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.点(3,2)关于x轴对称的点的坐标为(3,﹣2).【知识点练习】(2019湖南邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是( )A.k1=k2 B.b1<b2C.b1>b2 D.当x=5时,y1>y2【标准答案】B【答案剖析】根据两函数图象平行k相同,以及向下平移减即可判断.∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2【点拨】本题考查图形的平移变换和函数答案剖析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后答案剖析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的答案剖析式有什么关系.【经典例题2】(2019桂林)如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为.【标准答案】;【答案剖析】∵AB=AC=,BC=4,点A(3,5).∴B(1,),C(5,),将△ABC向下平移m个单位长度,∴A(3,5﹣m),C(5,﹣m),∵A,C两点同时落在反比例函数图象上,∴3(5﹣m)=5(﹣m),∴m=【知识点练习】(2020年枣庄模拟)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.【标准答案】见答案剖析。

初中几何变换之平移和旋转专讲课件

初中几何变换之平移和旋转专讲课件

THANKS FOR WATCHING
感谢您的观看
总结词
提高对平移和旋转的应用能力
详细描述
进阶练习题在基础练习题的基础上,增加了对平移和旋转的应用训练,包括利用平移和旋转解决实际 问题、进行几何图形的变换等,旨在提高学生的应用能力和问题解决能力。
综合练习题
总结词
综合运用平移和旋转的知识点
详细描述
综合练习题是对平移和旋转知识点的 综合运用,题目难度较大,需要学生 综合运用平移和旋转的概念、性质和 操作进行解答,旨在提高学生的思维 能力和创新能力。
03 平移与旋转的综合应用
图形变换
平移
在平面内,将图形沿某 一方向移动一定的距离 ,不改变图形的大小和
形状。
旋转
绕某一点转动图形,改 变图形的方向,不改变
图形的大小和形, 两侧图形能够完全重合

中心对称
绕某一点折叠图形,两 侧图形能够完全重合。
解题技巧
利用平移和旋转的性质解题
平移和旋转都保持图形的形状和大小 不变,可以利用这些性质来证明或求 解几何问题。
构造辅助线
在解题过程中,根据题目的要求和图 形的特点,可以构造辅助线来帮助解 题。
运用数形结合思想
将几何问题转化为代数问题,或者将 代数问题转化为几何问题,通过数形 结合的方法来解题。
运用分类讨论思想
对于一些复杂的几何问题,可以根据 图形的特点和性质进行分类讨论,化 复杂为简单。
在几何画板中,选择需要平移的图形,然后使用平移工具沿某一方向拖动,即可完 成平移操作。
通过平移操作,可以展示图形在平面内移动的过程,帮助学生理解平移的概念和性 质。
旋转操作演示
旋转是图形绕某一点转动一定的 角度,而不改变其形状和大小。

平移旋转和翻折的几何变换

平移旋转和翻折的几何变换

平移旋转和翻折的几何变换几何变换是数学中重要的概念,而平移、旋转和翻折是其中常见的三种变换方式。

在几何学中,这些变换可以改变物体的位置、方向和形状。

本文将详细介绍平移、旋转和翻折的概念、性质及其在实际应用中的意义。

1. 平移变换平移是指将一个物体沿着平行于原位置的直线方向上移动一定的距离。

在平移变换中,保持物体的形状、大小和内部结构不变。

平移可以用一个向量表示,该向量表示了物体在横轴和纵轴方向上的位移。

例如,向量(2,3)表示物体向右平移2个单位长度,向上平移3个单位长度。

平移变换可以应用于二维和三维空间。

平移变换具有以下性质:- 保持物体的形状、大小和内部结构不变;- 平移前后的物体相似,只是位置不同;- 平移变换是可逆的,即可以通过反方向的平移将物体还原回原来的位置。

在实际应用中,平移变换被广泛应用于计算机图形学、机器人导航、地图制作等领域。

在计算机图形学中,平移变换可以用于移动图形对象,实现图像的平移操作。

2. 旋转变换旋转是指将一个物体围绕某一点或某一轴线旋转一定的角度。

在旋转变换中,保持物体的形状和内部结构不变,只改变物体的方向。

旋转可以用一个旋转角度和旋转中心来描述,旋转中心可以是一个点或者是一个轴线。

旋转变换具有以下性质:- 旋转前后的物体相似,只是方向不同;- 旋转变换是可逆的,即可以通过反方向的旋转将物体还原回原来的方向;- 物体的旋转角度可以是正数也可以是负数,正数表示顺时针旋转,负数表示逆时针旋转。

旋转变换在许多领域有广泛应用,如航天器姿态控制、机器人运动控制、计算机动画等。

在计算机动画中,旋转变换可以应用于对象的旋转效果,实现逼真的三维模拟。

3. 翻折变换翻折是指将一个物体沿着某一条线或平面对称,即将物体的一半翻转成和另一半相似但对称的形状。

在翻折变换中,保持物体的形状和内部结构不变,只改变物体的方向。

翻折变换具有以下性质:- 翻折前后的物体相似,只是方向不同;- 翻折变换是可逆的,即可以通过反方向的翻折将物体还原回原来的方向;- 翻折可以沿着线对称或面对称进行,分别称为线对称和面对称。

中考数学知识点专题分类复习:第32讲平移变换

中考数学知识点专题分类复习:第32讲平移变换

中考数学知识点专题分类复习:第32讲平移变换【知识巩固】1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质:(1)平移后,对应线段平行(或在同一条直线上)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连的线段平行(或在同一条直线上)且相等.(4)平移只改变图形的位置,不改变图形的形状和大小,即平移后的图形与原图形全等.3.平移的两个要素:平移的方向和距离. (方向为前后对应点射线方向,距离为对应点之间的线段的长度)4.简单图形的平移作图:(1)确定图形中的关键点;(2)将关键点沿指定的方向移动指定的距离;(3)连结各点,得到原图形平移后的图形.【典例解析】典例一、平移的定义将图形平移,下列结论错误的是( )A.对应线段相等B.对应角相等C.对应点所连的线段互相平分D.对应点所连的线段相等解析:根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.答案:C【变式训练】4.如图,面积为12cm 2 的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A.24cm 2 B.36cm 2 C.48cm 2 D.无法确定答案:B解析:由题意可知根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm 2 .考点:平移的性质.典例二、平移的性质(2017毕节)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2【考点】F9:一次函数图象与几何变换.【分析】根据“左加右减”的函数图象平移规律来解答.【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.【变式训练】(2017广西百色)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A 的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3).【考点】Q3:坐标与图形变化﹣平移.【分析】将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,根据平移规律即可求出点C的对应点坐标.【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),∴OC=OA=2,C(0,2),∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,∴点C的对应点坐标是(1,3).故答案为(1,3).典例三、简单图形的平移作图(2016·黑龙江龙东·3分)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC 的顶点C的坐标为.【考点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【分析】据轴对称判断出点A变换后在x轴上方,然后求出点A纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.【解答】解:解:∵△ABC是等边三角形AB=3﹣1=2,∴点C到x轴的距离为1+2×=+1,横坐标为2,∴A(2,+1),第2016次变换后的三角形在x轴上方,点A的纵坐标为+1,横坐标为2-2016×1=-2014,所以,点A的对应点A′的坐标是(-2014,+1)故答案为:(-2014,+1).【变式训练】(2016·山东省菏泽市·3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.典例四、平移的综合应用(2017广西河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【考点】F9:一次函数图象与几何变换;F3:一次函数的图象.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l 的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.【变式训练】(2017浙江湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13 B.14 C.15 D.16【考点】RA:几何变换的类型;KQ:勾股定理.【分析】根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按A﹣C﹣F的方向连续变换10次后点M的位置,再根据点N的位置进行适当的变换,即可得到变换总次数.【解答】解:如图1,连接AC,CF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=20,∴20÷3=,(不是整数)∴按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.【能力检测】1.学校对学生寝室进行了整顿,并举行了文明寝室评比,结果七年级班被评为文明寝室.你看她们的牙刷、牙杯放得多整齐,你能说说她们用了数学中的什么知识?答案:平移解析:根据平移的基本性质即可判断结果。

全国中考数学分类专题含讲解11-几何三大变换问题之平移

全国中考数学分类专题含讲解11-几何三大变换问题之平移
∴当点A的横坐标的最大时抛物线的解析式为 y= x 32 +1 。 令 y=0 ,即 x 32 +1=0 ,解得 x=2 或 x=4 。
∵点A在点B的左侧,∴此时点A横坐标为2。故选B。 ∴点A的横坐标的最大值为2。 5. (2020山东枣庄3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为【 】
∴观察可知,当点B的横坐标的最小时,点P与点C重合。
∵C(-1,4),∴设当点B的横坐标的最小时抛物线的解析式为 y=a x+12 +4 。 ∵B(1,0),∴ 0=a 1+12 +4 ,解得a=-1。 ∴当点B的横坐标的最小时抛物线的解析式为 y= x+12 +4 。
∵观察可知,当点A的横坐标的最大时,点P与点E重合,E(3,1),
A、14 B、16 C、20 D、28
【答案】D。
【考点】平移的性质,勾股定理。
【分析】由勾股定理,得AB= AC2 BC2 102 82 6 ,将五个小矩形的所有上边平移至AD,所有下 边平移至BC,所有左边平移至AB,所有右边平移至CD,
∴五个小矩形的周长之和=2(AB+CD)=2×(6+8)=28。故选D。 二、填空题
点也同样变换。
∵ y 2x2 4x 3 2x 12 +1的顶点坐标是(1,1),
∴点(1,1)先向右平移3个单位长度,再向上平移2个单位长度,得点(4,3),即经过这两次平移
后所得抛物线的顶点坐标是(4,3)。故选D。
3. (2020四川南充3分)如图,平面直角坐标系中,⊙O半径长为1.点⊙P(a,0),⊙P的半径长为2,把 ⊙P向左平移,当⊙P与⊙O相切时,a的值为【 】

中考数学知识点:平移定义知识点

中考数学知识点:平移定义知识点

中考数学知识点:平移定义知识点在中考数学中,平移是一个重要的几何变换概念。

理解平移的定义对于解决相关的数学问题至关重要。

首先,我们来看看平移的基本定义。

平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动。

这意味着图形的形状和大小在平移过程中不会发生改变,只是位置发生了变化。

比如说,我们有一个三角形 ABC,将它沿着水平方向向右移动 5 个单位长度,那么三角形的每个顶点都要向右移动 5 个单位长度,移动后的三角形与原三角形的形状和大小完全相同,只是位置不同。

平移具有一些显著的特点。

其一,平移前后的图形是全等的。

这是因为平移只是位置的改变,图形的边和角的大小都保持不变。

其二,平移是有方向和距离的。

方向可以是水平的、垂直的或者倾斜的,而距离则是指图形上的每个点移动的长度。

在实际解题中,我们经常会用到平移的性质。

例如,在求图形的面积时,如果通过平移可以将复杂的图形转化为规则的图形,那么计算面积就会变得容易许多。

再比如,在证明一些几何定理时,平移也可以帮助我们将分散的条件集中起来,从而更方便地进行推理和证明。

让我们通过一个具体的例子来更好地理解平移。

假设有一个矩形ABCD,其中 A(1,1)、B(1,5)、C(5,5)、D(5,1)。

现在将这个矩形沿着 x 轴正方向平移 3 个单位长度。

那么平移后的矩形的顶点坐标分别为 A'(4,1)、B'(4,5)、C'(8,5)、D'(8,1)。

通过这个例子,我们可以清晰地看到每个点在平移过程中的坐标变化规律。

在中考中,关于平移的题目类型多种多样。

有的可能会让我们直接根据平移的定义和性质来计算图形的坐标变化,有的可能会要求我们判断经过平移后的图形与原图形的关系,还有的可能会将平移与其他几何知识结合起来,考查我们的综合运用能力。

为了更好地掌握平移这一知识点,我们在学习过程中要多做一些练习题。

通过练习,加深对平移定义和性质的理解,提高解题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学必备专题目几何三大变换之平移
【中考数学必备专题】几何三大变换之平移
一、单选题(共4道,每道25分)
1.(2011河北)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为().
A.1.5
B.2
C.2.5
D.3
2.(2009江汉区)如图,把图中的⊙A经过平移得到⊙O(如左图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为()
A.(m+2,n+1)
B.(m-2,n-1)
C.(m-2,n+1)
D.(m+2,n-1)
3.(2011日照)以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是()
A.(3,3)
B.(5,3)
C.(3,5)
D.(5,5)
4.如图,AA′=BB′=CC′=2,∠AOB′=∠BOC′=60°,则的大小关系是( )
A.
B.
C.
D.不确定。

相关文档
最新文档