《等可能性事件的概率(一)》教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人民教育出版社的全日制普通高级中学教科书(必修)《数学》第二册(下A)

第十一章概率第一节

《等可能性事件的概率(一)》教学设计

授课教师:广西桂林中学关剑锋

一、教学目标:

(1)知识与技能目标:了解等可能性事件的概率的意义,运用枚举法计算一些等可能性事件的概率。

(2)过程和方法目标:通过生活中实际问题的引入来创设情境,将一些生活问题构建成一个等可能性事件模型,学生的构建思维能力得到提升;在归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三。通过枚举法、图表法、排列的基础知识来计算一些等可能性事件的概率,学生对古典概型有个更深刻的理解。

(3)情感与态度目标:感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。了解部分数学史,知道随机事件的发生既有随机性,又有规律性,了解偶然性寓于必然性之中的辩证思想,培养学生的综合素质。

二、教学重点:

等可能性事件的概率的意义及其求法。

三、教学难点:

等可能性事件的判断以及如何求某个事件所包含的基本事件数。

四、教学方法:

启发式探索法

五、教学过程:

1、复习引入、创设情境

问题1、(师)前面我们学习了随机事件及其概率,请问:事件分为哪三类?

(生)必然事件,随机事件,不可能事件。

(师)好!

问题2、(师)我们知道,随机事件的概率一般可以通过大量重复实验来求值。是不是所有的随机事件都需要大量的重复试验来求得呢?

(生)不一定。

(师)好!请同学们观看视屏(播足球比赛前裁判抛硬币的视频)。

问题3、(师)刚才的视屏是足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?

2、逐层探索,构建新知

问题4、(师)这是一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?

通过前面抛硬币和掷骰子这两个随机事件的实例,大家观察到只做了一次试验就可以求出其概率,其结果与大量重复试验相吻合。

问题5、(师)这两个随机事件有什么共性呢?(尽量把抽象的问题具体化) (生)(1)、一次试验可能出现的结果是有限个的;(2)、每个结果出现的可能性相同。

我们把具有这两个特征的随机事件叫做等可能性事件;为了方便描述等可能性事件的概念,我们引进一个概念----基本事件的概念。

(1)基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。 问题6、(师)哪位同学能根据基本事件和前面的两个特征概括出等可能性事件的

定义?

(锻炼学生的概括能力,可以用学生自己的语言归纳,然后老师给予启发和补充)

(2)等可能性事件:如果一次试验由n 个基本事件组成,而且所有的基本事件出现的可能性都相等,那么这个事件叫做等可能性事件。

问题7、(师)请同学们根据等可能性事件的特征举一些学习和生活中是等可能性事件的例子。(通过举例可以提高学生对等可能性事件两个特征的进一步了解,为后面建构等可能性事件模型做好铺垫)

问题8、(师)如何判断每个结果出现的可能性相同呢?(比如说:“硬币必须是均匀的,骰子必须是均匀的,球的大小要相等、质地均匀等)学生对等可能性事件有了充分的了解后顺利的引入课题。)

3、引入课题:今天我们一同来探究等可能性事件的概率,即古典概型。

问题9、(师)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?(前面学生对事件A 只包含一个基本事件的等可能性事件的概率已经有所了解,现讲两道求事件A 包含多个基本事件的等可能性事件的概率)

问题10、(师)不透明的袋子里有大小相同的1个白球和2个已经编了不同号码的黑球,从中摸出1个球。一共有多少种不同的结果?摸出是黑球的结果有多少个?摸出是黑球的概率是多少?

问题11、(师)我们知道有一种数学方法是从特殊到一般,请同学们根据刚才两个实例,概括出等可能性事件的概率的定义。

4、等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性相等,那么每一个基本事件的概率都是n

1,如果某个事件包含的结果有m 个,那么事件A 的概率:)

()()(I card A card n m A A P ===

基本事件总数包含的基本事件数事件(进一步提高学生的概括能力)

5、概念巩固练习:

1、先后抛掷2枚均匀的硬币

(1)一共可能出现多少种不同的结果?(2)出现“1枚正面、1面反面”的概率是1/3,对吗?

6、创设情境,构建数学模型

设置情境(有两兄弟,一天妈妈单位每人发一张精彩的球票,他们都想去看,可票只有一张,怎么办呢?这时哥哥走到正在玩飞行棋的弟弟旁边说:“我们来玩一场游戏,拿一个骰子,每人各掷一次,若点数之和为6,票就归你,若点数

之和是7票就归哥我,如果都不是则继续掷,怎样?如果你是弟弟,你觉得公平吗?为什么?)引导学生用数学知识解决生活中的问题,建立一个等可能性事件模型。

设问:如何建立等可能性事件的模型?

即:将一个均匀的骰子先后抛掷2次,计算:

(1)一共有多少种不同的结果?

(2)其中向上的数之和分别是6和7的结果有多少种?

(3)向上的数之和分别是6和7的概率是多少?

(分小组讨论,用不同的方法解决这个问题,让方法比较简单的小组代表上黑板展示出来与大家分享。看学生能否发现规律:中间数的概率最大,其他的点数和的概率关于这个数对称)

解:(1)将骰子抛掷1次,它落地时向上的数有,1,2,3,4,5,6这6种结果,根据分步计数原理,一共有6636⨯=种结果。

答:先后抛掷骰子2次,一共有36种不同的结果。

(2)在上面的所有结果中,其和为6共有3种组合1和5,2和4,3和3组合结果为:(1,5)、(5,1)、(2,4)、(4,2)、(3,3)共5种;其和为7共有3种组合1和6,2和5,3和4共3种;组合结果为:(1,6)、(6,1)、(2,5)、(5,2)、(3,4)、(4,3)、共6种;

答:在2次抛掷中,向上的数之和为6的结果有5种,向上的数之和为7的结果有6种;

(3)由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,其中

向上的数之和是6的结果(记为事件A )有5种,因此,所求概率为41()369

P A ==.其中向上的数之和是7的结果(记为事件B )有6种,因此,所求概率为41()369

P A ==; 6

1366)(==B P 。 答:抛掷骰子2次,向上的数之和为6的概率是36

5,向上的数之和为7的概率是61。 因为36

561>,所以弟弟不应该同意。那怎样更改游戏规则才公平? 7、再创情境,拓展思维

在他们重新商定了游戏规则,准备继续的时候,爸爸回来了,问清原委后,爸爸也想参予;爸爸说,他在意大利著名诗人但丁的《神曲》的炼狱篇第6节中看到,在14世纪意大利佛罗伦萨的贵族们玩一种游戏:三个人每人掷一次骰子,猜点数和是多少?当时他们都认为出现9,10,11,12这4个数的可能性一样,都是最大的。我们三人就从这4个数中各选一个吧。同学们你们认为这4个数出现的可能性一样大吗?为什么?(分小组进行讨论)

9=1+2+6=1+3+5=1+4+4=2+2+5=2+3+4=3+3+3;

10=1+3+6=1+4+5=2+2+6=2+3+5=2+4+4=3+3+4

11=1+4+6=1+5+5=2+3+6=2+4+5=3+3+5=3+4+4

12=1+5+6=2+4+6=2+5+5=3+3+6=3+4+5=4+4+4

强调:1+2+6是6种组合,而不是1种组合。提醒学生注意有序和无序的区别。

相关文档
最新文档