(优选)计算方法最佳一致逼近多项式切比雪夫多项式.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x, Tn1(x).
(2.11)
Tn(x)的最高次幂x n的系数为2 n1, (n 1).
证明:记θ arccosx, 则
Tn1 (x) cos[(n 1)θ] cos[(nθ θ)] cos(nθ)cosθ sin(nθ)sinθ
cos(n 1)θ cos(nθ)cos θ sin(nθ)sin θ
20
当m=n≠0
π cos(mθ)cos(nθ)dθ 1 π [cos(2nθ) 1]dθ π
0
20
2
当m=n=0
π cos(mθ)cos (nθ)dθ π 0
(3)奇偶性
Tn(x)当n为奇数时为奇函数,且只含x的奇次幂; 当n为偶数时为偶函数,且只含x的偶次幂.
利用数学归纳法证明: 1)当n 0和n 1时,T0(x) 1x0, T1(x) x,结论成立。
0,1,2,… , n)
轮流取得最大值1和最小值 1,{xk }称为交错点组。
- 1 x4
x 3
x2 0
x 1
x0 1
证: 将xk
cos
kπ n
,
(k
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccos(cos
kπ )] n
cos[kπ]
(1)k
1
T2(x) T1(x)
切比雪夫多项式的(简单)定义: 表达式:对 1 x 1
Tn(x) cos(narccosx), n 0,1,2, … 称为切比雪夫多项式。 由三角表达式定 (2.10)
义的多项式
切比雪夫多项式的表达式
若令x cosθ,则 Tn(x) cos(nθ), 0 θ π.
切比雪夫多项式的前几项:
22
22
22
22
xk
cos (2k 1)π , (k 22
1,2,… ,11)
接近-1和1的地方越密。过这些0点作平行于y轴的直
线,这些直线与上半单位元的交点形成了一个关于圆
弧的等距的点的集合。
(5)切比雪夫多项式的极值点
Tn(x)在[1,1]上有n 1个不同的极值点
x k
cos kπ , (k n
0 cos(mθ)cos(nθ)dcosθ
π
1 cos2θ
π cos(mθ)cos(nθ)dθ 0
根据积化和差公式:
cos(mθ)cos(nθ)
1 [cos(m 2
n)θ
cos(m
n)θ]
当m≠n:
π cos(mθ)cos (nθ)dθ 0
1 π [cos(m n)θ cos(m n)θ]dθ 0
f(x)
收敛到f(x)较慢, 不常用。
在[0,1]上一致成立。该证明于1912年给出。
ε的数值
y
y=L (x)
一致逼近的几何意义
x Home
切比雪夫多项式
切比雪夫(Chebyshev)多项式
• 切比雪夫多项式在逼近理论中有重要的应用。 • 切比雪夫多项式的0点可以用于构造具有最佳
一致逼近性质的插值多项式。
cos[(2k
1)π] 2
0 (k
1,2, … , n)
图为T11(x)的零点,一共有11个
x11 x10 x 9 x 8
cosπ
cos 15π 22
x7
cos 13π 22
x6
cos π 2
x5
cos 9π 22
x4 x3 x2 x1
co s 7 π co s 5 π cos 3π cos π
实际应用需要使用简单Fra Baidu bibliotek数逼近已知复杂函数。
函数逼近问题:对于函数类A中给定的函数
f(x), 要求在另一类较简单的便于计算的函
数类
BA
B
A
中找一个函数p(x), 使p(x)与f(x)的误差在某
种度量意义下达到最小.
定理 1(Weierstrass)若 f(x) C[a, b], 则ε 0, 多项式p(x), 使得
Tn1 (x) 2cos(nθ)co sθ cos(n 1)θ 2xTn (x) - Tn1 (x)
(2)正交性
0, m n,
1
1
1
1
x2
Tm(x)Tn(x)dx
π/2, m n 0,
π,
m n 0.
(2.12)
证:令x cosθ,则
1
1
1
1
x2
Tm(x)Tn(x)dx
-1
1
T3(x) T4(x)
-1
T3(x)有3个0值点,4个极值点
总结: Tn(x)具有很好的性质。
y
x
Tn(x)是n阶多项式,具有n个0点,n+1个极值点;有 界[-1, 1]; T1(x), T3(x),…只含x的奇次项,是奇函数,
计算方法最佳一致逼近多项式 切比雪夫多项式
内容
1. 函数逼近的基本概念 2. 切比雪夫多项式 3. 最佳一致逼近多项式 4. 切比雪夫多项式在函数逼近中的应用 5. 利用切比雪夫多项式的0点构造最佳逼近多
项式的例子
函数逼近的基本概念
第3章 函数逼近与曲线拟合
§1 函数逼近的基本概念
一、函数逼近与函数空间
2)假设当n 2为奇(偶)数时,T n(x)只含x的奇(偶 )次方,
3)则对n 1的情况,由递推公式 Tn1(x) 2xTn(x) Tn1(x)
得知:情况a)如果n为奇数,则2xTn(x)只含n的偶次方, Tn1(x)只含x的偶数次方,从而左端Tn1(x)只含x的偶次方; 情况b)如果n为偶数,则2xTn(x)只含x的奇次方,Tn1(x) 只含x的奇次方,从而左端Tn1(x)只含x的奇次方
| f(x) p(x) | ε, 对于一切a x b成立
证明:伯恩斯坦的构造性证明:Bernstein多项式
Bn(f, x)
k
n 0
f
k n
Pk
(x)
(1.3)
其中Pk (x)
n k
xk
(1
a. 定理1具有重要
x)nk , 使得 的理论意义;
b. Bernstan多项式
lim
n
Bn(f,
x)
T0(x) cos(0) 1 T1(x) cos(arccosx) x T2(x) cos(2arccosx) 2x2 1 T3(x) cos(3arccosx) 4x3 3x
课堂练习:推出T4(x)
切比雪夫多项式的性质
(1)基本递推关系
TT0n(x1()x)
1, T1(x) 2xTn(x)
(4)切比雪夫多项式的零点
Tn(x)在[1,1]上有n个不同的零点
xk
cos (2k 1)π , 2n
(k
1,2, … , n)
证:将xk
cos (2k 1)π , (k 2n
1,2,… , n)
代入Tn(x)的表达式,得到
Tn(x)
cos[narccos(cos (2k 1)π)] 2n
相关文档
最新文档