离心压缩机基础详解

合集下载

离心压缩机12全解

离心压缩机12全解
叠加结果
同一半径r圆周液流相 对速度大小不一样, 叶片工作面侧w小; 叶片非工作面侧w大。
图1-16 流道内的轴向旋涡运动
一、液体在有限叶片数叶轮中的流动
叶轮出口处 w2 w2 w2u
Δw2 w2
w2∞
2β 2∞ β
结果
2
2

A
c2u c2u
叶轮入口处 w1 w1 w1u
c2
c2∞
c Δ 2u
Hab C p Tb Ta
cb2
ca2 2
kR k-1
Tb
Ta
cb2 ca2 2
此式为离心压缩机中的重要公式,可以用于 计算各截面处的温度T和速度c的变化规律。
离心压缩机计算中,求解气流参数变化规律 的基本方程式。
1.2 气体在级中流动的概念及基本方程
⑴ a、b取进出口截面时,则为一个级热焓方程: Htot Hab
Q—单位质量气体获得的热量,J/kg (包括外界传给气体的热量qab及气体从a截面到b截面时所有的能 量损失hlos转化成的热量qlos) u—单位质量气体的内能,J/kg
1.2 气体在级中流动的概念及基本方程
对于ab间开口系统,取坐标随气流流动,则为闭口系统,积分:
Qab
Hab
ib
qab
补充: 欧拉第二方程式
速度三角形中,按照余弦定理有:
w2 u2 c2 2uc cos
w12 u12 c12 2u1c1 cos1 u12 c12 2u1c1u w22 u22 c22 2u2c2 cos2 u22 c22 2u2c2u
u1c1u
1 2
u12
c12
vp4 dp p3
C
2 4

离心式压缩机知识.

离心式压缩机知识.
叶轮做超速试验。
⑤、隔套
隔套热装在轴上,它们把叶轮固定在适当的位置上,而且能保护没 装叶轮部分的轴,使轴避免与气体相接触。且起导流作用。
⑥、平衡盘
由于在叶轮的轮盖和轮盘上有 气体产生的压差,所以压缩机转子受 到朝向叶轮入口端的轴向推力的作用。 这种推力一般是由平衡盘来抵消的。
对于3BCL459压缩机平衡盘装 在最后一级叶轮相邻的轴端上。在设 计时使残余的推力作用在止推轴承上, 这就保证了转子在轴向不会有大的串 动。
16)润滑油变质的标志 闪点(开口)<160℃ 机械杂质超过0.1%(在油箱最低处取样) 黏度变化大于15~20% 酸值高于0.04 mg/g
17)、油滤器后:
油滤器
V-1
V-2
V-3
取压0.85MPa(取冷压)
取压0.25MPa
第二节 换热器
1、段间冷却器:
1)、结构为U型管式换热器。 2)、组成部分:壳体、管束、管箱组成。
流量:进口容积流量、质量流量。 容积流量:单位时间内通过进口法兰横截面的气体的体积。 质量流量:单位时间内通过压缩机流到某一横截面的气体的质量。
2、P-Q曲线(一定转速)
ρ1=P1/(RT1) Q1=qm/ρ1 ρ2=P2/(RT2) Q2=qm/ρ2 T1=t1+273.15 T2=t2+273.15 P1:进口压力;T1:进口温度 P2:出口压力;T2:出口温度 n:为额定转速
5、油系统的操作维护
1)、两个油泵两个吸入口。 2)、高位油箱是常压,其最底端距压缩机轴心线大于或等于6米。 3)、开车前高位油箱必须充满油。(开车条件之一) 4)、大油箱最高油位1.696m。(停机油位) 5)、大油箱最低油位1.232m,(运行期间不能小于此有位)报警。 6)、油泵吸入口滤网(不锈钢)不小于40目。 7)、润滑油一般选用N46型号的油,密度:0.85kg/L 8)、油泵位三螺杆泵。(容易气蚀)泵出口压力:1.5MPa。 9)、切换泵是一般将润滑油压力提高至0.27~0.28MPa。 10)、开车时油温必须高于35℃。(开车条件之一)

离心压缩机详细讲义

离心压缩机详细讲义

离心压缩机的未来展望
新材料的应用
未来离心压缩机将采用更先进的新型材料, 提高压缩机的性能和寿命。
智能化水平的提升
未来离心压缩机将更加智能化,实现更加精 准的控制和监测。
高效节能技术的发展
未来离心压缩机将采用更加高效节能的技术, 降低运行成本。
拓展应用领域
未来离心压缩机将拓展应用到更多领域,如 新能源、环保等新兴产业。
离心压缩机最初起源于19世纪末期, 主要用于工业气体压缩。
全球离心压缩机市场呈现出稳步增长 的趋势,市场需求不断扩大。
离心压缩机的现状
随着科技的不断进步,离心压缩机的 性能和效率得到了显著提升,广泛应 用于石油、化工、电力等领域。
离心压缩机的发展趋势
高效化
随着能源消耗的不断增加,离心压缩 机的高效化发展成为了重要趋势,通 过优化设计、采用新型材料等方式提 高压缩机的效率和可靠性。
率的比值。
压力比
表示压缩机出口压力与进口压力的比 值。
转速
表示压缩机转子的旋转速度。
03 离心压缩机的操作和维护
离心压缩机的操作规程
启动前检查
启动操作
在启动离心压缩机前,应检查润滑系统、 冷却系统、密封系统等是否正常,确保设 备处于良好的工作状态。
按照规定的启动步骤启动离心压缩机,注 意控制转速、流量和压力等参数,确保设 备平稳启动。
运行监控
停机操作
在离心压缩机运行过程中,应密切关注各 项参数如温度、压力、振动、声音等是否 正常,发现异常应及时处理。
按照规定的停机步骤停机,注意控制转速 降和停车时间,确保设备安全停机。
离心压缩机的维护保养
定期检查
定期对离心压缩机的各个系统和零部件进 行检查,如润滑系统、密封系统、轴承、

超详细的离心式压缩机介绍

超详细的离心式压缩机介绍

超详细的离心式压缩机介绍离心式压缩机是一种常见的压缩设备,被广泛应用于工业、航空、石油化工、制药等领域。

本文将对离心式压缩机的工作原理、结构特点、性能参数以及应用领域进行详细介绍。

一、工作原理离心式压缩机利用离心力、动能转换和压缩空气来实现压缩的作用。

其工作原理可以简单地分为四个步骤:吸气、旋转运动、压缩和排气。

1.吸气:在吸气过程中,压缩机的进气口通过进气管道将大量的空气吸入到转子内部。

2.旋转运动:进气的空气经过进气口进入到离心式压缩机的转子内,受到高速旋转的转子叶片的作用,空气被带动向外发散。

在旋转过程中,转子叶片会不断地提升和压缩空气。

3.压缩:随着转子旋转速度的增加,空气受到离心作用力的作用,对空气进行加速,并通过转子叶片进行高速压缩。

在这一过程中,空气的温度和压力都会不断上升。

4.排气:旋转过程中,空气在进气部分的中心孔上生成高压区域,接着由高压区域流向较低压的周围区域,最终通过出气口排出。

二、结构特点离心式压缩机的结构主要由驱动装置、离心机组、排气部分、润滑装置和控制装置组成。

1.驱动装置:用于提供转子旋转的动力,通常是由电动机驱动。

2.离心机组:由转子、叶片、转子轴和壳体组成。

转子是离心式压缩机的核心部件,主要负责压缩气体。

3.排气部分:包括进气管道、进气口、气室、出气管道和出气口。

4.润滑装置:用于保证离心式压缩机的正常运行和延长使用寿命,通常采用润滑油进行润滑。

5.控制装置:用于控制离心式压缩机的运行参数和保护装置,确保其安全运行。

三、性能参数离心式压缩机的性能参数直接影响到其工作效率和性能。

1.流量:指单位时间内进入离心式压缩机的气体体积,通常以立方米/分钟或立方米/小时表示。

2.压力比:指离心式压缩机排气压力与进气压力之比,标志着其压缩效果。

3.压力水平:指离心式压缩机能够达到的最高压力。

4.转速:指离心式压缩机转子旋转的速度,通常以每分钟转数(RPM)表示。

5.能效比:指离心式压缩机消耗单位电能产生的压缩空气量,是衡量其能效的指标。

离心压缩机—离心压缩机概述

离心压缩机—离心压缩机概述
中间级:叶轮,扩压器 弯道、回流器
图5-3 (c)末级
末级:叶轮,扩压器 + 出口蜗壳
首级:叶轮,扩压器 弯道、回流器 + 进口蜗壳
末级 中间级 首级
图5-3 离心压缩机的级
中间级:叶轮,扩压器 弯道、回流器
末级:叶轮,扩压器 + 出口蜗壳
2. 段
① “段”以进气口为标志,压缩机只有一个 进气口和一个排气口,就称为一段压缩。
二、离心压缩机的总体结构
1. 结构组成
① 离心压缩机是由转子、定子、轴承等组成。 ② 转子是由主轴、叶轮、平衡盘、联轴器等组成。 ③ 定子是由机壳、扩压器、弯道、回流器等组成。 ④ 密封装置是由轴端密封和级间密封组成。见图5-2.
5-2 离心压缩机的结构实物图
2. 各部件的功能
① 吸气室:为了将需要压缩的气体,由进气管(或中间冷却器)的出口均匀的导入 叶轮中去增压,所以在每一段的第一级进口处都设有吸气室。见图5-2所示。
5-2 离心压缩机的结构实物图
② 叶轮:叶轮是离心式压缩机中唯一对气体做功的部件。气体进入叶轮以后,在叶片的 作用下,随叶轮高速旋转,通过叶片对气体做功,气体能量增加,气体在叶轮出口时 的压力和速度均得到明显提高。见图5-2所示。
5-2 离心压缩机的结构实物图
③ 扩压器:是离心压缩机中能量转换部件,由于气体从
度时,会产生“喘振”现象。 ③ 离心式压缩机单级压力比不高,不适用于较小的流量和压力比较高的场合。 ④ 离心式压缩机稳定工况区较窄,尽管气量调节较方便,但经济性较差。
离心式压缩机的分类、型号、性能参数

1
离心式压缩机的分类

2
离心式压缩机的型号表示
3 离心式压缩机的性能参数

离心压缩机基础知识pptx

离心压缩机基础知识pptx

利用高速旋转的叶 轮将气体加速,然 后通过扩压器将速 度转化为压力
离心压缩机的特点
高效
离心压缩机的效率通常比活塞式压缩机高
维护简单
由于采用了高速旋转的叶轮,磨损较小, 维护周期较长
稳定
由于是连续工作,流量和压力波动较小, 运行稳定
噪音低
离心压缩机的噪音通常比活塞式压缩机低
离心压缩机的应用场景
01
04
离心压缩机的维护和保养
离心压缩机的日常维护
每日检查
每天需要检查离心压缩机的各项参数,如压力、温度、流量等 是否正常。
巡检
定期对离心压缩机进行巡检,检查机器是否有异常声音或振动 。
清洁
保持离心压缩机的清洁,避免灰尘和杂物进入机器内部。
离心压缩机的定期保养
润滑
定期更换离心压缩机的润滑油 ,保证机器的正常润滑。
离心压缩机安全操作规程的监督与检查
监督
01
定期对离心压缩机的安全操作规程进行检查和评估,确保其有
效性。
检查
02
对离心压缩机的安全设施、电气设备、传动装置等进行定期检
查和维护,确保其正常运转。
培训
03
对操作人员进行定期培训,提高他们的安全意识和操作技能。
THANKS
清洗
定期清洗离心压缩机的冷却系统 ,保证散热效果。
检查
定期检查离心压缩机的易损件,如 轴承、密封等是否需要更换。
离心压缩机常见故障及排除方法
压力异常
当离心压缩机的压力异常时,需要检 查压力调节阀是否正常工作,管道是
否有堵塞情况。
声音异常
当离心压缩机发出异常声音时,需 要检查机器是否有松动或损坏的部
06
离心压缩机的安全操作规程

离心压缩机最详细的资料

离心压缩机最详细的资料

离心压缩机最详细的资料一、工作原理:离心压缩机利用转子高速旋转产生离心力,通过离心力将气体压缩,从而提高气体的压力。

其工作过程主要可分为吸气、压缩、排气三个阶段。

具体来说,离心压缩机通过进气口将气体吸入,然后转子高速旋转将气体压缩,最后排出高压气体。

二、结构特点:离心压缩机的主要结构组成包括压缩机壳体、转子、驱动装置、吸气管路等部分。

其中,转子是离心压缩机的核心部件,其作用是通过高速旋转产生离心力。

离心压缩机还具有较高的效率和可靠性,通常采用润滑和冷却系统来确保其正常运转。

三、应用领域:离心压缩机广泛应用于制冷、空调、化工、石油化工等行业。

在制冷和空调系统中,离心压缩机可以将低温制冷剂压缩为高温高压气体,以实现冷却和空调的效果。

在化工和石油化工行业,离心压缩机则用于压缩气体和蒸汽等工艺流体,以满足生产过程中的需求。

四、维护保养:1.定期检查离心压缩机的机械结构,确保无松动、磨损和裂纹等问题。

2.保持轴承良好的润滑状态,定期检查和更换润滑油。

3.定期清洁冷却系统,保证离心压缩机的正常散热。

4.检查和清洁吸气过滤器,防止积尘和堵塞。

5.定期检查和校准压力表、温度计等仪表,确保其准确可靠。

6.遵循厂家的操作手册,正确使用和操作离心压缩机。

总结:离心压缩机是一种常见且重要的压缩机类型,具有较高的效率和可靠性。

本文详细介绍了离心压缩机的工作原理、结构特点、应用领域以及维护保养等方面内容。

通过有效的维护保养,可以保证离心压缩机的正常运行,延长使用寿命,并确保其在制冷、空调、化工等应用领域的有效性。

离心压缩机基础知识

离心压缩机基础知识
将离心压缩机的运行数据记录在 案,以便对设备的运行状态进行 分析和监控。
定期保养
检查轴承与密封件
定期检查离心压缩机的轴承和 密封件,确保其完好无损,密 封性能良好。对于磨损严重的
部件要及时更换。
更换过滤器
定期更换离心压缩机的空气过滤 器和润滑油过滤器,以保持设备 正常的运行状态。
清洗冷却器
定期清洗离心压缩机的冷却器,以 保持良好的散热性能。
殊需求。
05
离心压缩机的维护与保养
日常维护
检查设备运行状态
观察离心压缩机的电流、压力、 温度等参数是否正常,以及设备 是否有异常声音或振动。
清洁与润滑
定期对离心压缩机进行清洁,特 别是对进气过滤器和冷却器要进 行定期清洗,以保持良好的散热 效果。同时对关键部位进行润滑 ,以减少机械磨损。
记录设备运行数据
保证其散热性能。
06
离心压缩机的发展趋势与展望
技术创新与升级
节能减排技术
采用高效节能设计,利用新能源和绿色技术,提高离心压缩机的能源利用效率和降低环境污染。
智能化控制技术
结合物联网、大数据和人工智能等技术,实现离心压缩机的远程监控、故障诊断和自主调控等功能,提高生产效率和降低 运营成本。
复合材料的应用
气体经过多级压缩后,最终从压 缩机出口排出。
离心压缩机的性能参数
流量
指压缩机每单位时间内排出的气体体积。
效率
指压缩机所做机械功与输入的电功率之比 。
压比
指压缩机出口压力与进口压力之比。
功率
指压缩机主轴输出的机械功率。
转速
指转子的旋转速度。
03
离心压缩机的系统组成
工艺系统
压缩机的主体

离心式压缩机基础知识

离心式压缩机基础知识

离心式压缩机
离心式压缩机
干气密封与传统的机械密封相类似,密封面由动环和静环 组成。其中动环端面上刻有许多沟槽,他们互不相通。各 个沟槽从旋转环的外径向中心延伸,但不贯通,接口槽外 深内浅,在沟槽的末端形成了密封堰。当处于非运行状态 时,动环与静环的密封面接触,在运行状态时,气体被吸 入沟槽中压缩的同时,遇到密封堰的阻拦,气体压力升高, 克服静环座弹簧力和作用在静环上的流体静压力,使动、 静环密封面脱离接触,产生很小的间隙3-7微米。通过这 种方法使间隙持久的存在,机械密封面并不接触,流经密 封面的密封气同时也起到了冷却机封的作用。
培训教材
按活塞的压缩动作可分为: (1)单作用压缩机:气体只在活塞的一侧进行压缩又称单动压缩机。 (2)双作用压缩机:气体在活塞的两侧均能进行压缩又称复动或多动压缩机。 (3 )多缸单作用压缩机:利用活塞的一面进行压缩,而有多个气缸的压缩机。 (4)多缸双作用压缩机:利用活塞的两面进行压缩,而有多个气缸的压缩机。 按压缩机的排气终压力可分为: (1)低压压缩机:排气终了压力在3~10表压。 (2)中压压缩机:排气终了压力在10~100表压。 (3)高压压缩机:排气终了压力在100~1000表压。 (4)超高压压缩机:排气终了压力在1000表压以上。
离心式压缩机
润滑油系统 润滑油系统由油箱、主副油泵、过滤器、油冷器、油压调 节装置、油加热装置及安全装置组成。油泵将安装在基座 底部油箱中的油抽出,经油冷器,油滤器给3-K1及齿轮箱 的推力、径向轴承等提供润滑。油泵有两台,可互为备用。 设备停车后,油循环应保证工作15分钟。发生意外,油泵 不能正常启动时,高位油罐可提供轴承的润滑冷却作用; 油冷器和油滤器能在结垢和压差过大时通过切换阀切换处 理,而不影响机组运行。利用油流视镜,检查从止推和颈 向轴承流出的油流是否正常。润滑油路如图5:

离心压缩机基础知识

离心压缩机基础知识

级是压缩机作功的 最基本的单元, 最基本的单元,在级中 叶片带动气体转动, 叶片带动气体转动,把 功传递给介质, 功传递给介质,使介质 获得动能。 获得动能。通过由隔板 构成的扩压流道和扩压 槽,介质的一部分动能 转化为压力势能, 转化为压力势能,并被 导入下一级继续压缩。 导入下一级继续压缩。 中间级有叶轮、隔板、 中间级有叶轮、隔板、 级间密封等, 级间密封等,末级是由 叶轮、 叶轮、隔板和蜗壳组成
后,对气体作功。那么气体既随叶轮转动 ,又在叶轮槽中流动。反映出气体的压力 升高、温度升高,比容降低。 • 叶轮转动的速度即气体的圆周速度,在不 同的半径上有不同的数值,叶轮出口处的 圆周速度最大。气体在叶轮槽道内相对叶 轮的流动速度为相对速度。因叶片槽道截 面积从进口到出口逐渐增大,因此相对速 度逐渐减少。 气体的实际速度是圆周速度与相对速 度的合成,又称之为绝对速度。
• (2)排气压力:即指压缩机出口压力。 • (3)有效功率:有效功率是指在气体的
压缩过程中,叶轮对气体所作的功,绝大 部分转变为气体的能量,另有一部分能量 损失,该损失基本上包括流动损失、轮阻 损失和漏气损失三部分,我们将被压缩气 体的能量与叶轮对气体所作功的比值称为 有效功率。
• (4)轴功率:离心式压缩机的转子在为
压 缩 机
压缩机
• 什么是压缩机?
用来压缩气体借以提高气体压力的机械称 为压缩机。也有把压缩机称为“压气机” 和“气泵”的。提升的压力小于0.2MPa时 ,称为鼓风机。提升压力小于0.02MPa时 称为通风机。
压缩机的分类
• 按工作原理分类
1.容积式压缩机 直接对一可变容积中的气体进 行压缩,使该部分气体容积缩小、压力提高。其 特点是压缩机具有容积可周期变化的工作腔。 2.动力式压缩机 它首先使气体流动速度提高, 即增加气体分子的动能;然后使气流速度有序降 低,使动能转化为压力能,与此同时气体容积也 相应减小。其特点是压缩机具有驱使气体获得流 动速度的叶轮。动力式压缩机也称为速度式压缩 机。

离心压缩机基础知识

离心压缩机基础知识

离心压缩机基础知识分类(1)按轴的型式分:单轴多级式,一根轴上串联几个叶轮;双轴四级式,四个叶轮分别悬臂地装在两个小齿轮的两端,旋转靠电机通过大齿轮驱动小齿轮。

(2)按气缸的型式分:水平剖分式和垂直剖分式。

(3)按压缩介质分类:空气压缩机、氮气压缩机、氧气压缩机等。

特点与应用? 优点由于是连续旋转式机械,可以大大地提高进入其中的工质量,提高功率。

所以,离心式压缩机的第一个特点是:功率大。

由于工质量可以提高,必然导致叶片转速的提高,所以第二个特点是高速性。

无往复运动部件,动平衡特性好,振动小,基础要求简单;易损部件少,故障少、工作可靠、寿命长;机组单位功的重量、体积及安装面积小;机组的运行自动化程度高,调节范围广,且可连续无级调节;在多级压缩机中容易实现一机多种蒸发温度;润滑油与介质基本上不接触,从而提高了冷凝器及蒸发器的传热性能;对大型压缩机,可由蒸气动力机或燃气动力机直接带动,能源使用经济合理;? 缺点单机容量不能太小,否则会使气流流道太窄,影响流动效率;因依靠速度能转化成压力能,速度又受到材料强度等因素的限制,故压缩机每级的压力比不大,在压力比较高时,需采用多级压缩;特别情况下,机器会发生喘振而不能正常工作;离心压缩机的工作原理分析? 常用名词解释(1)级:每一级叶轮和与之相应配合的固定元件(如扩压器等)构成一个基本的单元,叫一个级。

(2)段:以中间冷却器隔开级的单元,叫段。

这样以冷却器的多少可以将压缩机分成很多段。

一段可以包括很多级。

也可仅有一个级。

(4)进气状态:一般指进口处气体当时的温度、压力。

(7)表压(G):以当地大气为基准所计量的压强。

(8)绝压(A):以完全真空为基准所计量的压强。

(9)真空度:与当地大气负差值。

(10)压比:出口压力与进口压力的比值。

性能参数? 离心压缩机的主要性能参数是流量、排气压力、有效功率、效率、轴功率、转速、压缩比和温度。

(1)流量:单位时间内流经压缩机流道任一截面的气体量,通常以体积流量和质量流量两种方法来表示。

全方位攻略——全面解析离心压缩机(离心压缩机篇)

全方位攻略——全面解析离心压缩机(离心压缩机篇)

全方位攻略——全面解析离心压缩机(离心压缩机篇)全面解析离心压缩机一离心式压缩机的结构离心压缩机的的品种和型号很多,但就其最基本的组成而言,主要有定子和转子两部分组成。

1、气缸:是压缩机的壳体,又称为机壳。

由壳体和进排气室组成,内装有隔板、密封体、轴承等零部件。

对它的主要要求是:有足够的强度以承受气体的压力,法兰结合面应严密,主要由铸钢组成。

吸汽室用来将制冷剂蒸汽从进气管均匀地引入到叶轮中去的固定部件形状为渐缩形进口可调导流叶片是离心机的能量调节装置由若干扇形叶片组成,其根部带有转轴扩压器作用是使汽流减速,动能转化为压力能,进一步提高气体的压力,多采用无叶扩压器,即由两个平行壁面构成的等宽度环形空间,无叶扩压器后面与蜗室或弯道及回流器相连蜗壳(蜗室)是将扩压器出来的气体汇集起来,导出压缩机之外的装置通流截面沿气流方向逐渐扩大,也对汽流起到一定的减速扩压作用.弯道与回流器用于多级离心机中,弯道是一个弯曲形的环形空间,它使汽流由离心方向改为向心方向,回流器内装有导向叶片,使汽流能沿轴线方向进入下一级。

隔板:隔板是形成固定元件的气体通道,根据隔板在压缩机所处的位置,隔板可分为4种类型:进口隔板、中间隔板、段间隔板、排气隔板。

进气隔板和气缸形成进气室,将气体导流到第一级叶轮入口,对于采用可调和欲旋的压缩机,在进气隔板上还可装上可调叶片,以改变气流的方向。

中间的隔板用处有2个,一是形成扩压室,使气体流出后具有的动能减少,转变成压强的增高:二是形成弯到流向中心,流到下级叶轮入口。

段间隔板的作用是指在段间对排的2MCL、2BCL型压缩机中分隔两段排气口。

排气隔板除了与末级叶轮前隔板形成末级扩压式之外,还要形成排气室。

轴承:离心压缩机上的轴承分径向轴承和止推轴承两种。

径向轴承的作用是承受转子重量和其他附加径向力,保持转子转动中心和气缸中心一致,并且在一定转速下正常旋转。

止推轴承的作用是承受转子的轴向力,限制转子的轴向转动,保持转子在气缸中的轴向位置。

离心式压缩机知识解读

离心式压缩机知识解读

(25.4×2.5) (25.4×3.5)
⑦、启动
氮气吹扫、置换。 进气阀打开 油系统启动
检查油压,当必要时通过调节阀调节进油总管中的主油压(正常油压为 0.245Mpa(G))及各供油支管上的油压(支撑轴承润滑油压力0.090.13Mpa(G), 推力轴承润滑油压力0.025-0.13Mpa(G))。
10.5
10 虚线为防喘振线
设计压力
Mpa
5.5/0.6
允许最高工作压力
Mpa
5.13/0.5
气密性试验压力Mຫໍສະໝຸດ a5.5/水压试验压力
Mpa
6.88/0.75
设计温度

150/50
工作介质
合成气/水
腐蚀裕量
mm
2/2
耗水量
T/H (正常点/额定点)
213/253
换热面积

169
② 管侧/壳侧 8.5/ 0.6 8.3/ 0.5 8.5/
检查各个出口点的观察玻璃以确保油正在流动。 通过关闭主油泵,检查辅助油泵(电动机驱动)是否正常。 当达到较低的油压限制值时,辅助油泵必须自动地接入。在这之后,油
压必须再次达到设定值。在主油泵已再次打开之后,手动关闭辅助泵。 驱动机启动(见制造厂的说明书)。 建立必要的气体压差:如干气密封压差。 气体注入该压缩机。 暖管、低速暖机(300~500r/min)具体操作按照气轮机启动说明。
壳体组成:法兰、筒体、封头、接管、排水管、排气管、爆破片接 管、鞍型支座。
管束组成:管板、换热管、折流板。 管箱组成:法兰、封头、进出口接头、分层板。 3)、管程走工艺气体,设计压力为5.5MPa;壳程走冷却水,设计压力为 0.6MPa。 4)、管板的作用:把换热管连接起来,采用强度胀、强度焊接,保证密封。 5)、折流板作用:增大冷却水在壳体内的行程,增强换热效果。 6)、密封:壳程与管程之间的密封采用榫槽密封。

离心压缩机基础知识

离心压缩机基础知识
向力相反的平衡力P。为避免启动、停车和运转时转
子产生过大的轴向窜动,在设计平衡盘时,不要将转 子上的轴向力完全平衡掉,而保持10kN左右的残留轴 向力,由轴向推力轴承承受,使转子得到轴向定位。
离心压缩机的轴承结构及润滑系统
径向轴承(支承轴承)
作用 承受转子的重力和由于振动等原因引起的附加径向载 荷,以保持转子的转动中心和气缸中心一致,并使其 在一定转速下正常运行。
➢ 压缩功
H pol
pd ps
vdp
m m
1
RTs
pd ps
m1
m
1
mR m 1
Td
Ts
➢ 多变压缩过程方程
pvm psvsm pd vd m const
m
pd ps
Td Ts
m1
离心压缩机的工作原理
级效率
pol
H pol
Htot
Cd 2
2
Cs2
压缩功 可用能头
离心压缩机的工作原理
离心压缩机的性能曲线及操作调节
➢ 性能曲线
一般情况,压缩机的 特性曲线由进口流 量、进气压力、进 气温度及工作转速 等四个独立变量决 定。
离心压缩机的性能曲线及操作调节
✓ 喘振工况:当压缩机进口流量减小到某一值(称为最小流 量)时,离心压缩机就产生强烈的振动及噪音,无法稳定 工作。出现喘振的根本原因是压缩机的流量过小,小于压 缩机的最小流量导致机内出现严重的气体旋转脱离;外因 是管网的压力高于压缩机所提供的排压,造成气体倒流, 并产生大幅度的气流脉动。
然后送往二段转化炉,使甲烷氧化得到氢气。 (3)氮氢合成气压缩机:一是把新鲜的氮氢合成气由2.6MPa压
缩到合成气压力;二是将从合成它反映出来的并经过冷却的 循环气增压到合成气压力。合成反应的压力视工艺而定,低 压流程为15MPa,中压流程为24MPa,高压流程为32MPa。 (4)氨压缩机:以氨作为制冷剂,经压缩机压缩到1.7MPa左右, 送往冷凝器中液化。 (5)二氧化碳压缩机:将合成氨车间脱硫工段来的常压CO2气, 加压到尿素合成压力(15MPa左右),然后送到尿素车间的 气提塔进行反应,生成尿素。

离心式压缩机基础知识

离心式压缩机基础知识

离心式压缩机基础知识第四节离心式压缩机组的开停车一、压缩机组运行前的准备与检查1、驱动机及齿轮变速器应进行单独试车和串联试车,并经验收合格达到完好备用状态。

装好驱动机、齿轮变速器和压缩机之间的联轴器,并复测转子之间的对中,使之完全符合要求。

2、机组油系统清洗调整已合格,油质化验合乎要求,储油量适中。

检查主油箱、油过滤器、油冷却器,油箱油位不足则应加油。

检查油温若低于24℃,则应使用加热器,使油温达到24℃以上。

(油温低了会怎样?)油冷却器和油过滤器也应充满油,放出空气,油冷却器与过滤器的切换位置应切换到需要投用的一侧。

检查主油泵和辅助油泵,确认工作正常,转向正确。

油温度计、压力表应当齐全,量程合格,工作正常。

用干燥的氮气充入蓄压器中,使蓄压器内气体压力保持在规定数值之内。

调整油路系统各处油压,达到设计要求。

检查油系统各种联锁装置运行正常,确保机组的安全。

3、压缩机各入口滤网应干净无损坏,入口过滤器滤件已换新,过滤器合格。

4、压缩机缸体及管道排液阀门已打开,排尽冷凝后关小,待充气后关闭。

5、压缩机各段中间冷却器引水建立冷却水循环,排尽空气并投入运行。

6、工艺管道系统应完好,盲板已全部拆除并已复位,不允许由于管路的膨胀收缩和振动以后重量影响到气缸本体。

7、将工艺气体管道上的阀门按起动要求调到一定的位置,一般压缩机的进出口阀门应关闭,防喘振用的回流阀或放空阀应全开,工艺系统的出口阀也应全闭。

各类阀门的开关应灵活准确,无卡涩。

8、确认压缩机管道及附属设备上的安全阀和防爆板已装备齐全,安全阀调校整定,符合要求,防爆板规格符合要求。

9、压缩机及其附属机械上的仪表装设齐全,量程、温度、压力及精确度等级均符合要求,重要仪表应有校验合格证明书。

检查电气线路和仪表空气系统是否完好。

仪表阀门应灵活准确,自动控制保安系统经检验合格,确保动作准确无误。

10、机组所有联锁已进行试验调整,各整定值皆已符合要求。

防喘振保护控制系统已调校试验合格,各放空阀、防喘回流阀应开关迅速,无卡涩。

离心压缩机的基础知识

离心压缩机的基础知识

离心压缩机的基础知识2007年12月18日 10:55第一节离心压缩机概述离心压缩机是产生压力的机械,是透平压缩机的一种。

透平是英译音“TURBINE”,即旋转的叶轮。

在全低压空分装置中,离心压缩机得到广泛应用,逐渐出现了离心压缩机取代活塞压缩机的趋势。

一、定义:离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。

二、工作原理:是工作轮在旋转的过程中,由于旋转离心力的作用及工作轮中的扩压流动,使气体的压力得到提高,速度也得到提高。

随后在扩压器中进一步把速度能转化为压力能。

通过它可以把气体的压力提高。

三、特点:离心压缩机是一种速度式压缩机,与其它压缩机相比较:优点:⑴排气量大,排气均匀,气流无脉冲。

⑵转速高。

⑶机内不需要润滑。

⑷密封效果好,泄露现象少。

⑸有平坦的性能曲线,操作范围较广。

⑹易于实现自动化和大型化。

⑺易损件少、维修量少、运转周期长。

缺点:⑴操作的适应性差,气体的性质对操作性能有较大影响。

在机组开车、停车、运行中,负荷变化大。

⑵气流速度大,流道内的零部件有较大的摩擦损失。

⑶有喘振现象,对机器的危害极大。

四、适用范围:大中流量、中低压力的场合。

五、分类:⑴按轴的型式分:单轴多级式,一根轴上串联几个叶轮。

双轴四级式,四个叶轮分别悬臂地装在两个小齿轮的两端,旋转靠电机通过大齿轮驱动小齿轮。

⑵按气缸的型式分:水平剖分式和垂直剖分式。

⑶按级间冷却形式分类:机外冷却,每段压缩后气体输出机外进入冷却器。

机内冷却,冷却器和机壳铸为一体。

⑷按压缩介质分类:空气压缩机、氮气压缩机、氧气压缩机等。

第二节离心压缩机的工作原理分析一、常用名词解释:⑴级:每一级叶轮和与之相应配合的固定元件(如扩压器等)构成一个基本的单元,叫一个级。

如:杭氧2TYS100+2TYS76氧气透平压缩机高低压气缸共有八个叶轮,就叫八级。

⑵段:以中间冷却器隔开级的单元,叫段。

这样以冷却器的多少可以将压缩机分成很多段。

一段可以包括很多级。

离心式压缩机基础知识

离心式压缩机基础知识

离心压缩机的由来?离心压缩机最早的雏形可以追溯到18世纪,当时英国机械师约翰・西蒙斯(John Smeaton)设计了一种可以将空气压缩的机器,称为“风炮”(风车)。

这种机器采用叶轮来压缩气体,但由于叶轮材料和加工精度的限制,其效率并不高。

随着工'业革命的到来,人们对于更加高效的空气压缩方式提出了需求。

1835年,法国机械师吕克啊比亚(Lucien Anatole Prevost)设计了一种采用离心力压缩空气的机器,被称为“离心风机"(离心鼓风机)。

这种机器采用叶轮旋转产生离心力,将空气压缩到出口处。

离心风机的效率比风炮高得多,因此很快得到了广泛应用。

后来,离心风机被进一步改进和优化,成为了现代离心压缩机。

离心压缩机可以广泛应用于空气压缩、制冷、空调等领域,是工业生产中不可或缺的重要设备之一。

离心压缩机的工作原理?离心压缩机是一种将气体通过离心力来压缩的机械设备。

其主要工作原理如下:气体进入压缩机:气体通过进气口进入压缩机的中心区域。

叶轮旋转:压缩机中心区域有一个旋转的叶轮,其叶片通过高速旋转产生离心力,将气体向外推进。

气体压缩:在离心力的作用下,气体被压缩并转化为高压气体。

气体会沿着叶轮的螺旋状路径向外流动,压力和速度都会增加。

出口排放:经过压缩后的气体通过出口口排放出来,通常需要经过冷却和净化处理后再使用或排放。

需要注意的是,离心压缩机的效率受到其叶轮设计、旋转速度和气体流动性等因素的影响。

为了达到更高的效率和性能, 离心压缩机的设计需要进行精密的计算和优化。

离心压缩机的构成?离心压缩机通常由以下几个部分组成:进气口:气体通过进气口进入离心压缩机。

叶轮:是压缩机的核心部件,由叶片和轮毂组成。

叶轮通过高速旋转产生离心力,将气体压缩。

静压壳体:是离心压缩机的外壳,用来固定叶轮和导向气流。

静压壳体内部的形状和尺寸对气体的压缩过程有着重要的影响。

出气口:经过压缩后的气体通过出气口排出,通常需要通过冷却器和过滤器等设备进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吸入室
作用是将介质均匀地引导至叶轮的进口 ,以减少气流的扰动和分离损失。它的结构 比较简单,有轴向进气和径向进气两种。径 向进气结构多采用于多级双支承压缩机中。
离心压缩机基本结构
• 整套离心压缩机组是由电气、机械、
润滑、冷却、控制等部分组成的一个系统 。虽然由于输送的介质、压力和输气量的 不同,而有许多种规格、型式和结构,但 组成的基本元件大致是相同的,主要由转 子、定子、和辅助设备等部件组成。
质量流量是指单位时间内流经压缩机流 道任一截面的气体质量,其单位为kg/s。
• (2)排气压力:即指压缩机出口压力。 • (3)有效功率:有效功率是指在气体的
压缩过程中,叶轮对气体所作的功,绝大 部分转变为气体的能量,另有一部分能量 损失,该损失基本上包括流动损失、轮阻 损失和漏气损失三部分,我们将被压缩气 体的能量与叶轮对气体所作功的比值称为 有效功率。
)与设计气流的进口角β1(设计)之差叫 做冲击角,简称冲角。用i表示。
β1A<β1 , i<0,叫负冲角。 β1A>β1 , i>0,叫正冲角。 在正负冲角的情况下,都将出现气流
与叶片表面的脱离,形成旋涡区,使能量
损失。冲击损失的增加与流量偏离设计流 量的绝对值的平方成正比。
• 3、轮阻损失
叶轮的不工作面与机壳之间的空间,
• 2、冲击损失: • 定义:是一种在非设计工况下产生的
流动损失。
• 叶轮进口叶片安装角β1A(实际)一
般是按照设计气流的进口角β1(设计 )来决定的。一般是β1=β1A,此时进
气为无冲击进气。但是当工况发生偏 离设计工况时,气流进口角β1大于或 小于β1A将发生气流冲击叶片的现象 。
• 习惯把叶轮进口叶片安装角β1A(实际
件结构 塞 膜 塞 子 片 环 转子 旋 茨 螺 螺 (透平) 射
特征 式 式 式 式 式 式
式 杆杆 式 泵
活塞式 转子式
滑片式
涡旋式
单螺杆
几种特殊的压缩机
离心式压缩机
离心压缩机的概述
• 离心压缩机是产生压力的机械,是透平压
缩机的一种。透平是英译音体在压缩机中的运动是
4. 易损部件少,故障少、工作可靠、寿命长;
5. 机组单位功的重量、体积及安装面积小; 6. 机组的运行自动化程度高,调节范围广,且
可连续无级调节;
7. 在多级压缩机中容易实现一机多种蒸发温度

8. 润滑油与介质基本上不接触,从而提高了冷
凝器及蒸发器的传热性能;
9. 对大型压缩机,可由蒸气动力机或燃气动力
级内气体流动的能量损失分析
• 一、能的定义
度量物质运动的一种物质量,一般解 释为物质作功的能力。能的基本类型有势 能、动能、热能、电能、磁能、光能、化 学能、原子能等。一种能可以转化为另一 种能。能的单位和功的单位相同。能也叫 能量。
• 二、级内气体流动的能量损失分析 • 压缩机组实际运行中,通过叶轮向气
• 外漏是指压缩气体通过轴与机壳密封处
间隙或机体的间隙直接漏到大气中。 漏气损失是一个不可忽视的问题,有些
空压机出现气量打不到设计值就是内漏和 外漏引起的。
扩压槽
吸入室
回流器 弯道
蜗壳
干气密封 支撑轴承 止推轴承
叶轮
平衡鼓 干气密封 支撑轴承
机壳
压缩机机壳是将介质与大气隔绝,使介质在其 间完成能量转换的重要部件。它还具有支承其 他静止部件,如隔板、密封等的功能。机壳重 量大,形状复杂,在其外部连接有进气、排气 、润滑油、密封介质等管道,两侧的端盖上带 有轴承箱和轴向密封室。对于高压压缩机,机 壳一般采用筒型结 构,低压压缩机则 采取水平剖分结构, 烯烃工厂的机组均 采用水平剖分。
离心压缩机的转子
机直接带动,能源使用经济合理;
• 缺点
1. 单机容量不能太小,否则会使气流流道太 窄,影响流动效率;
2. 因依靠速度能转化成压力能,速度又受到 材料强度等因素的限制,故压缩机每级的
压力比不大,在压力比较高时,需采用多 级压缩;
3. 特别情况下,机器会发生喘振而不能正常 工作;
离心压缩机的工作原理分析
• 另外,还存在流动损失以及动能损失以
及在级内在非工况时产生冲击损失。冲击
损失增大将引起压缩机效率很快降低。还
有高压轴端,如果密封不好,向外界漏气 ,引起压出的有用流量减少。
• 故此,我们有必要研究这些损失的原因
,以便在设计、安装、操作中尽量减少损
失,维持压缩机在高效率区域运行,节省 能耗。
• 1、流动损失: • 定义:就是气流在叶轮内和级的固定元件
分类
(1)按轴的型式分:单轴多级式,一根轴 上串联几个叶轮;双轴四级式,四个叶轮 分别悬臂地装在两个小齿轮的两端,旋转 靠电机通过大齿轮驱动小齿轮。
(2)按气缸的型式分:水平剖分式和垂直 剖分式。
(3)按级间冷却形式分类:级外冷却,每 段压缩后气体输出机外进入冷却器;机内 冷却,冷却器和机壳铸为一体。
• 常用名词解释
• (1)级:每一级叶轮和与之相应配合的
固定元件(如扩压器等)构成一个基本的 单元,叫一个级。
• (2)段:以中间冷却器隔开级的单元,
叫段。这样以冷却器的多少可以将压缩机
分成很多段。一段可以包括很多级。也可 仅有一个级。
• (3)标态:0℃,1标准大气压。
(4)进气状态:一般指进口处气体当时 的温度、压力。
气体的实际速度是圆周速度与相对速 度的合成,又称之为绝对速度。
级是压缩机作功的 最基本的单元,在级中 叶片带动气体转动,把 功传递给介质,使介质 获得动能。通过由隔板 构成的扩压流道和扩压 槽,介质的一部分动能 转化为压力势能,并被 导入下一级继续压缩。 中间级有叶轮、隔板、 级间密封等,末级是由 叶轮、隔板和蜗壳组成
是充满气体的,叶轮旋转时,由于气体有 粘性,也会产生摩擦损失。又由于旋转的 叶轮产生离心力,靠轮的一边气体向上流 ,靠壳的一边气体向下流,形成涡流,引 起损失。
• 4、漏气损失:
漏气损失包括内漏和外漏。 内漏气是指泄露的气体又漏回到压缩
气体中。包括两种情况:一种是从叶轮出 口的气体从叶轮与机壳的空间漏回到进口 。另一种是单轴的离心压缩机,由于轴与 机壳之间也有间隙,气体从高压的一边经 过间隙流入低压一边。
体传递能量,即叶轮通过叶片对气体作功 消耗的功和功率外,还存在着叶轮的轮盘 、轮盖的外侧面及轮缘与周围气体的摩擦 产生的轮阻损失,还存在着工作轮出口气 体通过轮盖气封漏回到工作轮进口低压低 压端的漏气损失。都要消耗功。这些损失 在级内都是不可避免的,只有在设计中精 心选择参数,再制造中按要求加工,在操 作中精心操作使其尽量达到设计工况,来 减少这些损失。
• 容积流量分类
名称 微型压缩机 小型压缩机 中型压缩机 大型压缩机
容积流量/(m3/min) <1 1~10
10~100 ≥100
• 压缩机按结构或工作特征的分类
按工作
容积式
动力式
原理
按运动
离轴旋 喷
件工作 往复式
回转式
心流涡 射
特性
式式式 式
按运动 活 隔 柱 转 滑 液 三角 涡 罗 双 单 叶轮 喷
(4)按压缩介质分类:空气压缩机、氮气 压缩机、氧气压缩机等。
特点与应用
• 优点
1. 由于是连续旋转式机械,可以大大地提高进 入其中的工质量,提高功率。所以,离心式 压缩机的第一个特点是:功率大。
2. 由于工质量可以提高,必然导致叶片转速的 提高,所以第二个特点是高速性。
3. 无往复运动部件,动平衡特性好,振动小, 基础要求简单;
中流动时的能量损失。
产生的原因:主要由于气体有粘性,在流 动中引起摩擦损失,这些损失又变成热量 使气体温度升高,在流动中产生旋涡,加 剧摩擦损耗和流动能量损失,因旋涡的产 生就要消耗能量;在工作轮中还有轴向涡 流等第二次流动产生,引起流量损失。在 叶轮出口由于出口叶片厚度影响产生尾迹 损失。弯道和回流器的摩擦阻力和局部阻 力损失等。
沿垂直于压缩机轴的径向进行的。所以也 称径流压缩机。
工作原理
• 具有叶片的工作轮在压缩机的轴上旋转,进入工 作轮的气体被带着旋转,增加了动能(速度)和 静压头(压力),然后出工作轮进入扩压器内, 在扩压器内气体的速度转变为压力,进一步提高 压力,经过压缩的气体再经弯道和回流器进入下
• 一级叶轮进一步压缩至所需的压力。 气体在叶轮中提高压力的原因有两个:一是气体 在叶轮叶片作用下,跟着叶轮做高速的旋转,而 气体由于受旋转所产生的离心力的作用使气体的 压力升高;二是叶轮是从里到外逐渐扩大的,气 体在叶轮里扩压流动,使气体通过叶轮后压力提 高。
• (4)轴功率:离心式压缩机的转子在为
气体升压提供有用功率,以及在气体升压
过程中产生的流动损失功率、轮阻损失功
率和漏气损失功率外,其本身也产生机械
损失,即轴承的摩擦损失,这部分功率消 耗约占总功率的2%~3%。如果有齿轮传动 ,则传动功率消耗同样存在,约占总功率 的2%~3%。以上六个方面的功率消耗,都 是在转子对气体作功的过程中产生的,它
2.动力式压缩机 它首先使气体流动速度提高, 即增加气体分子的动能;然后使气流速度有序降 低,使动能转化为压力能,与此同时气体容积也 相应减小。其特点是压缩机具有驱使气体获得流 动速度的叶轮。动力式压缩机也称为速度式压缩 机。
• 按排气压力分类
分类
名称
风机 压缩机
通风机 鼓风机 低压压缩机 中压压缩机 高压压缩机 超高压压缩机
们的总和即为离心式压缩机的轴功率。轴 功率是选择驱动机功率的依据。
• (5)效率:效率主要用来说明传递给气
体的机械能的利用程度。由于气体的压缩
有等温压缩、绝热压缩和多变压缩等三种
过程,所以,压缩机的效率也有等温效率 、绝热效率和多变效率之分。
相关文档
最新文档