(完整版)_毕业设计外文文献及翻译_
毕业论文(设计)外文文献翻译及原文
金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
毕设外文文献+翻译1
毕设外文文献+翻译1外文翻译外文原文CHANGING ROLES OF THE CLIENTS、ARCHITECTSAND CONTRACTORS THROUGH BIMAbstract:Purpose –This paper aims to present a general review of the practical implications of building information modelling (BIM) based on literature and case studies. It seeks to address the necessity for applying BIM and re-organising the processes and roles in hospital building projects. This type of project is complex due to complicated functional and technical requirements, decision making involving a large number of stakeholders, and long-term development processes.Design/methodology/approach–Through desk research and referring to the ongoing European research project InPro, the framework for integrated collaboration and the use of BIM are analysed.Findings –One of the main findings is the identification of the main factors for a successful collaboration using BIM, which can be recognised as “POWER”: product information sharing (P),organisational roles synergy (O), work processes coordination (W), environment for teamwork (E), and reference data consolidation (R).Originality/value –This paper contributes to the actual discussion in science and practice on the changing roles and processes that are required to develop and operate sustainable buildings with the support of integrated ICT frameworks and tools. It presents the state-of-the-art of European research projects and some of the first real cases of BIM application inhospital building projects.Keywords:Europe, Hospitals, The Netherlands, Construction works, Response flexibility, Project planningPaper type :General review1. IntroductionHospital building projects, are of key importance, and involve significant investment, and usually take a long-term development period. Hospital building projects are also very complex due to the complicated requirements regarding hygiene, safety, special equipments, and handling of a large amount of data. The building process is very dynamic and comprises iterative phases and intermediate changes. Many actors with shifting agendas, roles and responsibilities are actively involved, such as: the healthcare institutions, national and local governments, project developers, financial institutions, architects, contractors, advisors, facility managers, and equipment manufacturers and suppliers. Such building projects are very much influenced, by the healthcare policy, which changes rapidly in response to the medical, societal and technological developments, and varies greatly between countries (World Health Organization, 2000). In The Netherlands, for example, the way a building project in the healthcare sector is organised is undergoing a major reform due to a fundamental change in the Dutch health policy that was introduced in 2008.The rapidly changing context posts a need for a building with flexibility over its lifecycle. In order to incorporate life-cycle considerations in the building design, construction technique, and facility management strategy, a multidisciplinary collaboration is required. Despite the attempt for establishing integrated collaboration, healthcare building projects still facesserious problems in practice, such as: budget overrun, delay, and sub-optimal quality in terms of flexibility, end-user?s dissatisfaction, and energy inefficiency. It is evident that the lack of communication and coordination between the actors involved in the different phases of a building project is among the most important reasons behind these problems. The communication between different stakeholders becomes critical, as each stakeholder possesses different setof skills. As a result, the processes for extraction, interpretation, and communication of complex design information from drawings and documents are often time-consuming and difficult. Advanced visualisation technologies, like 4D planning have tremendous potential to increase the communication efficiency and interpretation ability of the project team members. However, their use as an effective communication tool is still limited and not fully explored. There are also other barriers in the information transfer and integration, for instance: many existing ICT systems do not support the openness of the data and structure that is prerequisite for an effective collaboration between different building actors or disciplines.Building information modelling (BIM) offers an integrated solution to the previously mentioned problems. Therefore, BIM is increasingly used as an ICT support in complex building projects. An effective multidisciplinary collaboration supported by an optimal use of BIM require changing roles of the clients, architects, and contractors; new contractual relationships; and re-organised collaborative processes. Unfortunately, there are still gaps in the practical knowledge on how to manage the building actors to collaborate effectively in their changing roles, and todevelop and utilise BIM as an optimal ICT support of the collaboration.This paper presents a general review of the practical implications of building information modelling (BIM) based on literature review and case studies. In the next sections, based on literature and recent findings from European research project InPro, the framework for integrated collaboration and the use of BIM are analysed. Subsequently, through the observation of two ongoing pilot projects in The Netherlands, the changing roles of clients, architects, and contractors through BIM application are investigated. In conclusion, the critical success factors as well as the main barriers of a successful integrated collaboration using BIM are identified.2. Changing roles through integrated collaboration and life-cycle design approachesA hospital building project involves various actors, roles, and knowledge domains. In The Netherlands, the changing roles of clients, architects, and contractors in hospital building projects are inevitable due the new healthcare policy. Previously under the Healthcare Institutions Act (WTZi), healthcare institutions were required to obtain both a license and a building permit for new construction projects and major renovations. The permit was issued by the Dutch Ministry of Health. The healthcare institutions were then eligible to receive financial support from the government. Since 2008, new legislation on the management of hospital building projects and real estate has come into force. In this new legislation, a permit for hospital building project under the WTZi is no longer obligatory, nor obtainable (Dutch Ministry of Health, Welfare and Sport, 2008). This change allows more freedom from the state-directed policy, and respectively,allocates more responsibilities to the healthcare organisations to deal with the financing and management of their real estate. The new policy implies that the healthcare institutions are fully responsible to man age and finance their building projects and real estate. The government?s support for the costs of healthcare facilities will no longer be given separately, but will be included in the fee for healthcare services. This means that healthcare institutions must earn back their investment on real estate through their services. This new policy intends to stimulate sustainable innovations in the design, procurement and management of healthcare buildings, which will contribute to effective and efficient primary healthcare services.The new strategy for building projects and real estate management endorses an integrated collaboration approach. In order to assure the sustainability during construction, use, and maintenance, the end-users, facility managers, contractors and specialist contractors need to be involved in the planning and design processes. The implications of the new strategy are reflected in the changing roles of the building actors and in the new procurement method.In the traditional procurement method, the design, and its details, are developed by the architect, and design engineers. Then, the client (the healthcare institution) sends an application to the Ministry of Healthto obtain an approval on the building permit and the financial support from the government. Following this, a contractor is selected through a tender process that emphasises the search for the lowest-price bidder. During the construction period, changes often take place due to constructability problems of the design and new requirements from the client.Because of the high level of technical complexity, and moreover, decision-making complexities, the whole process from initiation until delivery of a hospital building project can take up to ten years time. After the delivery, the healthcare institution is fully in charge of the operation of the facilities. Redesigns and changes also take place in the use phase to cope with new functions and developments in the medical world.The integrated procurement pictures a new contractual relationship between the parties involved in a building project. Instead of a relationship between the client and architect for design, and the client and contractor for construction, in an integrated procurement the client only holds a contractual relationship with the main party that is responsible for both design and construction. The traditional borders between tasks and occupational groups become blurred since architects, consulting firms, contractors, subcontractors, and suppliers all stand on the supply side in the building process while the client on the demand side. Such configuration puts the architect, engineer and contractor in a very different position that influences not only their roles, but also their responsibilities, tasks and communication with the client, the users, the team and other stakeholders.The transition from traditional to integrated procurement method requires a shift of mindset of the parties on both the demand and supply sides. It is essential for the client and contractor to have a fair and open collaboration in which both can optimally use their competencies. The effectiveness of integrated collaboration is also determined by the client?s capacity and strategy to organize innovative tendering procedures.A new challenge emerges in case of positioning an architect in a partnership with the contractor instead of with the client. In case of the architect enters a partnership with the contractor, an important issues is how to ensure the realisation of the architectural values as well as innovative engineering through an efficient construction process. In another case, the architect can stand at the client?s side in a strategic advisory role instead of being the designer. In this case, the architect?s responsibility is translating client?s requirements and wishes into the architectural values to be included in the design specification, and evaluating the contractor?s proposal against this. In any of this new role, the architect holds the responsibilities as stakeholder interest facilitator, custodian of customer value and custodian of design models.The transition from traditional to integrated procurement method also brings consequences in the payment schemes. In the traditional building process, the honorarium for the architect is usually based on a percentage of the project costs; this may simply mean that the more expensive the building is, the higher the honorarium will be. The engineer receives the honorarium based on the complexity of the design and the intensity of the assignment. A highly complex building, which takes a number of redesigns, is usually favourable for the engineers in terms of honorarium. A traditional contractor usually receives the commission based on the tender to construct the building at the lowest price by meeting the minimum specifications given by the client. Extra work due to modifications is charged separately to the client. After the delivery, the contractor is no longer responsible for the long-term use of the building. In the traditional procurement method, all risks are placed with theclient.In integrated procurement method, the payment is based on the achieved building performance; thus, the payment is non-adversarial. Since the architect, engineer and contractor have a wider responsibility on the quality of the design and the building, the payment is linked to a measurement system of the functional and technical performance of the building over a certain period of time. The honorarium becomes an incentive to achieve the optimal quality. If the building actors succeed to deliver a higher added-value thatexceed the minimum client?s requirements, they will receive a bonus in accordance to the client?s extra gain. The level of transparency is also improved. Open book accounting is an excellent instrument provided that the stakeholders agree on the information to be shared and to its level of detail (InPro, 2009).Next to the adoption of integrated procurement method, the new real estate strategy for hospital building projects addresses an innovative product development and life-cycle design approaches. A sustainable business case for the investment and exploitation of hospital buildings relies on dynamic life-cycle management that includes considerations and analysis of the market development over time next to the building life-cycle costs (investment/initial cost, operational cost, and logistic cost). Compared to the conventional life-cycle costing method, the dynamic life-cycle management encompasses a shift from focusing only on minimizing the costs to focusing on maximizing the total benefit that can be gained. One of the determining factors for a successful implementation of dynamic life-cycle management is the sustainable design of the building and building components, which means that the design carriessufficient flexibility to accommodate possible changes in the long term (Prins, 1992).Designing based on the principles of life-cycle management affects the role of the architect, as he needs to be well informed about the usage scenarios and related financial arrangements, the changing social and physical environments, and new technologies. Design needs to integrate people activities and business strategies over time. In this context, the architect is required to align the design strategies with the organisational, local and global policies on finance, business operations, health and safety, environment, etc.The combination of process and product innovation, and the changing roles of the building actors can be accommodated by integrated project delivery or IPD (AIA California Council, 2007). IPD is an approach that integrates people, systems, business structures and practices into a process that collaboratively harnesses the talents and insights of all participants to reduce waste and optimize efficiency through all phases of design, fabrication and construction. IPD principles can be applied to a variety of contractual arrangements. IPD teams will usually include members well beyond the basic triad of client, architect, and contractor. At a minimum, though, an Integrated Project should include a tight collaboration between the client, the architect, and the main contractor ultimately responsible for construction of the project, from the early design until the project handover. The key to a successful IPD is assembling a team that is committed to collaborative processes and is capable of working together effectively. IPD is built on collaboration. As a result, it can only be successful if the participants share and apply common values and goals.3. Changing roles through BIM applicationBuilding information model (BIM) comprises ICT frameworks and tools that can support the integrated collaboration based on life-cycle design approach. BIM is a digital representation of physical and functional characteristics of a facility. As such it serves as a shared knowledge resource for information about a facility forming a reliable basis for decisions during its lifecycle from inception onward (National Institute of Building Sciences NIBS, 2007). BIM facilitates time and place independent collaborative working. A basic premise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify information in the BIM to support and reflect the roles of that stakeholder. BIM in its ultimate form, as a shared digital representation founded on open standards for interoperability, can become a virtual information model to be handed from the design team to the contractor and subcontractors and then to the client.BIM is not the same as the earlier known computer aided design (CAD). BIM goes further than an application to generate digital (2D or 3D) drawings. BIM is an integrated model in which all process and product information is combined, stored, elaborated, and interactively distributed to all relevant building actors. As a central model for all involved actors throughout the project lifecycle, BIM develops andevolves as the project progresses. Using BIM, the proposed design and engineering solutions can be measured against the client?s requirements and expected building performance. The functionalities of BIM to support the design process extend to multidimensional (nD), including: three-dimensional visualisation and detailing, clash detection, material schedule, planning, costestimate, production and logistic information, and as-built documents. During the construction process, BIM can support the communication between the building site, the factory and the design office– which is crucial for an effective and efficient prefabrication and assembly processes as well as to prevent or solve problems related to unforeseen errors or modifications. When the building is in use, BIM can be used in combination with the intelligent building systems to provide and maintain up-to-date information of the building performance, including the life-cycle cost.To unleash the full potential of more efficient information exchange in the AEC/FM industry in collaborative working using BIM, both high quality open international standards and high quality implementations of these standards must be in place. The IFC open standard is generally agreed to be of high quality and is widely implemented in software. Unfortunately, the certification process allows poor quality implementations to be certified and essentially renders the certified software useless for any practical usage with IFC. IFC compliant BIM is actually used less than manual drafting for architects and contractors, and show about the same usage for engineers. A recent survey shows that CAD (as a closed-system) is still the major form of technique used in design work (over 60 per cent) while BIM is used in around 20 percent of projects for architects and in around 10 per cent of projects for engineers and contractors.The application of BIM to support an optimal cross-disciplinary and cross-phase collaboration opens a new dimension in the roles and relationships between the building actors. Several most relevant issues are: the new role of a model manager; the agreement on the access right and IntellectualProperty Right (IPR); the liability and payment arrangement according to the type of contract and in relation to the integrated procurement; and the use of open international standards.Collaborative working using BIM demands a new expert role of a model manager who possesses ICT as well as construction process know-how (InPro, 2009). The model manager deals with the system as well as with the actors. He provides and maintains technological solutions required for BIM functionalities, manages the information flow, and improves the ICT skills of the stakeholders. The model manager does not take decisions on design and engineering solutions, nor the organisational processes, but his roles in the chain of decision making are focused on:the development of BIM, the definition of the structure and detail level of the model, and the deployment of relevant BIM tools, such as for models checking, merging, and clash detections;the contribution to collaboration methods, especially decision making and communication protocols, task planning, and risk management;and the management of information, in terms of data flow and storage, identification of communication errors, and decision or process (re-)tracking.Regarding the legal and organisational issues, one of the actual questions is: “In what way does the intellectual property right (IPR) in collaborative working using BIM differ from the IPR in a traditional teamwork?”. In terms of combine d work, the IPR of each element is at tached to its creator. Although it seems to be a fully integrated design, BIM actually resulted from a combination of works/elements; for instance: the outline of the building design, is created by the architect, the design for theelectrical system, is created by the electrical contractor, etc. Thus, in case of BIM as a combined work, the IPR is similar to traditional teamwork. Working with BIM with authorship registration functionalities may actually make it easier to keep track of the IPR.How does collaborative working, using BIM, effect the contractual relationship? On the one hand,collaborative working using BIM does not necessarily change the liability position in the contract nor does it obligate an alliance contract. The General Principles of BIM A ddendum confirms: …This does not effectuate or require a restructuring of contractual relationships or shifting of risks between or among the Project Participants other than as specifically required per the Protocol Addendum and its Attachments? (ConsensusDOCS, 2008). On the other hand, changes in terms of payment schemes can be anticipated. Collaborative processes using BIM will lead to the shifting of activities from to the early design phase. Much, if not all, activities in the detailed engineering and specification phase will be done in the earlier phases. It means that significant payment for the engineering phase, which may count up to 40 per cent of the design cost, can no longer be expected. As engineering work is done concurrently with the design, a new proportion of the payment in the early design phase is necessary.4. Review of ongoing hospital building projects using BIMIn The Netherlands, the changing roles in hospital building projects are part of the strategy, which aims at achieving a sustainable real estate in response to the changing healthcare policy. Referring to literature and previous research, the main factors that influence the success of the changing roles can be concluded as: the implementation of an integrated procurementmethod and a life-cycle design approach for a sustainable collaborative process; the agreement on the BIM structure and the intellectual rights; and the integration of the role of a model manager. The preceding sections have discussed the conceptual thinking on how to deal with these factors effectively. This current section observes two actual projects and compares the actual practice with the conceptual view respectively.The main issues, which are observed in the case studies, are: the selected procurement method and the roles of the involved parties within this method;the implementation of the life-cycle design approach;the type, structure, and functionalities of BIM used in the project;the openness in data sharing and transfer of the model, and the intended use of BIM in the future; and the roles and tasks of the model manager.The pilot experience of hospital building projects using BIM in the Netherlands can be observed at University Medical Centre St Radboud (further referred as UMC) and Maxima Medical Centre (further referred as MMC). At UMC, the new building project for the Faculty of Dentistry in the city of Nijmegen has been dedicated as a BIM pilot project. At MMC, BIM is used in designing new buildings for Medical Simulation and Mother-and-Child Centre in the city of Veldhoven.The first case is a project at the University Medical Centre (UMC) St Radboud. UMC is more than just a hospital. UMC combines medical services, education and research. More than 8500 staff and 3000 students work at UMC. As a part of the innovative real estate strategy, UMC has considered to use BIM for its building projects. The new development of the Faculty ofDentistry and the surrounding buildings on the Kapittelweg in Nijmegen has been chosen as a pilot project to gather practical knowledge and experience on collaborative processes with BIM support.The main ambition to be achieved through the use of BIM in the building projects at UMC can be summarised as follows: using 3D visualisation to enhance the coordination and communication among the building actors, and the user participation in design;integrating the architectural design with structural analysis, energy analysis, cost estimation, and planning;interactively evaluating the design solutions against the programme of requirements and specifications;reducing redesign/remake costs through clash detection during the design process; andoptimising the management of the facility through the registration of medical installations andequipments, fixed and flexible furniture, product and output specifications, and operational data.The second case is a project at the Maxima Medical Centre (MMC). MMC is a large hospital resulted from a merger between the Diaconessenhuis in Eindhoven and St Joseph Hospital in Veldhoven. Annually the 3,400 staff of MMC provides medical services to more than 450,000 visitors and patients. A large-scaled extension project of the hospital in Veldhoven is a part of its real estate strategy. A medical simulation centre and a women-and-children medical centre are among the most important new facilities within this extension project. The design has been developed using 3D modelling with several functionalities of BIM.The findings from both cases and the analysis are as follows.Both UMC and MMC opted for a traditional procurement method in which the client directly contracted an architect, a structural engineer, and a mechanical, electrical and plumbing (MEP) consultant in the design team. Once the design and detailed specifications are finished, a tender procedure will follow to select a contractor. Despite the choice for this traditional method, many attempts have been made for a closer and more effective multidisciplinary collaboration. UMC dedicated a relatively long preparation phase with the architect, structural engineer and MEP consultant before the design commenced. This preparation phase was aimed at creating a common vision on the optimal way for collaboration using BIM as an ICT support. Some results of this preparation phase are: a document that defines the common ambition for the project and the collaborative working process and a semi-formal agreement that states the commitment of the building actors for collaboration. Other than UMC, MMC selected an architecture firm with an in-house engineering department. Thus, the collaboration between the architect and structural engineer can take place within the same firm using the same software application.Regarding the life-cycle design approach, the main attention is given on life-cycle costs, maintenance needs, and facility management. Using BIM, both hospitals intend to get a much better insight in these aspects over the life-cycle period. The life-cycle sustainability criteria are included in the assignments for the design teams. Multidisciplinary designers and engineers are asked to collaborate more closely and to interact with the end-users to address life-cycle requirements. However, ensuring the building actors to engage in an integrated collaboration to generate sustainable design solutions that meet the life-cycle。
毕业设计外文文献翻译(原文+译文)
Environmental problems caused by Istanbul subway excavation and suggestionsfor remediation伊斯坦布尔地铁开挖引起的环境问题及补救建议Ibrahim Ocak Abstract:Many environmental problems caused by subway excavations have inevitably become an important point in city life. These problems can be categorized as transporting and stocking of excavated material, traffic jams, noise, vibrations, piles of dust mud and lack of supplies. Although these problems cause many difficulties,the most pressing for a big city like Istanbul is excava tion,since other listed difficulties result from it. Moreover, these problems are environmentally and regionally restricted to the period over which construction projects are underway and disappear when construction is finished. Currently, in Istanbul, there are nine subway construction projects in operation, covering approximately 73 km in length; over 200 km to be constructed in the near future. The amount of material excavated from ongoing construction projects covers approximately 12 million m3. In this study, problems—primarily, the problem with excavation waste(EW)—caused by subway excavation are analyzed and suggestions for remediation are offered.摘要:许多地铁开挖引起的环境问题不可避免地成为城市生活的重要部分。
(完整版)_毕业设计英文翻译_及格式
毕业设计(论文)英文翻译题目专业班级姓名学号指导教师职称200年月日The Restructuring of OrganizationsThroughout the 1990s, mergers and acquisitions a major source of corporate restructuring, affecting millions of workers and their families. This form of restructuring often is accompanied by downsizing. Downsizing is the process of reducing the size of a firm by laying off or retiring workers early. The primary objectives of downsizing are similar in U.S. companies and those in other countries:●cutting cost,●spurring decentralization and speeding up decision making,●cutting bureaucracy and eliminating layers of especially they did five years ago. One consequence of this trend is that today’s managers supervise larger numbers of subordinates who report directly to them. In 1990, only about 20 percent of managers supervise twelve or more people and 54 percent supervised six or fewer.Because of downsizing, first-line managers quality control, resources, and industrial engineering provide guidance and support. First-line managers participate in the production processes and other line activities and coordinate the efforts of the specialists as part of their jobs. At the same time, the workers that first-line managers supervise are less willing to put up with authoritarian management. Employees want their jobs to be more creative, challenging, fun, and satisfying and want to participate in decisions affecting their work. Thus self-managed work teams that bring workers and first-line managers together to make joint decisions to improve the way they do their jobs offer a solution to both supervision and employee expectation problems. When you ’t always the case. Sometimes entire divisions of a firm are simply spun off from the main company to operate on their own as new, autonomous companies. The firm that spun them off may then become one of their most important customers or suppliers. That AT&T “downsized” the old Bell Labs unit, which is now known as Lucent Technologies. Now, rather than - return is free to enter into contracts with companies other than AT&T. this method of downsizing is usually called outsourcing.Outsourcing means letting other organizations perform a needed service andor manufacture needed parts or products. Nike outsources the production of its shoes to low-cost plants in South Korea and China and imports the shoes for distribution in North America. These same plants also ship shoes to Europe and other parts of Asia for distribution. Thus today’s managers face a new challenge: t o plan, organize, lead, and control a company that may as a modular corporation. The modularcorporation is most is most common in three industries: apparel, auto manufacturing, and electronics. The most commonly out-sourced function is production. By out sourcing production, a company can switch supplier best suited to a customer’s needs.Decisions about what to outsource and what to keep in- to contract production to another company is a sound business decision to contract production to another company is a sound business decision, at least for U.S. manufacturers. It appears to the unit cost of production by relieving the company of some overhead, and it frees the company to allocate scarce resources to activities for which the company examples of modular companies are Dell Computer, Nike, Liz Claiborne fashions, and ship designer Cyrix.As organizations downsize and outsource functions, they become flatter and smaller. Unlike the behemoths of the past, the new, smaller firms are less like autonomous fortresses and more like nodes in a net work of complex relationships. This approach, called the network form of organization, involves establishing strategic alliances among several entities.In Japan, cross-ownership and alliances among firms-called keiretsu-both foreign and U.S. auto parts producers. It also owns 49 percent of Hertz, the car rental company that is also a major customer. Other alliances include involvement in several research consortia. In the airline industry, a common type of alliance is between an airline and an airframe manufacture. For example, Delta recently agreed to buy all its aircraft from Boeing. Boeing Airlines. Through these agreements, Boeing guarantees that it will be able to sell specified models of its aircraft and begin to adapt their operations to the models they will be flying in the future. Thus both sides expect to reap benefits from these arrangements for many years.Networks forms of organizations are prevalent in access to the universities and in small, creative organizations. For example, the U.S. biotechnology industry is characterized by network of relationships between new biotechnology firms dedicated to research and new products development and established firms in industries that can use these new products, such as pharmaceuticals. In return for sharing technical information with the larger firms, the smaller firms gain access to their partners’ resources for product testing, marketing, and distribution. Big pharmaceutical firms such as Merk or Eli Lily gain from such partnerships because the smaller firms typically development cycle in the larger firms.Being competitive increasingly requires establishing and managing strategic alliances with other firms. In a strategic alliance, two or more firms agree to cooperate in a venture that is expected to benefit both firms.企业重组整个20世纪90年代中,合并和收购一直是企业重组的主要起源,影响着千百万的工人和他们的家庭。
(完整版)本科生_毕业设计说明书外文文献及翻译_
Computer networking summarizeNetworking can be defined as the linking of people, resources and ideas. Networking occurs via casual encounters, meetings, telephone conversation, and the printed words. Now the computer networking provide beings with new networking capabilities. Computer network are important for services because service tasks are information intensive. During the is transmitted between clients, coworkers, management, funding sources, and policy makers. Tools with rapidly speed up communication will dramatically affect services.Computer network growing explosively. Two decades ago, few people essential part of our infrastructure. Networking is used in every aspect of business, including advertising, production, shipping, planning, bulling, and accounting. Consequently, most corporations in on-line libraries around the world. Federal, state, and local government offices use networks, as do military organizations. In short, computer networks are everywhere.The growth in networking economic impact as well. An entire industry jobs for people with more networking expertise. Companies need workers to plan, acquire, install, operate, and manage the addition computer programming is no longer restricted to individual computers; programmers are expected to design and implement application software that can communicate with software on other computers.Computer networks link computers by communication lines and software protocols, allowing data to be exchanged rapidly and reliably. Traditionally, they split between wide area networks (WANs) and local area networks (LANs). A WAN is a network connected over long-distance telephone lines, and a LAN is a localized network usually in one building or a group of buildings close together. The distinction, computers. Today networks carry e-mail, provide access to public databases, and are beginning to be used for distributed systems. Networks also allow users in one locality to share expensive resources, such as printers and disk-systems.Distributed computer systems are built using networked computers that cooperate to perform tasks. In this environment, each part of the networked system does what it is best at. The of a personal computer or workstation provides a good user interface. The mainframe, on the other the results to the users. In a distributed environment, a user might use in a special language (e. g. Structured Query Language-SQL), to the mainframe, which then parrrses the query, returning the user only the data requested. The user might then use the data. By passing back the user’s PC only the specific information requested, network traffic is reduced. If the whole file were transmitted, the PC would then of one network to access the resources on a different type of network. For example, a gateway could be used to connect a local area network of personal computers to a mainframe computer network. For example, if a company this example, using a bridge makes more sense than joining all thepersonal computers together in one large network because the individual departments only occasionally need to access information on the other network.Computer networking technology can be divided into four major aspects.The first is the data transmission. It explains that at the lowest level electrical signals traveling across wires are used to carry information, and shows be encoded using electrical signals.The second focuses on packet transmission. It explains why computer network use packets, and shows . LANs and WANs discussed above are two basic network.The third covers internetworking—the important idea that allows system, and TCPIP, the protocol technology used in global internet.The fourth explains networking applications. It focuses on , and programs provide services such as electronic mail and Web browsing.Continued growth of the global Internet is one of most interesting and exciting phenomena in networking. A decade ago, the Internet was a research project that involved a few dozen sites. Today, the Internet into a production communication system that reaches millions of people in almost all countries on all continents around the world. In the United States, the Internet connects most corporations, colleges and universities, as well as federal, state, and local government offices. It will soon reach most elementary,junior, and senior addition, many private residences can reach the Internet through a dialup telephone connection. Evidence of the Internet’s impact on society can be seen in advertisements, in magazines and on television, which often contain a reference to an Internet Web site that provide additional information about the advertiser’s products and services.A large organization with diverse networking requirements needs multiple physical networks. More important, if the organization chooses the type network that is best for each task, the organization will network can only communicate with other computers attached to same network. The problem became evident in the 1970s as large organizations began to acquire multiple networks. Each network in the organizations formed an island. In many early installations, each computer attached to a single network and employees employees was given access to multiple svreens and keyboards, and the employee was forced to move form one computer to another to send a massage across the appropriate network. Users are neither satisfied nor productive when they must use a separate computer. Consequently, most modern computer communication syetem allow communication between any two computers analogous to the way a telephone system provides communication between any two telephones. Known as universal service, the concept is a fundamental part of networking. With universal service, a user on any computer in any part of an organization can send messages or data to any other users. Furthermore, a user does not need to change computer systems whenchanging tasks—all information is available to all computers. As a result, users are more productive.The basic component used to commect organization to choose network technologies appropriate for each need, and to use routers to connect all networks into a single internet.The goal of internetworking is universal service across an internet, routers must agree to forward information from a source on one network to a specified destination on another. The task is complex because frame formats and addressing schemes used by underlying networks can differ. As s resulrt, protocol software is needed on computers and routers make universal service possible. Internet protocols overcome differences in frame formats and physical addresses to make communication pissible among networks that use different technologies.In general, internet software provides the appeatrance of a single, seamless communication system to which many computers attach. The syetem offers universal service :each computer is assigned an address, and any computer can send a packet to any other computer. Furthermore, internet protocol software —neither users nor application programs are a ware of the underlying physical networks or the routers that connect them.We say that an internet is a virtual network system because the communication system is an abstraction. That is, although a combination of of a uniform network syetem, no such network exists.Research on internetworking modern networking. In fact,internet techmology . Most large organizations already use internetworking as primary computer communication mechanism. Smaller organizations and individuals are beginning to do so as well. More inportant, the TCPIP technology computers in schools, commercial organications, government, military sites and individuals in almost all countries around the world.电脑网络简述网络可被定义为人、资源和思想的联接。
毕业设计外文资料翻译_文献英文原文
毕业设计外文资料题目面对对象技术学院信息科学与工程学院专业计算机科学与技术班级计软1202学生刘桂斌学号20121214073指导教师史桂娴,王海燕二〇一六年三月二十日Object Technology2004, Vol.14 (2), pp.20.Object TechnologyTimothy A.BuddAbstract Object technology is a new approach to developing software that allows programmers to create objects, a combination of data and program instructions. This new technology has been steadily developed since the late 1960s and promises to be one of the major ingredients in the response to the ongoing software crisis.Keywords Object technology Optimization1.1 Introduction to OTThere exists a critical technology that is changing the way we conceive, build, use and evolve our computer systems. It is a technology that many companies are adopting to increase their efficiency, reduce costs and adapt to a dynamic marketplace. It is called Object Technology (OT).By allowing the integration of disparate and non compatible source, OT has the potential to precipitate a revolution in information systems design on a par with that caused in computer hardware by the introduction of the computer chip. Yet OT is not a newphenomenon. Development and product releases have been ongoing since its origin many years ago. However, the recent emphasis task of enterprise information technology integration has brought OT into the spotlight.OT promises to provide component-level software objects that can be quickly combined to build new applications that respond to changing business conditions. Once used, objects may be reused in other applications, lowering development costs and speeding up the development process. Because objects communicate by sending messages that can be understood by other objects, large integrated systems are easier to assemble.Each object is responsible for a specific function within either an application or a distributed system. That means that as the business changes, individual object may be easily upgraded, augmented or replaced, leaving the rest of the system untouched. This directly reduces the cost of maintenance and the timing and extendibility of new systems.1.2 OT-based ProductsThe current market for OT-based products can be divided into four major segments: ·Languages and programming tools·Developers’ toolkits·Object-Oriented database·Object-Oriented CASE toolsThe largest segment of the current market for OT-based products is languages andprogramming tools. Products in this area include language compliers for C++, Smalltalk, Common Lisp Object System (CLOS), Eiffel, Ada and Objective-C, as well as extensions to PASCAL and Modula-2.Products in this category are available from a variety of vendors. Increasingly, the trend in this group is to offer the language compliers with associated development tools as part of a complete development environment.Developers’ toolkits account for the next largest part of the OT market. These products are designed to develop a program that enables a developer to easily do one of two things. The first is interfacing an application to distributed environment. The second is developing a graphical screen through a product.By providing developers with higher level description language and reusablecomponents, products in this category give developers an easy and cost effective way to begin producing object-oriented systems.An important component in this category is the relatively new area of end-users tools. This element is important because organizing and analying the increasingly large amounts of data that computer systems are capable of collecting is a key problem.Object-oriented database management systems are one of the most interesting and rapidly growing segments of the OT market. A number of companies, including systems vendors like Digital and HP, and start-ups such as Object Design, Servio, and Objectivity, have all produced products.These products, dubbed ‖Objectbases‖, fill an important need by storing complexobjects as a single entity. The objectbase products allow objects to be stored, retrieved and shared in much the same way as data is stored in a relational database management system. The value of an objectbase, as opposed to a database, is best described as following: ―Object databases offer a better way to store objects because they provide all of the traditional database services without the overhead of disassembling and reassemblingobjects every time they are stored and retrieved. Compared with an object database, storing complex objects in a relational database is tedious at best. It’s like having to disassembling your car each night rather than just putting it into the gar age!‖Over the next few years, a shift from proprietary CASE implementations to those based on the object paradigm can be expected. This area has lagged growth from earlier projections. OT-based CASE tools will have to emerge as a viable product category to address the wide scale development of large systems. This category also include those tools that are methodological in nature.1.3 0bject-oriented ProgrammingObject-oriented programming (OOP) is a new approach to developing software that allows programmers to create objects, a combination of data and program instructions. Traditional programming methods keep data, such as files, independent of the programs that work with the data. Each traditional program, t5herfore, must define how the data will be used for that particular program. This often results in redundant programming code that must be changed every time the structure of the data is changed, such as when a new field is added to a file. With OOP, the program instructions and data are combined into objects that can be used repeatedly by programmers whenever they need them. Specificinstructions, called methods define how the object acts when it is used by a program.With OOP, programmers define classes of objects. Each class contains the methods that are unique to that class. Each class can have one or more subclasses. Each subclass contains the methods of its higher level classes plus whatever methods are unique to the subclass. The OOP capability to pass methods to lower levels is called ―inheritance‖.A specific instance of an object contains all methods from its higher level classes plus any methods that a unique to the object. When an OOP object is sent an instruction to do something, called a message, unlike a traditional program, the message does not have to tell the OOP object exactly what to do. What to do is defined by the methods that the OOP object contains or has inherited.Object—oriented programming can bring many advantages to users. It can bring productivity gains as high as 1000 to 1500 percent instead of the 10 or 15 percent gainsavailable from structured programming methods. It allows large complex systems to be built which are not economically feasible using traditional programming techniques. It allows program modifications to be made more easily. It could mean two different user interfaces within an application, one for the user who likes to type, and another for the users who just want to shout at the terminal.Objects can be viewed as reusable components, and once the programmer has developed a library of these components, he can minimize the amount of new coding required. One user envisions a commercial library of objects which could be purchased byprogrammers and reused for various applications. But creating a library is no simple task because the integrity of the original software design is critical. Reusability can be a mixed blessing for users, too, as a programmers has to be able to find the object he needs. But if productivity is your aim, reusability is worth the risks.The long-term productivity of systems is enhanced by object-oriented programming. Because of the modular nature of the code, programs are more malleable. This is particularly beneficial for applications that will be used for many years, during which company needs may change and make software modifications necessary.Software reliability can be improved by object-oriented programming. Since the objects are repeatedly tested in a variety of applications, bugs are more likely to be found and corrected. Object-oriented programming also has potential benefits in parallel processing. Execution speed under object oriented methods will improve with parallel processing.1.4 Object-oriented DBMSA shift toward object-oriented DBMSs does not have to replace relational DNMS. As its name implies, it is orientation rather than a full-blown DBMS model. As such, it can blend with and build on the relational schema.Object-oriented DBMSs integrate a variety of real-world data types –such as business procedures and policies, graphics, pictures, voice, and an non-tated text. Current relational products are not equipped to handle them efficiently. Data types in RDBMSs are more commonly record-oriented and expressed in numbers and text.Object orientation also makes contributions to application development efficiency.makes the data function, attributes, and relationships an integral part of the object. In this way, objects can be reused and replicated. You can query the data on its functions, attributes, and relationships.By contrast, most RDBMSs demand that the knowledge associated with the data be written into and maintained separately in each application program.Object orientation is going to be available in two forms: one for those who need and want a radical change, and one for those who want some of its advantages without going through a major conversion.The first form of object-oriented DBMS focused largely on the computer-aided design (CAD) market, which needed to store complex data types such as the graphics involved with an aircraft design.The second form is made up of the leading RDBMS vendors who support the concept of integrating object management capabilities whit their current line of relational products. Sybase, Inc, the first vendor to introduce an object-oriented capability,offers Sybase , which enables the user to program a limited number of business procedures along with the data types in a server’s database engine . Any client attempting a transaction that does not conform to these procedures is simply rejected by the database. That capability enables users to shorten the development cycle, since integrity logic and business rules no longer need to be programmed into each application.This approach reduces maintenance costs as well, since any changes in the procedure can be made once at the server level instead of several times within all the affected applications.Last, the server-level procedures increase the system’s performance, since the operations are taking place closer to where the data is actually stored.。
毕业设计外文文献翻译【范本模板】
毕业设计(论文)外文资料翻译系别:专业:班级:姓名:学号:外文出处:附件: 1. 原文; 2。
译文2013年03月附件一:A Rapidly Deployable Manipulator SystemChristiaan J。
J。
Paredis, H. Benjamin Brown,Pradeep K. KhoslaAbstract:A rapidly deployable manipulator system combines the flexibility of reconfigurable modular hardware with modular programming tools,allowing the user to rapidly create a manipulator which is custom-tailored for a given task. This article describes two main aspects of such a system,namely,the Reconfigurable Modular Manipulator System (RMMS)hardware and the corresponding control software。
1 IntroductionRobot manipulators can be easily reprogrammed to perform different tasks, yet the range of tasks that can be performed by a manipulator is limited by mechanicalstructure。
Forexample,a manipulator well-suited for precise movement across the top of a table would probably no be capable of lifting heavy objects in the vertical direction. Therefore,to perform a given task,one needs to choose a manipulator with an appropriate mechanical structure.We propose the concept of a rapidly deployable manipulator system to address the above mentioned shortcomings of fixed configuration manipulators。
(完整版)_毕业设计(论文) 外文文献翻译_
毕业设计(论文)外文文献翻译题目:金融银行信用风险管理与知识管理教学院:经济与管理学院专业名称:工商管理学号:学生姓名:谭勤辉指导教师:刘显铭2013 年05 月28 日Managing Credit Risks with Knowledge ManagementforFinancial BanksPan JinDepartment of EconomicsEconomics and Management School of Wuhan UniversityWuhan,Hubei ProvinceChinaAbstract-Nowadays,financial banks are operating in a knowledge society and there are more and more credit risks breaking out in banks.So,this paper first discusses the implications of knowledge and knowledge management, and then analyzes credit risks of financial banks with knowledge management. Finally, the paper studies ways for banks to manage credit risks with knowledge management. With the application of knowledge management in financial banks, customers will acquire better service and banks will acquire more rewards.Index Terms–knowledge management; credit risk; risk management; incentive mechanism; financial banksI.INTRODUCTIONNowadays,banks are operating in a“knowledge society”.So, what is knowledge? Davenport(1996)[1]thinks knowledge is professional intellect,such as know-what, know- be shared and communicated. The awareness of the importance of knowledge results in the critical issue of “knowledge management”.So, what is knowledge management? According to Malhothra(2001)[2], knowledge management(KM)caters to the critical issues of organizational adaptation, survival and competence in face of increasingly discontinuous environmental change. Essentially it embodies organizational processes that seek synergistic combination of data and information processing capacity of information technologies and the creative and innovative capacity of beings. Through the processes of creating,sustaining, applying, sharing and renewing knowledge, we can enhance organizational performance and create value.Many dissertations some special fields. Aybübe Aurum(2004)[3] analyzes knowledge management in software engineering and D.J.Harvey &R.Holdsworth(2005)[4]study knowledge management in the aerospace industry. Li Yang(2007)[5] studies knowledge management in information-based education and Jayasundara&Chaminda Chiran(2008)[6] review the prevailing literature on knowledge management in banking industries. Liang ping and Wu Kebao(2010)[7]study the incentive mechanism of knowledge management inBanking.There are also many papers about risks analysis and risks management. Before the 1980s, the dominant mathematical theory of risks analysis was to describe a pair of random vectors.But,the simplificationassumptions and methods used by classical competing risks analysis caused controversy and criticism.Starting around the 1980s, an alternative formulation of risk analysis was developed,with the identifiability. The new formulation is univariate risk analysis.According to Crowder(2001)[8], David&Moeschberger(1978)[9]and Hougaard(2000)[10],univariate survival risk analysis dominantly, which is based on the i.i.d assumptions(independent and identically distributed) or, at least, based on the independent failure assumption.Distribution-free regression modeling allows one to investigate the influences of multiple covariates on the failure, and it relaxes the assumption of identical failure distribution and to some extent, it also relaxes the single failure risk restriction. However, the independent failures as well as single failure events are still assumed in the univariate survival analysis. Of course,these deficiencies do not invalidate univariate analysis, and indeed, in many applications, those assumptions are realistically valid.Based on the above mentioned studies, Ma and Krings(2008a, 2008b)[11]discuss the relationship and difference of univariate and multivariate analysis in calculating risks.As for the papers on managing the risks in banks, Lawrence J.White(2008)[12]studies the risks of financial innovations and takes out some countermeasures to regulate financial innovations. Shao Baiquan(2010)[13]studies the ways to manage the risks in banks.From the above papers, we can see that few scholars Ⅰis introduction. SectionⅡanalyzes credit risks in banks with knowledge management. SectionⅢstudies ways for banks to manage credit risks with knowledgemanagement. SectionⅣconcludes.II.ANALYZING CREDIT RISKS IN BANKS WITHKNOWLEDGE MANAGEMENTA.Implication of Credit RiskCredit risk is the risk of loss due to a debtor’s non-payment of a loan or other line of credit, which may be the principal or interest or both.Because there are many types of loans and counterparties-from individuals to sovereign governments-and many different types of obligations-from auto loans to derivatives transactions-credit risk may take many forms.Credit risk is common in our daily life and we can not cover it completely,for example,the American subprime lending crisis is caused by credit risk,which is that the poor lenders do not pay principal and interest back to the banks and the banks do not pay the investors who buy the securities based on the loans.From the example,we can find that there are still credit risks,though banks banks includes tacit knowledge and explicit knowledge,which is scattered in different fields.For example, the information about the customers’income, asset and credit is controlled by different departments and different staffs and the information can’t be communicated with others. So it is necessary for banks to set up a whole system to communicate and share the information and knowledge to manage the risks.C.Setting up Incentive Mechanism and Encouraging Knowledge InnovationThe warning mechanism of credit risks depends on the incentive mechanism in banks,so, banks should take out incentive mechanism to urge staffs to learn more knowledge and work creatively to manage credit risks.We can show the incentive mechanism as Fig.1:Fig.1 The model of incentive mechanism with knowledge management From Fig.1,we can see there are both stimulative and punitive measures in the incentive model of knowledge management for financial banks.With the incentive mechanism of knowledge management in financial banks,the staffs will work managing credit risks with knowledge management.We can show them in Fig.2:Fig.2 The blocks of managing credit risksA.Distinguishing Credit RiskDistinguishing credit risks is the basis of risk management.If we can’t recognize the risks,we are unable to find appropriate solutions to manage risks.For example,the United States subprime crisis in 2007 was partly caused by that the financial institutions and regulators didn’t recognize the mortgage securitization risks timely.With knowledge management,we can make out some rules to distinguish credit risks,which are establishing one personal credit rating system for customers and setting up the data warehouse.We can use the system to analyze customers’credit index, customers’credit the changes of customers’property and income to recognize potential risks.B.Assessing and Calculating Credit RiskAfter distinguishing the credit risks,we should assess the riskexposure,risk factors and potential losses and risks, and we should make out the clear links.The knowledgeable staffs in banking should use statistical methods and model and the regulators should establish credit assessment system and then set up one national credit assessment system.With the system and the model of risk assessment,the managers can evaluate the existing and emerging risk factors,such as they prepare credit ratings for internal use.Other firms,including Standard &Poor’s,Moody’s and Fitch,are in the business of developing credit rating for use by investors or other third parties.TableⅠshows the credit ratings of Standard&Poor’s.TABLE ISTANDARD&POOR’S CREDITT RATINGSCredit ratings ImplicationsAAA Best credit quality,extremely reliableAA Very good credit quality,very reliableA More susceptible to economic conditionsBBB Lowest rating in investment gradeBB Caution is necessaryB Vulnerable to changes in economicCCC Currently vulnerable to nonpaymentCC Highly vulnerable to payment defaultC Close to bankruptD Payment default has actually occurredAfter assessing credit risks,we can use Standardized Approach andInternal Rating-Based Approach to calculate the risks.And in this article,we will analyze uncovered loan.To calculate credit risk of an uncovered loan,firstly,we will acquire the bo rrower’s Probability of Default(PD),Loss Given Default(LGD),Exposure at Default(EAD)and Remaining Maturity(M).Secondly,we calculate the simple risk(SR)of the uncovered loan,using the formula as following: SR=Min{BSR(PD)*[1+b(PD)*(M-3)]*LGD50,LGD*12.5} (1)Where BSR is the basic risk weight and b(PD)is the adjusting factor for remaining maturity(M).Finally,we can calculate the weighted risk(WR)of the uncovered loan,using the following formula:WR=SR*EAD (2)From(1)and(2),we can acquire the simple and weighted credit risk of an uncovered loan,and then we can take some measures to ’t repay the loans,banks can get the compensation from the insurance company.(3)Loans Securitization. Banks can change the loans into security portfolio,according to the different interest rate and term of the loans,and then banks can sell the security portfolio to the special organizations or trust companies.D.Managing Credit Risk and Feeding backA customer may acquire the customer’s credit information,credit the data the banks get.By assessing and calculating the risks of the customer,banks can expect the future behavior of the customers and provides different service for different customers. Banks can provide morevalue-added service to the customers who remedial after the risks broke out.In order to set up the warning and feeding back mechanism,banks should score credit of the customers comprehensively and then test the effectiveness and suitability of the measures,which banks use to mitigate risks.Finally, banks should update the data of the customers timely and keep the credit risk management system operating smoothly.IV.CONCLUSIONIn this paper,we first discuss the implications of knowledge and knowledge management.Then we analyze the credit risks of financial banks with knowledge management. Finally,we put forward ways for banks to manage credit risks with knowledge management.We think banks should set up data warehouse of customers’credit to assess and calculate the credit risks,and at the same time,banks should train knowledgeable staffs to construct a whole system to reduce risks and feed back.With knowledge management,banks can take out systemic measures to manage customers’credit risks and gain sustainable profits.ACKNOWLEDGMENTIt is financed by the of China(NO.06JC790032).REFERENCES[1]Davenport,T.H.et al,“Improving knowledge work processes,”Sloan Management Review,MIT,USA,1996,Vol.38,pp.53-65.[2]Malhothra,“Knowledge management for the new world of business,”New York BRINT Institute,2001, software engineering education,”Proceedings of the IEEE International Conference onAdvanced Learning Technologies,2004,pp..[4]D.J.Harvey&R.Holdsworth,“Knowledge management in the aerospace industry,”Proceedings of the IEEE International Professional Communication Conference,2005,pp..[5]Li Yang,“Thinking about knowledge management applications in information-based education,”IEEE International Conference on Advanced Learning Technologies,2007,pp.27-33.[6]Jayasundara&Chaminda Chiran,“Knowledge managemen t in banking industries:uses and opportunities,”Journal of the University Librarians Association of Sri Lanka,2008,Vol.12,pp.68-84.[7]Liang Ping,Wu Kebao,“Knowledge management in banking,”The Conference on Engineering and Business Management,2010, pp..[8]Crowder,M.J.Classical Competing Risks,British:Chapman&Hall, 2001,pp.200.[9]David,H.A.&M.L.Moeschberger,The Theory of Competing Risks, Scotland,Macmillan Publishing,1978,pp.103.金融银行信用风险管理与知识管理摘要:目前,金融银行经营在一个知识型社会中,而且越来越多的信用风险在在银行中爆发。
(完整版)_毕业设计外文文献翻译_69267082
毕业设计(论文)外文文献翻译专业计算机科学与技术学生姓名班级学号指导教师信息工程学院1、外文文献The History of the InternetThe Beginning - ARPAnetThe Internet started as a project by the US government. The object of the project was to create a means of communications between long distance points, in the event of a nation wide emergency or, more specifically, nuclear war. The project was called ARPAnet, and it is what the Internet started as. Funded specifically for military communication, the engineers responsible for ARPANet "Internet."By definition, an 'Internet' is four or more computers connected by a network.ARPAnet achieved its network by using a protocol called TCPIP. The basics around this protocol was that if information sent over a network failed to get through on one route, it would find another route to work with, as well as establishing a means for one computer to "talk" to another computer, regardless of whether it was a PC or a Macintosh.By the 80's ARPAnet, just years away from becoming the more well known Internet, its network. By the year 1984, it its network.In 1986 ARPAnet (supposedly) shut down, but only the organizationshutdown, and the existing networks still existed between the more than 1000 computers. It shut down due to a failied link up with NSF, who wanted to connect its 5 countywide super computers into ARPAnet.With the funding of NSF, new 1988. By that time, there were 28,174 computers on the (by then decided) Internet. In 1989 there were 80,000 computers on it. By 1989, there were.Another network was built to support the incredible number of people joining. It was constructed in 1992.Today - The InternetToday, the Internet the line' to experience the wealth of information of the Internet. Millions of people now use the Internet, and it's predicted that by the year 2003 every single person on the planet will our time and era, and is evolving so quickly its virtual Internet environments.The Internet is not a 'thing' itself. The Internet cannot just "crash." It functions the same way as the telephone system, only there is no Internet company that runs the Internet.The Internet is a collection of millioins of computers that are all connected to each other, or office network, only it thing about . How does a computer in Houston know a computer in Tokyo to view a webpage?Internet communication, communication among computers connected to the Internet, is based on a language. This language is called TCPIP. TCPIP establishes a language for a computer to access and transmit data over the Internet system.But TCPIP assumes that there is a physical connecetion between one computer and another. This is not usually the case. There would that is requireed is established by way of modems,phonelines, and other modem cable connections (like cable modems or DSL). Modems on computers read and transmit data over established lines,which could be phonelines or data lines. The actual .To explain this better, let's look at Internet Service Provider (ISP). The ISP might in turn be connected to another ISP, or a straight connection into the Internet backbone.2. The user launches a web browser like Netscape or Internet Explorer and types in an internet location to go to.3. Here's where the tricky part comes in. First, the computer sends data about it's data request to a router. A router is a very of routers in the world make what is called a "backbone," on which all the data on the Internet is transferred. The backbone presently operates at a speed of several gigabytes per-second. Such a speed compared to a normal modem is like comparing the to the ice-cube.Routers similarly to envelopes. So, when the request for the webpage goes through, it uses TCPIP protocols to tell the router what to do with the data, where it's going, and overall where the user wants to go.4. The router sends these packets to other routers, eventually leading to the target computer. It's like whisper down the lane (only the information remains intact).5. When the information reaches the target web server, the webserver then begins to send the web page back. A webserver is the computer wherethe webpage is stored that is running a program that packets, sent through routers, and arrive at the users computer where the user can view the webpage once it is assembled.The packets which contain the data also contain special information that lets routers and other computers know the right order.With millions of web pages, and millions of users, using the Internet is not always easy for a beginning user, especially for someone who is not entirely comfortale with using computers. Below you can find tips tricks and services of the Internet.Before you access webpages, you must the software they usually give to customers; you. The fact that you are viewing this page means that you be found at and MSIE can be found atThe fact that you're reading this right now means that you of instructions (like if it remark made by new web-users.Sometimes websites error on a website is not the user's fault, of course.A 404 error means that the page you tried to go to does not exist. This could be because the site is still being constructed and the page created yet, or because the site author made a typo in the page. There's nothing much to do about a 404 error except for e-mailing the site administrator (of the page you wanted to go to) an telling the Javascript code of a website. Not all websites utilize Javascript, but many do. Javascript is different from Java, and most browsers now support Javascript. If you are using an old version of a web browser (Netscape 3.0 for example), you might get Javascript errors because sites utilize Javascript versions that yourbrowser does not support. So, you can try getting a newer version of your web browser.E-mail stands for Electronic Mail, and that's what it is. E-mail enables people to send letters, and even files and pictures to each other.To use e-mail, you must e-mail client, which is just like a personal post office, since it retrieves and stores e-mail.Secondly, you must e-mail account. Most Internet Service Providers provide free e-mail account(s) for free. Some services offer free e-mail, like Hotmail, and Geocities.After configuring your e-mail client with your POP3 and SMTP server address (your e-mail provider will give you that information), you are ready to receive mail.An attachment is a file sent in a letter. If someone sends you an attachment and you don't know who it is, don't run the file, ever. It could be a virus or some other kind of nasty programs. You can't get a virus just by reading e-mail, you'll put a text graphic, your business information, anything you want.Imagine that a computer on the Internet is an island in the sea. The sea is filled with millions of islands. This is the Internet. Imagine an island communicates with other island by sending ships to other islands and receiving ships. The island the Internet a network (or the Internet). This method is similar to the islandocean symbolism above.Telnet refers to accessing ports on a server directly with a text connection. Almost every kind of Internet function, like accessing web pages,"chatting," and e-mailing is done over a Telnet connection.Telnetting requires a Telnet client. A telnet program comes with the Windows system, so Windows users can access telnet by typing in "telnet" (without the "'s) in the run dialog. Linux , chat daemon) can be accessed via telnet, although they are not usually meant to be accessed in such a manner. For instance, it is possible to connect directly to a mail server and check your mail by interfacing with the e-mail server software, but it's easier to use an e-mail client (of course).There are millions of WebPages that come from all over the world, yet database of websites. For instance, if you wanted to find a website on dogs, you'd search for "dog" or "dogs" or "dog information." Here are a few search-engines.1. Altavista (3. Excite ( possibly find. This means that a search engine can literally map out as much of the Internet as it's own time and speed allows for.An indexed collection uses Yahoo's site. You can click on Computers & the Internet. Then you can click on Hardware. Then you can click on Modems, etc., and along the way through sections, there are sites available which relate to what section you're in.Metasearch searches many search engines at the same time, finding the top choices from about 10 search engines, making searching a lot more effective.Once you are able to use search engines, you can effectively find the pages you want.With the arrival of networking and multi user systems, security on the mind of system developers and system operators. Since the dawn ofAT&T and its phone network, known by many, . Why should you be careful while making purchases via a website? Let's look at to a webpage. Looks safe, right? Not necessarily. As the user submits the information, it is being streamed through a series of computers that make up the Internet backbone. The information is in little chunks, in packages called packets. Here's the problem: While the information is being transferred through this big backbone, what is preventing a ". There are methods of enforcing security, like password protection, an most importantly, encryption.Encryption means scrambling data into a code that can only be unscrambled on the "other end." Browser's like Netscape Communicator and Internet Explorer feature encryption support for making on-line transfers. Some encryptions work better than others. The most advanced encryption system is called DES (Data Encryption Standard), and it was adopted by the US Defense Department because it was deemed so difficult to 'crack' that they considered it a security risk if it would fall into another countries to unlock an entire document. The problem is, there are 75 trillion possible keys to use, so it is a3. Excite () - Web spider & Indexed4. Lycos () - Web spider & Indexed5. Metasearch () - Multiple search网络蜘蛛是一种搜索引擎使用的程序,它随着可能找到的任何链接从一个网页到另一个网页。
(完整版)_毕业设计外文资料翻译_21913767
毕业设计外文资料翻译学院:电气信息学院专业:电气工程及其自动化姓名:房哲学号:外文出处: 840- IEEE附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文Applications of DSP&ARM for Microprocessor Protection Device in DistanceProtectionNing Yang, Wanjian Zhao,Yaoliang Xu,Shaocheng Zhang,Yi Zhu Faculty of Electric and Automatic Engineering, Shanghai University of Electric Power, Shanghai, PR ChinaAbstract—By studying the development of microprocessor protection and features of the protection devices, the requirement of the device under the multi-mission of monitoring, protecting, controlling and communicating is discussed in this paper, and a microprocessor protection device of dual CPU structure with ARM & DSP is designed. DSP TMS320F2812 and ARM S3C2410 are used in this design. The print circuit boards of this device are finished and fast Fourier transform is chosen. According to the distance protection scheme in 110 kV transmission based on MATLAB, the tests of the device are done. The results show that the design of DSP & ARM in this paper is feasible in microprocessor protection, And it software and , ARM, DSP, Distance protectionI. INTRODUCTIONWith the rapid development of electric power system in China, the operating environment of microprocessor protection isgetting more and complexity, and need some devices with urgent affair that to research and design new devices based on DSP. The designer uses the TMS320F2812 chip as main control chip, so that the acquisition and the processing of microprocessor protection can be realized. Otherwise, the Shandong University developed a kind of microprocessor protection devices based on ARM processor. This device uses DEVICEARM2200 which made by Zhouligong Company as the protective CPU. However, both the forward two devices still exist defects whether in accuracy and speed. Therefore, in order to improve the above defects, in this article, the this design. The paper will be mainly concerned with the accuracy and speed of the system and organized as follows. In section I, the researching backgrounds are provided. In section II, a brief introduction to the structure of system is given. The next two sections specifically describe the implementation of section V, followed by concluding remarks in the final section. II. SYSMEM STRUCTUREA dual CPU is used in this system, which is undertaken to collect and transform the electric quantum, control logic operations, print output, communicate with is adopted in this design. The new protection functions are easy to be exploited in the device. Overall system structure diagram is shown in figure1. Figure1. System structure diagram In the system, fault data is sent to the DSP, and theanalog of failure data is converted to digital by AD conversion [1]. The protection of algorithm implementation is also done in the DSP. Output results of logic judgment part from DSP are sent to the ARM [2]. ARM chip is used to display results. Parameters can be modified and the key processing can be done in the ARM. Switch signal can be directly connected to the DSP chip through the photoelectric isolation, and the trip is achieved based on protection algorithm [3].III. SYSTEM HARDWARE IMPLEMENTATIONA. The function and design of DSP subsystem Data acquisition, AD conversion, calculation and the implementation of protection algorithm are completed in this part. Output results of logic judgment part are sent to the ARM.a) DSP core: TMS320F2812, which is chosen in this device, is a be directly connected to the DSP chip through the photoelectric isolation, thus the parallel IO interface chip is not necessary and the reliability of binary inputsoutputs is improved in the protection deviceIV. STEM SOFTWARE IMPLEMENTATIONDSP&ARM are required to complete the initializationafter powering-on.1) The programmable interface for initialized, and the port function is set, and the output port is given the initial value. All relay exports are not under action state.2) All equipments are in good condition thought a comprehensive self-test of system, when they are put into service. Otherwise it will be shutdown. All the digital input status need to read and saved, and flag word is cleared, while sampling unit is initialized, and the pointer position and the sampling time interval are set for the DSP. Figure7 is ARM subsystem operation and management program flow. It can receive and display the DSP’s data through the SPI communication interrupt program. It is determined by the needs whether the alarm is demanded and the in this device. If it is used, E2PROM must be expanded.Figure7. ARM subsystem operation and management program flow MATLAB power system toolbox (PSB) is used to establish a 110 KV line model in this paper [6]. Based on this simulation tool, fault phenomenon can be specified through the establishment of accurate and complete fault model [7]. The design of protection program is verified by more truthful and accurate data, and the effectiveness of microcomputer protection device is tested in this paper.Figure8. 110 KV transmission line schematic The most common transmission lines are the the power system and the 110 KV transmission line schematic is shown in figure8 [8]. According to the circuit network separation theory and the equivalent substitution theory, as theintermediate links of power transmission network, neutral grounded power system is separated from the entire network [9]. This article factors, and the line, and110KV transmission line model is built [11]. MATLAB model is shown in figure9, and the down time occurred at 0.04 seconds.Figure9. 110 kV power line MATLAB simulation graph The majority protection principle is based on fundamental component of fault signal in the power system[12]. The fault can be diagnosed according to fundamental voltagecurrent component or combination of both. One of the key issues of microcomputer is protection algorithmand the accuracy and speed are main considered. In addition, the influence of as the basis algorithm for the protection algorithm in this paper. Fourier algorithm is analyzed by the one phase fault current according to the figureure9. The analog of the sampled voltage andcurrent is not a sine wave, but a periodic function of time in practical situations. Fourier algorithm is the calculation of transforming from time domain to the frequency domain. The amplitude of sine (a ) and cosineb ) of fundamental component can eliminate the influence of DC component and process. So this algorithm formula of the effective value of fundamental component isX = a+b, andthe phase angle is obtained byarctan(). While the sampling frequency is N times than the fundamental frequency (N is an integer), in real microcomputer protection system, the Data acquisition module: First, in analog input module, the strong current signal of current transformer and voltage transformer is converted to weak electric signal which is used in digital protection and monitor device in the power system, and then weak electric signal is transformed into analog signal which is coincided AD converter, finally these analog signals are transformed into digital which can be identified by CPU. The input signal can be calculated and judged [4].c) Digital modules: Digital input circuit diagram is shown in figure2. It is a monitoring status of contact (closed or open), including the circuit breaker and the auxiliary contacts of disconnector. Outer device includes contact input circuit of blocking reclosing and position input circuit of splices. All these parts are isolated through the optcoupler before entering the DSP [5].Figure2. Digital input circuit diagram Digital output includes outlets of trip and the local central signals. The way of parallel output is generally adopted to control the relay contact and the optcoupler is adopted to achieve separation between computer system and circuit breakers in the outlet links. Digital output circuit diagram is shown as figure3.Figure3. Digital output circuit diagramB. The function and design of ARM subsystem Considering the factors of real-time operating system, embedded Ethernet and large amounts of data management, ARM microprocessor is used to assist DSP in this device. ARM subsystem is charged for the clock reference, communication, LCD display, keyboard in the design. The LPC2478 module: The communication device can be divided into internal communication and external communication device. Internal communication refers to the data exchange processes between the dual-processor ARM&DSP. External communications include RS485 and Ethernet. RS485 schematic is shown in figure4.Figure4. RS485 schematicc) Man-machine communication module: The keyboard circuit diagram is shown in figure5. The ways of keypad and menu work are used in the device and the key is connected to the ARM chip through ZLG7290. The chip contains register with batter processing, and it not only can distinguish between click and batter which can prevent some misoperations, but also can modify some features.Figure5. Keyboard circuit diagram Based on the above design, the printed circuit board of the system is finished. The PSB graph is shown in figure6.Figure6. PSB graph 228approximate calculationof integral with trapezoidal method x represents a sample value in the k sampling point within one frequency.) And the equation (1) is replaced toThe Amplitude and phase of Nth-degree be obtained, and the will be guaranteed. Of course, the figure11 is gained through analysis and treatment of figure10.Figure11. Outcome of Fast Fourier operation In figure10, Vertical axis is the percentage of each , and the effective value of current fundamental component is 17.9595.V. SYSTEM DEBUGGINGA system debugging platform is built based on the above work, and used to test the performance of the device. It is shownin figure12. Figure12. System debugging graph . In the figure, A is the Debugging computer, and it is used to debug DSP and ARM;B is the the substation and is used to receive the information from protection devices; C is the DSP emulator which is used to connect the debugging computer (A) with DSP-JTAG interface and take charge the DSP debugging; D is the ARM emulator that is used to connect the debugging computer (A) with DSP-JTAG interface and take charge the ARM debugging; E is the liquid crystal display and it is used to display the basic electrical parameters of voltage and current; F is the relay which is used to test the device whether its trip is correct; G is the RS485 interface which is connected with the the device and flow of power transmission lines, when the circuit comesinto the conclusion of "line faults" quickly according to the current and voltage data, and switch status can be obtained by calculation, analysis and sampling. Then, when the trip command is sent and the breaker is disconnected, the fault line will be cut off. Therefore, the security of power system is guaranteed. Generally speaking, the circuit breaker is in the substation of 110V system, and it is connected with corresponding nodes in the operation box. Operation loop isconnected with the tripping signal panel of the microcomputer protection. The relay on the tripping signal panel is normally open. The relay is closed immediately when it gets the tripping command, and the breaker is disconnected by the operation loop, and the trip action will be finished. The debugging data of the system comes from 110 kV simulation model, and it will be imported into the storage space of DSP through the CCS program. The result of the debugging shows that the relay can be closed when the fault data is analyzed. So it can be proved that the device is effective and the protection scheme is feasible. VI. CONCLUSION Base on the development of microprocessor protection, DSP TMS320F2812 of TI Company and ARM S3C2410 ofSamsung Company are chosen in this article, and a dual CPU structure with ARM & DSP is designed. Furthermore, the print circuit boards of this device are made. The fast Fourier algorithm is chosen as the basic algorithm for the protection algorithm. Thesimulation results show that the design is feasible and reliable in microprocessor protection. The are diverse and the algorithms are emerge in endlessly, so the research prospects are extensive. ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China under grant and Supported by Innovation Program of Shanghai Municipal Education Commission under grant 11ZZ170, and Leading Academic Discipline Project of Shanghai Municipal Education Commission, Project Number: J51301. REFERENCES[1] Texas Instruments, “TMS320C28x DSP CPU and Instruction Set Reference Guide,” Texas Instruments, October 2003[2] McLaren P.G., Kuffel R, Wierckx R., Giesbrecht J., and Arendt L, “A real time digital simulator for testing relays,” Power Delivery, IEEE Transactions on,Volume:7Issue:1,Jan.2003:207~213[3] NARI-Relays Electric Co.Ltd, "Technical and Operation Manual of RCS-900 Series Protection Relay for Generator-Transformer Unit," Dec.2001.[4] Xinmin Yang, Junlin Yang, "Training Materials of Microprocessor-based Protection Relays in Power System," 3rd ed., Beijing: Electric Power Press of China[5] Fisher, A.G., Harpley R.M., 1987, "New Options for 110kV Urban Network Design." Power Engineering Journal..[6] Williams, A., Warren R.H.J., 1984, "Methods ofUsing Data from Computer Simulations to test protection equipment,” Proc. IEE 131, Pt.C., 7, 149 – 156[7] “The Method of Electromagnetic Disturbance Assessment and Its Influence on Electronics.” AmSu publishers. Herold of Amur State University[8] M.M. Saha, K. Wikstrom and S. Lindahl, “A new Approach to Fast Distance Protection with Adaptive Features”, Companion paper, Sixth International conference on Developments in power system protection, University of Nottingham,UK,25-27 March,1997.[9] B. Bachmann, D.G. Hart, Y. Hu, and M. Saha, “Algorithms for Locating Faults on Series Compensated Lines Using Neural Network and De terministic Methods,” IEEE Winter Meeting, 96 WM 021-6 PWRD, Baltimore, 1996. 3.[10] F. Anderson and W. Elmore, “Overview of Series-Compensated Line Protection Philosophies”, Western Relay Protective Conference, Washington State University, Spokane, Washington, October 1990.[11] G. Nimmersjo, M.M. Saha. “A New Approach to High Speed relaying based on Transient Phenomena”, IEEDPSP-89, Edinburgh, UK, April 1989.[12] M. Chamia, S. Liberman, “Ultra High Speed Relay for EHVKJHV Transmission Lines Development, Design and Application”, IEEE Transactions on PAS, Vol.PAS-97, No.6, Dec. 1998.附件2:外文原文(复印件)基于DSP&ARM微处理器的线路距离保护摘要通过研究微处理器的开发保护和保护装置的特点,要求设备的多任务下的监测、保护、控制和沟通探讨,和双CPU结构的微处理器保护装置与ARM和DSP设计。
_毕业设计外文文献及翻译_
_毕业设计外文文献及翻译_Graduation Thesis Foreign Literature Review and Chinese Translation1. Title: "The Impact of Artificial Intelligence on Society"Abstract:人工智能对社会的影响摘要:人工智能技术的快速发展引发了关于其对社会影响的讨论。
本文探讨了人工智能正在重塑不同行业(包括医疗保健、交通运输和教育)的各种方式。
还讨论了AI实施的潜在益处和挑战,以及伦理考量。
总体而言,本文旨在提供对人工智能对社会影响的全面概述。
2. Title: "The Future of Work: Automation and Job Displacement"Abstract:With the rise of automation technologies, there is growing concern about the potential displacement of workers in various industries. This paper examines the trends in automation and its impact on jobs, as well as the implications for workforce development and retraining programs. The ethical and social implications of automation are also discussed, along with potential strategies for mitigating job displacement effects.工作的未来:自动化和失业摘要:随着自动化技术的兴起,人们越来越担心各行业工人可能被替代的问题。
(完整版)_毕业设计外文资料翻译_54103673
General programmable manipulator structure designRobot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precisionengine,micro-electronics and computer,automation control and dr ive,sensor and message dispose and artificial intelligence and so on.With thedevelopment of economic and the demand for automation control, robot technology isdeveloped quickly and all types of the robots products are com e into being.The practicalityuse of robot products not only solves the problems which are difficult to operate for humanbeing,but also advances the industrial automation program.Modern industrial robots aretrue marvels of engineering.A robot the size of a person can easily carry a load over one,transformsystem,drive device and control system and guided by the idea of the characteristic andcomplex of mechanical configuration,electronic,software and har dware.In this article,themechanical configuration combines the character of direction coor dinate and the arthrosiscoordinate which can improve the stability and operation flexibility of the system.The mainfunction of the transmission mechanism is to transmit power to implement department andcomplete thenecessary movement.In this transmission structure,the screw tr ansmissionmechanism transmits the rotary motion into linear motion.Worm gear can give varytransmission ratio.Both of the transmission mechanisms have a characteristic of compactstructure.The design of drive system often is limited by the environment condition and thefactor of cost and technical lever.''''The step motor can rec eive digital signal directly and hasthe ability to response outer environment immediately and has n o accumulation error,whichoften is used in driving system.In this driving system,open-loop control system is composedof stepping motor,which can satisfy the demand not only for control precision but also for thetarget of economic and practicality.On this basis the analysis of stepping motor in powercalculating and style selecting is also given.The analysis of kinematics and dynamics forobject holding manipulator is given in completing the design ofmechanical structure and drivesystem.Kinematics analysis is the basis of path programming an d track control.The positiveand reverse analysis of manipulator gives the relationship betwe en manipulator space anddrive space in position and speed.The relationship between man ipulator’s.tip.position.and.arthrosis angles is concluded by coordinate transform method.Th e geometry method is usedin solving inverse kinematics problem and the result will provi de theory evidence for controlsystem.The f0unction of dynamics is to get the relationship b etween the movement and forceand the target is to satisfy the demand of real time control.in this chamfer,Newton-Euripidesmethod is used in analysis dynamic problem ofthe cleaning robot and the arthrosis force andtorque are given which provide the foundation for step motor s electing and structure dynamicoptimal ting.Control system is the key and core part of the object holding manipulator systemdesign which will direct effect the reliability and practicality of the robot system in the divisionof configuration and control function and also will effect or limit the development cost and cycle.With the demand of the PCL-839card,the PC computer which ha s a.tight structure and iseasy to be extended is used as the principal computer cell an d takes the function of systeminitialization,data operation and dispose,step motor drive and error diagnose and so on.A tthe same time,the configuration structure features,task princi ples and the position functionwith high precision of the control card PCL-839are analyzed. Hardware is the matterfoundation of the control.System and the software is the spir it of the control system.Thetarget of the software is to combine all the parts in optimiz ing style and to improve theefficiency and reliability of the control system.The software design of the object holdingmanipulator control system is divided into several blocks such as system initialization block,data process block and error station detect and dispose model and so on.PCL-839card cansolve the communication between the main computer and the contr ol cells and take themeasure of reducing the influence of the outer signal to the control system.The start and stopfrequency of the step motor is far lower than the maximum running frequency.In order toimprove the efficiency of the step motor,the increase and dec rease of the speed is mustconsidered when the step motor running in high speed and start or stop with great acceleration.The increase and decrease of the motor’s.speed can be controlled by the pulse freque ncysent to the step motor drive with a rational method.This can be implemented either bythe dynamic response of acomputer-based manipulator in accordance with some prespecified system performance anddesired goals. In general, the dynamic performance of a manipulator directly depends on theefficiency of the control algorithms and the dynamic model of the manipulator. The controlproblem consists of obtaining dynamic models of the physical robot arm system and thenspecifying corresponding control laws or strategies to achieve the desired system response andperformance.Current industrial approaches to robot arm control treat each joint of the robot arm as asimple joint servomechanism. The servomechanism approach models the varying dynamics of amanipulator inadequately because it neglects the motion and configuration of the whole armmechanism. These changes in the parameters of the controlled system sometimes are significantenough to render conventional feedback control strategies ineffective. The result is reduced servoresponse speed and damping, limiting the precision and speed of the end-effector and making itappropriate only for limited-precision tasks. Manipulators controlled in this manner move at slowspeeds with unnecessary vibrations. Any significant performance gain in this and other areas ofrobot arm control require the consideration of more efficient dynamic models, sophisticatedcontrol approaches, and the use of dedicated computer architectures and parallel processingtechniques.In the industrial production and other fields,people often end angered by such factors as,but also is of great significance for physical security protect ion,improvement of theenvironment for labor,reducing labor intensity,improvement of labor productivity,raw materialconsumption savings and lowering production costs.There are such mechanical components as ball footbridge,slides, an air control mechanical.A programmable controller,a programming device,stepping motors,stepping motors drives,direct current motors,sensor,s witch power supply,anelectromagnetism valve and control desk are used in electrical connection.The programmablecontroller output two lines pulses to stepping motors drives to drive the two stepping motorsdrives on beam and vertical axis;direct current motors drive the rotation of the base and the,up and down,moves location;the mainframe sendsignals to control the opening and closing of the hand to car ry objects.Related parameterscan be changed according to request of the changes of the obj ects and movement flow at anytime change the relevant parameters in the design,so it has great flexibility and operability.。
毕业设计外文文献翻译
毕业设计外文文献翻译Graduation Design Foreign Literature Translation (700 words) Title: The Impact of Artificial Intelligence on the Job Market Introduction:Artificial Intelligence (AI) is a rapidly growing field that has the potential to revolutionize various industries and job markets. With advancements in technologies such as machine learning and natural language processing, AI has become capable of performing tasks traditionally done by humans. This has raised concerns about the future of jobs and the impact AI will have on the job market. This literature review aims to explore the implications of AI on employment and job opportunities.AI in the Workplace:AI technologies are increasingly being integrated into the workplace, with the aim of automating routine and repetitive tasks. For example, automated chatbots are being used to handle customer service queries, while machine learning algorithms are being employed to analyze large data sets. This has resulted in increased efficiency and productivity in many industries. However, it has also led to concerns about job displacement and unemployment.Job Displacement:The rise of AI has raised concerns about job displacement, as AI technologies are becoming increasingly capable of performing tasks previously done by humans. For example, automated machines can now perform complex surgeries with greaterprecision than human surgeons. This has led to fears that certain jobs will become obsolete, leading to unemployment for those who were previously employed in these industries.New Job Opportunities:While AI might potentially replace certain jobs, it also creates new job opportunities. As AI technologies continue to evolve, there will be a greater demand for individuals with technical skills in AI development and programming. Additionally, jobs that require human interaction and emotional intelligence, such as social work or counseling, may become even more in demand, as they cannot be easily automated.Job Transformation:Another potential impact of AI on the job market is job transformation. AI technologies can augment human abilities rather than replacing them entirely. For example, AI-powered tools can assist professionals in making decisions, augmenting their expertise and productivity. This may result in changes in job roles and the need for individuals to adapt their skills to work alongside AI technologies.Conclusion:The impact of AI on the job market is still being studied and debated. While AI has the potential to automate certain tasks and potentially lead to job displacement, it also presents opportunities for new jobs and job transformation. It is essential for individuals and organizations to adapt and acquire the necessary skills to navigate these changes in order to stay competitive in the evolvingjob market. Further research is needed to fully understand the implications of AI on employment and job opportunities.。
毕业设计英文 翻译(原文)
编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学专业:电子信息工程学生姓名: xx学号: xxxxxxxxxxxxx 指导教师单位:桂林电子科技大学姓名: xxxx职称: xx2014年x月xx日Timing on and off power supplyusesThe switching power supply products are widely used in industrial automation and control, military equipment, scientific equipment, LED lighting, industrial equipment,communications equipment,electrical equipment,instrumentation, medical equipment, semiconductor cooling and heating, air purifiers, electronic refrigerator, LCD monitor, LED lighting, communications equipment, audio-visual products, security, computer chassis, digital products and equipment and other fields.IntroductionWith the rapid development of power electronics technology, power electronics equipment and people's work, the relationship of life become increasingly close, and electronic equipment without reliable power, into the 1980s, computer power and the full realization of the switching power supply, the first to complete the computer Power new generation to enter the switching power supply in the 1990s have entered into a variety of electronic, electrical devices, program-controlled switchboards, communications, electronic testing equipment power control equipment, power supply, etc. have been widely used in switching power supply, but also to promote the rapid development of the switching power supply technology .Switching power supply is the use of modern power electronics technology to control the ratio of the switching transistor to turn on and off to maintain a stable output voltage power supply, switching power supply is generally controlled by pulse width modulation (PWM) ICs and switching devices (MOSFET, BJT) composition. Switching power supply and linear power compared to both the cost and growth with the increase of output power, but the two different growth rates. A power point, linear power supply costs, but higher than the switching power supply. With the development of power electronics technology and innovation, making the switching power supply technology to continue to innovate, the turning points of this cost is increasingly move to the low output power side, the switching power supply provides a broad space for development.The direction of its development is the high-frequency switching power supply, high frequency switching power supply miniaturization, and switching power supply into a wider range of application areas, especially in high-tech fields, and promote the miniaturization of high-tech products, light of. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.classificationModern switching power supply, there are two: one is the DC switching power supply; the other is the AC switching power supply. Introduces only DC switching power supply and its function is poor power quality of the original eco-power (coarse) - such as mains power or battery power, converted to meet the equipment requirements of high-quality DC voltage (Varitronix) . The core of the DC switching power supply DC / DC converter. DC switching power supply classification is dependent on the classification of DC / DC converter. In other words, the classification of the classification of the DC switching power supply and DC/DC converter is the classification of essentially the same, the DC / DC converter is basically a classification of the DC switching power supply.DC /DC converter between the input and output electrical isolation can be divided into two categories: one is isolated called isolated DC/DC converter; the other is not isolated as non-isolated DC / DC converter.Isolated DC / DC converter can also be classified by the number of active power devices. The single tube of DC / DC converter Forward (Forward), Feedback (Feedback) two. The double-barreled double-barreled DC/ DC converter Forward (Double Transistor Forward Converter), twin-tube feedback (Double Transistor Feedback Converter), Push-Pull (Push the Pull Converter) and half-bridge (Half-Bridge Converter) four. Four DC / DC converter is the full-bridge DC / DC converter (Full-Bridge Converter).Non-isolated DC / DC converter, according to the number of active power devices can be divided into single-tube, double pipe, and four three categories. Single tube to a total of six of the DC / DC converter, step-down (Buck) DC / DC converter, step-up (Boost) DC / DC converters, DC / DC converter, boost buck (Buck Boost) device of Cuk the DC / DC converter, the Zeta DC / DC converter and SEPIC, the DC / DC converter. DC / DC converters, the Buck and Boost type DC / DC converter is the basic buck-boost of Cuk, Zeta, SEPIC, type DC / DC converter is derived from a single tube in this six. The twin-tube cascaded double-barreled boost (buck-boost) DC / DC converter DC / DC converter. Four DC / DC converter is used, the full-bridge DC / DC converter (Full-Bridge Converter).Isolated DC / DC converter input and output electrical isolation is usually transformer to achieve the function of the transformer has a transformer, so conducive to the expansion of the converter output range of applications, but also easy to achieve different voltage output , or a variety of the same voltage output.Power switch voltage and current rating, the converter's output power is usually proportional to the number of switch. The more the number of switch, the greater the output power of the DC / DC converter, four type than the two output power is twice as large,single-tube output power of only four 1/4.A combination of non-isolated converters and isolated converters can be a single converter does not have their own characteristics. Energy transmission points, one-way transmission and two-way transmission of two DC / DC converter. DC / DC converter with bi-directional transmission function, either side of the transmission power from the power of lateral load power from the load-lateral side of the transmission power.DC / DC converter can be divided into self-excited and separately controlled. With the positive feedback signal converter to switch to self-sustaining periodic switching converter, called self-excited converter, such as the the Luo Yeer (Royer,) converter is a typical push-pull self-oscillating converter. Controlled DC / DC converter switching device control signal is generated by specialized external control circuit.the switching power supply.People in the field of switching power supply technology side of the development of power electronic devices, while the development of the switching inverter technology, the two promote each other to promote the switching power supply annual growth rate of more than two digits toward the light, small, thin, low-noise, high reliability, the direction of development of anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, AC / AC DC / AC, such as inverters, DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardization, and has been recognized by the user, but AC / DC modular, its own characteristics make the modular process, encounter more complex technology and manufacturing process. Hereinafter to illustrate the structure and characteristics of the two types of switching power supply.Self-excited: no external signal source can be self-oscillation, completely self-excited to see it as feedback oscillation circuit of a transformer.Separate excitation: entirely dependent on external sustain oscillations, excited used widely in practical applications. According to the excitation signal structure classification; can be divided into pulse-width-modulated and pulse amplitude modulated two pulse width modulated control the width of the signal is frequency, pulse amplitude modulation control signal amplitude between the same effect are the oscillation frequency to maintain within a certain range to achieve the effect of voltage stability. The winding of the transformer can generally be divided into three types, one group is involved in the oscillation of the primary winding, a group of sustained oscillations in the feedback winding, there is a group of load winding. Such as Shanghai is used in household appliances art technological production of switching power supply, 220V AC bridge rectifier, changing to about 300V DC filter added tothe collector of the switch into the transformer for high frequency oscillation, the feedback winding feedback to the base to maintain the circuit oscillating load winding induction signal, the DC voltage by the rectifier, filter, regulator to provide power to the load. Load winding to provide power at the same time, take up the ability to voltage stability, the principle is the voltage output circuit connected to a voltage sampling device to monitor the output voltage changes, and timely feedback to the oscillator circuit to adjust the oscillation frequency, so as to achieve stable voltage purposes, in order to avoid the interference of the circuit, the feedback voltage back to the oscillator circuit with optocoupler isolation.technology developmentsThe high-frequency switching power supply is the direction of its development, high-frequency switching power supply miniaturization, and switching power supply into the broader field of application, especially in high-tech fields, and promote the development and advancement of the switching power supply, an annual more than two-digit growth rate toward the light, small, thin, low noise, high reliability, the direction of the anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, the DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardized, and has been recognized by the user, but modular AC / DC, because of its own characteristics makes the modular process, encounter more complex technology and manufacturing process. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.The switching power supply applications in power electronic devices as diodes, IGBT and MOSFET.SCR switching power supply input rectifier circuit and soft start circuit, a small amount of applications, the GTR drive difficult, low switching frequency, gradually replace the IGBT and MOSFET.Direction of development of the switching power supply is a high-frequency, high reliability, low power, low noise, jamming and modular. Small, thin, and the key technology is the high frequency switching power supply light, so foreign major switching power supply manufacturers have committed to synchronize the development of new intelligent components, in particular, is to improve the secondary rectifier loss, and the power of iron Oxygen materials to increase scientific and technological innovation in order to improve the magnetic properties of high frequency and large magnetic flux density (Bs), and capacitor miniaturization is a key technology. SMT technology allows the switching power supply has made considerable progress, the arrangement of the components in the circuit board on bothsides, to ensure that the light of the switching power supply, a small, thin. High-frequency switching power supply is bound to the traditional PWM switching technology innovation, realization of ZVS, ZCS soft-switching technology has become the mainstream technology of the switching power supply, and a substantial increase in the efficiency of the switching power supply. Indicators for high reliability, switching power supply manufacturers in the United States by reducing the operating current, reducing the junction temperature and other measures to reduce the stress of the device, greatly improve the reliability of products.Modularity is the overall trend of switching power supply, distributed power systems can be composed of modular power supply, can be designed to N +1 redundant power system, and the parallel capacity expansion. For this shortcoming of the switching power supply running noise, separate the pursuit of high frequency noise will also increase, while the use of part of the resonant converter circuit technology to achieve high frequency, in theory, but also reduce noise, but some The practical application of the resonant converter technology, there are still technical problems, it is still a lot of work in this field, so that the technology to be practical.Power electronics technology innovation, switching power supply industry has broad prospects for development. To accelerate the pace of development of the switching power supply industry in China, it must take the road of technological innovation, out of joint production and research development path with Chinese characteristics and contribute to the rapid development of China's national economy.Developments and trends of the switching power supply1955 U.S. Royer (Roger) invented the self-oscillating push-pull transistor single-transformer DC-DC converter is the beginning of the high-frequency conversion control circuit 1957 check race Jen, Sen, invented a self-oscillating push-pull dual transformers, 1964, U.S. scientists canceled frequency transformer in series the idea of switching power supply, the power supply to the size and weight of the decline in a fundamental way. 1969 increased due to the pressure of the high-power silicon transistor, diode reverse recovery time shortened and other components to improve, and finally made a 25-kHz switching power supply.At present, the switching power supply to the small, lightweight and high efficiency characteristics are widely used in a variety of computer-oriented terminal equipment, communications equipment, etc. Almost all electronic equipment is indispensable for a rapid development of today's electronic information industry power mode. Bipolar transistor made of 100kHz, 500kHz power MOS-FET made, though already the practical switching power supply is currently available on the market, but its frequency to be further improved. Toimprove the switching frequency, it is necessary to reduce the switching losses, and to reduce the switching losses, the need for high-speed switch components. However, the switching speed will be affected by the distribution of the charge stored in the inductance and capacitance, or diode circuit to produce a surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Which, in order to prevent the switching Kai - closed the voltage surge, RC or LC buffers can be used, and the current surge can be caused by the diode stored charge of amorphous and other core made of magnetic buffer . However, the high frequency more than 1MHz, the resonant circuit to make the switch on the voltage or current through the switch was a sine wave, which can reduce switching losses, but also to control the occurrence of surges. This switch is called the resonant switch. Of this switching power supply is active, you can, in theory, because in this way do not need to greatly improve the switching speed of the switching losses reduced to zero, and the noise is expected to become one of the high-frequency switching power supply The main ways. At present, many countries in the world are committed to several trillion Hz converter utility.the principle of IntroductionThe switching power supply of the process is quite easy to understand, linear power supplies, power transistors operating in the linear mode and linear power, the PWM switching power supply to the power transistor turns on and off state, in both states, on the power transistor V - security product is very small (conduction, low voltage, large current; shutdown, voltage, current) V oltammetric product / power device is power semiconductor devices on the loss.Compared with the linear power supply, the PWM switching power supply more efficient process is achieved by "chopping", that is cut into the amplitude of the input DC voltage equal to the input voltage amplitude of the pulse voltage. The pulse duty cycle is adjusted by the switching power supply controller. Once the input voltage is cut into the AC square wave, its amplitude through the transformer to raise or lower. Number of groups of output voltage can be increased by increasing the number of primary and secondary windings of the transformer. After the last AC waveform after the rectifier filter the DC output voltage.The main purpose of the controller is to maintain the stability of the output voltage, the course of their work is very similar to the linear form of the controller. That is the function blocks of the controller, the voltage reference and error amplifier can be designed the same as the linear regulator. Their difference lies in the error amplifier output (error voltage) in the drive before the power tube to go through a voltage / pulse-width conversion unit.Switching power supply There are two main ways of working: Forward transformand boost transformation. Although they are all part of the layout difference is small, but the course of their work vary greatly, have advantages in specific applications.the circuit schematicThe so-called switching power supply, as the name implies, is a door, a door power through a closed power to stop by, then what is the door, the switching power supply using SCR, some switch, these two component performance is similar, are relying on the base switch control pole (SCR), coupled with the pulse signal to complete the on and off, the pulse signal is half attentive to control the pole voltage increases, the switch or transistor conduction, the filter output voltage of 300V, 220V rectifier conduction, transmitted through the switching transformer secondary through the transformer to the voltage increase or decrease for each circuit work. Oscillation pulse of negative semi-attentive to the power regulator, base, or SCR control voltage lower than the original set voltage power regulator cut-off, 300V power is off, switch the transformer secondary no voltage, then each circuit The required operating voltage, depends on this secondary road rectifier filter capacitor discharge to maintain. Repeat the process until the next pulse cycle is a half weeks when the signal arrival. This switch transformer is called the high-frequency transformer, because the operating frequency is higher than the 50HZ low frequency. Then promote the pulse of the switch or SCR, which requires the oscillator circuit, we know, the transistor has a characteristic, is the base-emitter voltage is 0.65-0.7V is the zoom state, 0.7V These are the saturated hydraulic conductivity state-0.1V-0.3V in the oscillatory state, then the operating point after a good tune, to rely on the deep negative feedback to generate a negative pressure, so that the oscillating tube onset, the frequency of the oscillating tube capacitor charging and discharging of the length of time from the base to determine the oscillation frequency of the output pulse amplitude, and vice versa on the small, which determines the size of the output voltage of the power regulator. Transformer secondary output voltage regulator, usually switching transformer, single around a set of coils, the voltage at its upper end, as the reference voltage after the rectifier filter, then through the optocoupler, this benchmark voltage return to the base of the oscillating tube pole to adjust the level of the oscillation frequency, if the transformer secondary voltage is increased, the sampling coil output voltage increases, the positive feedback voltage obtained through the optocoupler is also increased, this voltage is applied oscillating tube base, so that oscillation frequency is reduced, played a stable secondary output voltage stability, too small do not have to go into detail, nor it is necessary to understand the fine, such a high-power voltage transformer by switching transmission, separated and after the class returned by sampling the voltage from the opto-coupler pass separated after class, so before the mains voltage, and after the classseparation, which is called cold plate, it is safe, transformers before power is independent, which is called switching power supply.the DC / DC conversionDC / DC converter is a fixed DC voltage transformation into a variable DC voltage, also known as the DC chopper. There are two ways of working chopper, one Ts constant pulse width modulation mode, change the ton (General), the second is the frequency modulation, the same ton to change the Ts, (easy to produce interference). Circuit by the following categories:Buck circuit - the step-down chopper, the average output voltage U0 is less than the input voltage Ui, the same polarity.Boost Circuit - step-up chopper, the average output voltage switching power supply schematic U0 is greater than the input voltage Ui, the same polarity.Buck-Boost circuit - buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, the inductance transmission.Cuk circuit - a buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, capacitance transmission.The above-mentioned non-isolated circuit, the isolation circuit forward circuits, feedback circuit, the half-bridge circuit, the full bridge circuit, push-pull circuit. Today's soft-switching technology makes a qualitative leap in the DC / DC the U.S. VICOR company design and manufacture a variety of ECI soft-switching DC / DC converter, the maximum output power 300W, 600W, 800W, etc., the corresponding power density (6.2 , 10,17) W/cm3 efficiency (80-90)%. A the Japanese Nemic Lambda latest using soft-switching technology, high frequency switching power supply module RM Series, its switching frequency (200 to 300) kHz, power density has reached 27W/cm3 with synchronous rectifier (MOSFETs instead of Schottky diodes ), so that the whole circuit efficiency by up to 90%.AC / DC conversionAC / DC conversion will transform AC to DC, the power flow can be bi-directional power flow by the power flow to load known as the "rectification", referred to as "active inverter power flow returned by the load power. AC / DC converter input 50/60Hz AC due must be rectified, filtered, so the volume is relatively large filter capacitor is essential, while experiencing safety standards (such as UL, CCEE, etc.) and EMC Directive restrictions (such as IEC, FCC, CSA) in the AC input side must be added to the EMC filter and use meets the safety standards of the components, thus limiting the miniaturization of the volume of AC / DC power, In addition, due to internal frequency, high voltage, current switching, making the problem difficult to solve EMC also high demands on the internal high-density mountingcircuit design, for the same reason, the high voltage, high current switch makes power supply loss increases, limiting the AC / DC converter modular process, and therefore must be used to power system optimal design method to make it work efficiency to reach a certain level of satisfaction.AC / DC conversion circuit wiring can be divided into half-wave circuit, full-wave circuit. Press the power phase can be divided into single-phase three-phase, multiphase. Can be divided into a quadrant, two quadrant, three quadrants, four-quadrant circuit work quadrant.he selection of the switching power supplySwitching power supply input on the anti-jamming performance, compared to its circuit structure characteristics (multi-level series), the input disturbances, such as surge voltage is difficult to pass on the stability of the output voltage of the technical indicators and linear power have greater advantages, the output voltage stability up to (0.5)%. Switching power supply module as an integrated power electronic devices should be selected。
(完整版)_毕业设计(论文)外文翻译_(原文)
毕业设计(论文)——外文翻译(原文)NEW APPLICATION OF DATABASERelational databases in use for over two decades. A large portion of the applications of relational databases in the commercial world, supporting such tasks as transaction processing for banks and stock exchanges, sales and reservations for a variety of businesses, and inventory and payroll for almost of all companies. We study several new applications, which recent years.First. Decision-support systemAs the online availability of data , businesses to exploit the available data to make better decisions about increase sales. We can extract much information for decision support by using simple SQL queries. Recently support based on data analysis and data mining, or knowledge discovery, using data from a variety of sources.Database applications can be broadly classified into transaction processing and decision support. Transaction-processing systems are widely used today, and companies generated by these systems.The term data mining refers loosely to finding relevant information, or “discovering knowledge,” from a large volume of data. Like knowledge discovery in artificial intelligence, data mining attempts to discover statistical rules and patterns automatically from data. However, data mining differs from machine learning in that it deals with large volumes of data, stored primarily on disk.Knowledge discovered from a database can be represented by a set of rules. We can discover rules from database using one of two models:In the first model, the user is involved directly in the process of knowledge discovery.In the second model, the system is responsible for automatically discovering knowledgefrom the database, by detecting patterns and correlations in the data.Work on automatic discovery of rules influenced strongly by work in the artificial-intelligence community on machine learning. The main differences lie in the volume of data databases, and in the need to access disk. Specialized data-mining algorithms developed to which rules are discovered depends on the class of data-mining application. We illustrate rule discovery using two application classes: classification and associations.Second. Spatial and Geographic DatabasesSpatial databases store information related to spatial locations, and provide support for efficient querying and indexing based on spatial locations. Two types of spatial databases are particularly important:Design databases, or computer-aided-design (CAD) databases, are spatial databases used to store design information about databases are integrated-circuit and electronic-device layouts.Geographic databases are spatial databases used to store geographic information, such as maps. Geographic databases are often called geographic information systems.Geographic data are spatial in nature, but differ from design data in certain ways. Maps and satellite images are typical examples of geographic data. Maps may provide not only location information -such as boundaries, rivers and roads---but also much more detailed information associated with locations, such as elevation, soil type, land usage, and annual rainfall.Geographic data can be categorized into two types: raster data (such data consist a bit maps or pixel maps, in two or more dimensions.), vector data (vector data are constructed from basic geographic objects). Map data are often represented in vector format.Third. Multimedia DatabasesRecently, there much interest in databases that store multimedia data, such as images, audio, and video. Today multimedia data typically are stored outside the database, in files systems. When the number of multimedia objects is relatively small, features provided by databases are usually not important. Database functionality becomes important when the number of multimedia objects stored is large. Issues such as transactional updates, querying facilities, and indexing then become important. Multimedia objects often they were created, who created them, and to what category they belong. One approach to building a database for such multimedia objects is to use database for storing the descriptive attributes, and for keeping track of the files in which the multimedia objects are stored.However, storing multimedia outside the database makes it the basis of actual multimedia data content. It can also lead to inconsistencies, such a file that is noted in the database, but whose contents are missing, or vice versa. It is therefore desirable to store the data themselves in the database.Forth. Mobility and Personal DatabasesLarge-scale commercial databases stored in central computing facilities. In the case of distributed database applications, there strong central database and network administration. Two technology trends which this assumption of central control and administration is not entirely correct:1.The increasingly widespread use of personal computers, and, more important, of laptop or “notebook” computers.2.The development of a relatively low-cost wireless digital communication infrastructure, base on wireless local-area networks, cellular digital packet networks, and other technologies.Wireless computing creates a situation where machines no longer at which to materialize the result of a query. In some cases, the location of the user is a parameter of the query. A example is a traveler’s information system that provides data on the current route must be processed based on knowledge of the user’s location, direction of motion, and speed.Energy (battery power) is a scarce resource for mobile computers. This limitation influences many aspects of system design. Among the more interesting consequences of the need for energy efficiency is the use of scheduled data broadcasts to reduce the need for mobile system to transmit queries. Increasingly amounts of data may reside on machines administered by users, rather than by database administrators. Furthermore, these machines may, at times, be disconnected from the network.SummaryDecision-support systems are gaining importance, as companies realize the value of the on-line data collected by their on-line transaction-processing systems. Proposed extensions to SQL, such as the cube operation, of summary data. Data mining seeks to discover knowledge automatically, in the form of statistical rules and patterns from large databases. Data visualization systems data as well as geographic data. Design data are stored primarily as vector data; geographic data consist of a combination of vector and raster data.Multimedia databases are growing in importance. Issues such as similarity-based retrieval and delivery of data at guaranteed rates are topics of current research.Mobile computing systems , leading to interest in database systems that can run on such systems. Query processing in such systems may involve lookups on server database.毕业设计(论文)——外文翻译(译文)数据库的新应用我们使用关系数据库已经有20多年了,关系数据库应用中有很大一部分都用于商业领域支持诸如银行和证券交易所的事务处理、各种业务的销售和预约,以及几乎所有公司都需要的财产目录和工资单管理。
毕业设计外文原文加译文
Basic Concepts PrimerTOPIC P.1: Bridge MechanicsBasic Equations of Bridge Mechanicswhere: A =area; cross-sectional areaA w = areaof web c = distance from neutral axisto extreme fiber (or surface) of beamE = modulus of elasticityF = force; axial force f a= axial stress f b= bending stress f v = shear stress I = moment of inertia L = original length M = applied moment S = stressV = vertical shear force due toexternal loadsD L = change in length e = strainBasic Concepts Primer Topic P.1 Bridge MechanicsP.1.1Introduction Mechanics is the branch of physical science that deals with energy and forces andtheir relation to the equilibrium, deformation, or motion of bodies. The bridgeinspector will primarily be concerned with statics, or the branch of mechanicsdealing with solid bodies at rest and with forces in equilibrium.The two most important reasons for a bridge inspector to study bridge mechanicsare:Ø To understand how bridge members functionØ To recognize the impact a defect may have on the load-carrying capacityof a bridge component or elementWhile this section presents the basic principles of bridge mechanics, the referenceslisted in the bibliography should be referred to for a more complete presentation ofthis subject.P.1.2Bridge Design Loadings Bridge design loadings are loads that a bridge is designed to carry or resist and which determine the size and configuration of its members. Bridge members are designed to withstand the loads acting on them in a safe and economical manner. Loads may be concentrated or distributed depending on the way in which they are applied to the structure.A concentrated load, or point load, is applied at a single location or over a very small area. Vehicle loads are considered concentrated loads.A distributed load is applied to all or part of the member, and the amount of load per unit of length is generally constant. The weight of superstructures, bridge decks, wearing surfaces, and bridge parapets produce distributed loads. Secondary loads, such as wind, stream flow, earth cover and ice, are also usually distributed loads.Highway bridge design loads are established by the American Association of State Highway and Transportation Officials (AASHTO). For many decades, the primary bridge design code in the United States was the AASHTO Standard Specifications for Highway Bridges (Specifications), as supplemented by agency criteria as applicable.During the 1990’s AASHTO developed and approved a new bridge design code, entitled AASHTO LRFD Bridge Design Specifications. It is based upon the principles of Load and Resistance Factor Design (LRFD), as described in Topic P.1.7.P.1.1SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.2Bridge design loadings can be divided into three principal categories:Ø Dead loadsØ Primary live loads Ø Secondary loadsDead LoadsDead loads do not change as a function of time and are considered full-time, permanent loads acting on the structure. They consist of the weight of the materials used to build the bridge (see Figure P.1.1). Dead load includes both the self-weight of structural members and other permanent external loads. They can be broken down into two groups, initial and superimposed.Initial dead loads are loads which are applied before the concrete deck is hardened, including the beam itself and the concrete deck. Initial deck loads must be resisted by the non-composite action of the beam alone. Superimposed dead loads are loads which are applied after the concrete deck has hardened (on a composite bridge), including parapets and any anticipated future deck pavement. Superimposed dead loads are resisted by the beam and the concrete deck acting compositely. Non-composite and composite action are described in Topic P.1.10.Dead load includes both the self-weight of the structural members and other permanent external loads.Example of self-weight: A 6.1 m (20-foot) long beam weighs 0.73 kN per m (50 pounds per linear foot). The total weight of the beam is 4.45 kN (1000 pounds). This weight is called the self-weight of the beam.Example of an external dead load: If a utility such as a water line is permanently attached to the beam in the previous example, then the weight of the water line is an external dead load. The weight of the water line plus the self weight of the beam comprises the total dead load.Total dead load on a structure may change during the life of the bridge due to additions such as deck overlays, parapets, utility lines, and inspection catwalks.Figure P.1.1 Dead Load on a BridgePrimary Live LoadsLive loads are considered part-time or temporary loads, mostly of short-term duration, acting on the structure. In bridge applications, the primary live loads are moving vehicular loads (see Figure P.1.2).To account for the affects of speed, vibration, and momentum, highway live loads are typically increased for impact. Impact is expressed as a fraction of the liveSECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.3load, and its value is a function of the span length.Standard vehicle live loads have been established by AASHTO for use in bridge design and rating. It is important to note that these standard vehicles do not represent actual vehicles. Rather, they were developed to allow a relatively simple method of analysis based on an approximation of the actual live load.Figure P.1.2 Vehicle Live Load on a BridgeAASHTO Truck LoadingsThere are two basic types of standard truck loadings described in the current AASHTO Specifications . The first type is a single unit vehicle with two axles spaced at 14 feet (4.3 m) and designated as a highway truck or "H" truck (see Figure P.1.3). The weight of the front axle is 20% of the gross vehicle weight, while the weight of the rear axle is 80% of the gross vehicle weight. The "H" designation is followed by the gross tonnage of the particular design vehicle.Example of an H truck loading: H20-35 indicates a 20 ton vehicle with a front axle weighing 4 tons, a rear axle weighing 16 tons, and the two axles spaced 14 feet apart. This standard truck loading was first published in 1935.The second type of standard truck loading is a two unit, three axle vehicle comprised of a highway tractor with a semi-trailer. It is designated as a highway semi-trailer truck or "HS" truck (see Figure P.1.4).The tractor weight and wheel spacing is identical to the H truck loading. The semi-trailer axle weight is equal to the weight of the rear tractor axle, and its spacing from the rear tractor axle can vary from 4.3 to 9.1 m (14 to 30 feet). The "HS" designation is followed by a number indicating the gross weight in tons of the tractor only.SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.414’-0”(4.3 m)8,000 lbs (35 kN) 32,000 lbs (145 kN)(3.0 m)10’-0”CLEARANCE AND LOAD LANE WIDTH6’-0” (1.8 m)2’-0” (0.6 m)Figure P.1.3 AASHTO H20 Truck14’-0”(4.3 m)8,000 lbs (35 kN) 32,000 lbs (145 kN)(3.0 m)10’-0”CLEARANCE AND LOAD LANE WIDTH6’-0”(1.8 m)2’-0” (0.6 m)32,000 lbs (145 kN)VFigure P.1.4 AASHTO HS20 TruckExample of an HS truck loading: HS20-44 indicates a vehicle with a front tractor axle weighing 4 tons, a rear tractor axle weighing 16 tons, and a semi-trailer axle weighing 16 tons. The tractor portion alone weighs 20 tons, but the gross vehicle weight is 36 tons. This standard truck loading was first published in 1944.In specifications prior to 1944, a standard loading of H15 was used. In 1944, theSECTION P: Basic Concepts Primer Topic P.1: Bridge MechanicsP.1.5H20-44 Loading HS20-44 Loadingpolicy of affixing the publication year of design loadings was adopted. In specifications prior to 1965, the HS20-44 loading was designated as H20-S16-44, with the S16 identifying the gross axle weight of the semi-trailer in tons.The H and HS vehicles do not represent actual vehicles, but can be considered as "umbrella" loads. The wheel spacings, weight distributions, and clearance of the Standard Design Vehicles were developed to give a simpler method of analysis, based on a good approximation of actual live loads.The H and HS vehicle loads are the most common loadings for design, analysis, and rating, but other loading types are used in special cases.AASHTO Lane LoadingsIn addition to the standard truck loadings, a system of equivalent lane loadings was developed in order to provide a simple method of calculating bridge response to a series, or “train”, of trucks. Lane loading consists of a uniform load per linear foot of traffic lane combined with a concentrated load located on the span to produce the most critical situation (see Figure P.1.5).For design and load capacity rating analysis, an investigation of both a truck loading and a lane loading must be made to determine which produces the greatest stress for each particular member. Lane loading will generally govern over truck loading for longer spans. Both the H and HS loadings have corresponding lane loads.* Use two concentrated loads for negative moment in continuous spans (Refer to AASHTO Page 23)Figure P.1.5 AASHTO Lane Loadings.Alternate Military LoadingThe Alternate Military Loading is a single unit vehicle with two axles spaced at 1.2 m (4 feet) and weighing 110 kN (12 tons)each. It has been part of the AASHTO Specifications since 1977. Bridges on interstate highways or other highways which are potential defense routes are designed for either an HS20 loading or an Alternate Military Loading (see Figure P.1.6).SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.6110 kN (24 k)110 kN (24 k)Figure P.1.6 Alternate Military LoadingLRFD Live LoadsThe AASHTO LRFD design vehicular live load, designated HL-93, is a modified version of the HS-20 highway loadings from the AASHTO StandardSpecifications. Under HS-20 loading as described earlier, the truck or lane load is applied to each loaded lane. Under HL-93 loading, the design truck or tandem, in combination with the lane load, is applied to each loaded lane.The LRFD design truck is exactly the same as the AASHTO HS-20 design truck. The LRFD design tandem, on the other hand, consists of a pair of 110 kN axials spread at 1.2 m (25 kip axles spaced 4 feet) apart. The transverse wheel spacing of all of the trucks is 6 feet.The magnitude of the HL-93 lane load is equal to that of the HS-20 lane load. The lane load is 9 kN per meter (0.64 kips per linear foot) longitudinally and it is distributed uniformly over a 3 m (10 foot) width in the transverse direction. The difference between the HL-93 lane load and the HS-20 lane load is that the HL-93 lane load does not include a point load.Finally, for LRFD live loading, the dynamic load allowance, or impact, is applied to the design truck or tandem but is not applied to the design lane load. It is typically 33 percent of the design vehicle.Permit VehiclesPermit vehicles are overweight vehicles which, in order to travel a state’s highways, must apply for a permit from that state. They are usually heavy trucks (e.g., combination trucks, construction vehicles,or cranes) that have varying axle spacings depending upon the design of the individual truck. To ensure that these vehicles can safely operate on existing highways and bridges, most states require that bridges be designed for a permit vehicle or that the bridge be checked to determine if it can carry a specific type of vehicle. For safe and legal operation, agencies issue permits upon request that identify the required gross weight, number of axles, axle spacing, and maximum axle weights for a designated route (see Figure P.1.7).SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.7Figure P.1.7 910 kN (204 kip) Permit Vehicle (for Pennsylvania)Secondary LoadsIn addition to dead loads and primary live loads, bridge components are designed to resist secondary loads, which include the following:Ø Earth pressure - a horizontal force acting on earth-retaining substructureunits, such as abutments and retaining wallsØ Buoyancy -the force created due to the tendency of an object to rise whensubmerged in waterØ Wind load on structure - wind pressure on the exposed area of a bridge Ø Wind load on live load -wind effects transferred through the live loadvehicles crossing the bridgeØ Longitudinal force -a force in the direction of the bridge caused bybraking and accelerating of live load vehiclesØ Centrifugal force -an outward force that a live load vehicle exerts on acurved bridgeØ Rib shortening -a force in arches and frames created by a change in thegeometrical configuration due to dead loadØ Shrinkage - applied primarily to concrete structures, this is a multi-directional force due to dimensional changes resulting from the curing processØ Temperature -since materials expand as temperature increases andcontract as temperature decreases, the force caused by these dimensional changes must be consideredØ Earthquake -bridge structures must be built so that motion during anearthquake will not cause a collapseØ Stream flow pressure -a horizontal force acting on bridge componentsconstructed in flowing waterØ Ice pressure - a horizontal force created by static or floating ice jammedagainst bridge componentsØ Impact loading - the dynamic effect of suddenly receiving a live load;this additional force can be up to 30% of the applied primary live load forceØ Sidewalk loading - sidewalk floors and their immediate supports aredesigned for a pedestrian live load not exceeding 4.1 kN per square meter (85 pounds per square foot)Ø Curb loading -curbs are designed to resist a lateral force of not less than7.3 kN per linear meter (500 pounds per linear foot)Ø Railing loading -railings are provided along the edges of structures forprotection of traffic and pedestrians; the maximum transverse load appliedto any one element need not exceed 44.5 kN (10 kips)SECTION P: Basic Concepts PrimerTopic P.1: Bridge MechanicsP.1.8A bridge may be subjected to several of these loads simultaneously. The AASHTO Specifications have established a table of loading groups. For each group, a set of loads is considered with a coefficient to be applied for each particular load. The coefficients used were developed based on the probability of various loads acting simultaneously.P.1.3Material Response to LoadingsEach member of a bridge has a unique purpose and function, which directly affects the selection of material, shape, and size for that member. Certain terms are used to describe the response of a bridge material to loads. A working knowledge of these terms is essential for the bridge inspector.ForceA force is the action that one body exerts on another body. Force has two components: magnitude and direction (see Figure P.1.8). The basic English unit of force is called pound (abbreviated as lb.). The basic metric unit of force is called Newton (N). A common unit of force used among engineers is a kip (K), which is 1000 pounds. In the metric system, the kilonewton (kN), which is 1000 Newtons, is used. Note: 1 kip = 4.4 kilonewton.FyFigure P.1.8 Basic Force ComponentsStressStress is a basic unit of measure used to denote the intensity of an internal force. When a force is applied to a material, an internal stress is developed. Stress is defined as a force per unit of cross-sectional area.The basic English unit of stress is pounds per square inch (abbreviated as psi). However, stress can also be expressed in kips per square inch (ksi) or in any other units of force per unit area. The basic metric unit of stress is Newton per square meter, or Pascal (Pa). An allowable unit stress is generally established for a given material. Note: 1 ksi = 6.9 Pa.)A (Area )F (Force )S (Stress =毕业设计外文译文桥梁力学基本概论《美国桥梁检测手册》译文:桥梁结构的基础方程S=F/A(见1.8节)fa=P/A(见1.14节)ε=△L/L(见1.9节)fb=Mc/I(见1.16节)E=S/ε(见1.11节)fv=V/Aw(见1.18节)桥梁额定承载率=(允许荷载–固定荷载)*车辆总重量/车辆活荷载冲击力式中:A=面积;横截面面积Aw=腹板面积c=中性轴与横梁边缘纤维或外表面之间的距离E=弹性模量F=轴心力;轴向力fa=轴向应力fb=弯曲应力fv=剪切应力I=惯性距L=原长M=作用力距S=应力V=由外荷载引起的垂直剪应力△L=长度变量ε=应变1桥梁主要的基本概论第一章桥梁力学1.1引言结构力学是研究物体的能量、力、能量和力的平衡关系、变形及运动的物理科学的分支。
本科毕业设计外文文献及译文1
本科毕业设计外文文献及译文文献、资料题目:Transit Route Network Design Problem:Review文献、资料来源:网络文献、资料发表(出版)日期:2007.1院(部):xxx专业:xxx班级:xxx姓名:xxx学号:xxx指导教师:xxx翻译日期:xxx外文文献:Transit Route Network Design Problem:Review Abstract:Efficient design of public transportation networks has attracted much interest in the transport literature and practice,with manymodels and approaches for formulating the associated transit route network design problem _TRNDP_having been developed.The presentpaper systematically presents and reviews research on the TRNDP based on the three distinctive parts of the TRNDP setup:designobjectives,operating environment parameters and solution approach.IntroductionPublic transportation is largely considered as a viable option for sustainable transportation in urban areas,offering advantages such as mobility enhancement,traffic congestion and air pollution reduction,and energy conservation while still preserving social equity considerations. Nevertheless,in the past decades,factors such as socioeconomic growth,the need for personalized mobility,the increase in private vehicle ownership and urban sprawl have led to a shift towards private vehicles and a decrease in public transportation’s share in daily commuting (Sinha2003;TRB2001;EMTA2004;ECMT2002;Pucher et al.2007).Efforts for encouraging public transportation use focuses on improving provided services such as line capacity,service frequency,coverage,reliability,comfort and service quality which are among the most important parameters for an efficient public transportation system(Sinha2003;Vuchic2004.) In this context,planning and designing a cost and service efficientpublic transportation network is necessary for improving its competitiveness and market share. The problem that formally describes the design of such a public transportation network is referred to as the transit route network design problem(TRNDP);it focuses on the optimization of a number of objectives representing the efficiency of public transportation networks under operational and resource constraints such as the number and length of public transportation routes, allowable service frequencies,and number of available buses(Chakroborty2003;Fan and Machemehl2006a,b).The practical importance of designing public transportation networks has attractedconsiderable interest in the research community which has developed a variety of approaches and modelsfor the TRNDP including different levels of design detail and complexity as well as interesting algorithmic innovations.In thispaper we offer a structured review of approaches for the TRNDP;researchers will obtain a basis for evaluating existing research and identifying future research paths for further improving TRNDP models.Moreover,practitioners will acquire a detailed presentation of both the process and potential tools for automating the design of public transportation networks,their characteristics,capabilities,and strengths.Design of Public Transportation NetworksNetwork design is an important part of the public transportation operational planning process_Ceder2001_.It includes the design of route layouts and the determination of associated operational characteristics such as frequencies,rolling stock types,and so on As noted by Ceder and Wilson_1986_,network design elements are part of the overall operational planning process for public transportation networks;the process includes five steps:_1_design of routes;_2_ setting frequencies;_3_developing timetables;_4_scheduling buses;and_5_scheduling drivers. Route layout design is guided by passenger flows:routes are established to provide direct or indirect connection between locations and areas that generate and attract demand for transit travel, such as residential and activity related centers_Levinson1992_.For example,passenger flows between a central business district_CBD_and suburbs dictate the design of radial routes while demand for trips between different neighborhoods may lead to the selection of a circular route connecting them.Anticipated service coverage,transfers,desirable route shapes,and available resources usually determine the structure of the route network.Route shapes areusually constrained by their length and directness_route directness implies that route shapes are as straight as possible between connected points_,the usage of given roads,and the overlapping with other transit routes.The desirable outcome is a set of routesconnecting locations within a service area,conforming to given design criteria.For each route, frequencies and bus types are the operational characteristics typically determined through design. Calculations are based on expected passenger volumes along routes that are estimated empirically or by applying transit assignmenttechniques,under frequency requirement constraints_minimum and maximum allowedfrequencies guaranteeing safety and tolerable waiting times,respectively_,desired load factors, fleet size,and availability.These steps as well as the overall design.process have been largely based upon practical guidelines,the expert judgment of transit planners,and operators experience_Baaj and Mahmassani1991_.Two handbooks by Black _1995_and Vuchic_2004_outline frameworks to be followed by planners when designing a public transportation network that include:_1_establishing the objectives for the network;_2_ defining the operational environment of the network_road structure,demand patterns,and characteristics_;_3_developing;and_4_evaluating alternative public transportation networks.Despite the extensive use of practical guidelines and experience for designing transit networks,researchers have argued that empirical rules may not be sufficient for designing an efficient transit network and improvements may lead to better quality and more efficient services. For example,Fan and Machemehl_2004_noted that researchers and practitioners have been realizing that systematic and integrated approaches are essential for designing economically and operationally efficient transit networks.A systematic design process implies clear and consistent steps and associated techniques for designing a public transportation network,which is the scope of the TRNDP.TRNDP:OverviewResearch has extensively examined the TRNDP since the late1960s.In1979,Newell discussed previous research on the optimal design of bus routes and Hasselström_1981_ analyzed relevant studies and identified the major features of the TRNDP as demand characteristics,objective functions,constraints,passengerbehavior,solution techniques,and computational time for solving the problem.An extensive review of existing work on transit network design was provided by Chua_1984_who reported five types of transit system planning:_1_manual;_2_marketanalysis;_3_systems analysis;_4_systems analysis with interactive graphics;and_5_ mathematical optimization approach.Axhausemm and Smith_1984_analyzed existing heuristic algorithms for formulating the TRNDP in Europe,tested them,anddiscussed their potential implementation in the United States.Ceder and Wilson_1986_reportedprior work on the TRNDP and distinguished studies into those that deal with idealized networks and to those that focus on actual routes,suggesting that the main features of the TRNDP include demand characteristics,objectivesand constraints,and solution methods.At the same period,Van Nes et al._1988_grouped TRNDP models into six categories:_1_ analytical models for relating parameters of the public transportation system;_2_models determining the links to be used for public transportation route construction;_3_models determining routes only;_4_models assigning frequencies to a set of routes;_5_two-stage models for constructing routes and then assigning frequencies;and_6_models for simultaneously determining routes and frequencies.Spacovic et al._1994_and Spacovic and Schonfeld_1994_proposed a matrix organization and classified each study according to design parameters examined,objectives anticipated,network geometry,and demand characteristics. Ceder and Israeli_1997_suggested broad categorizations for TRNDP models into passenger flow simulation and mathematical programming models.Russo_1998_adopted the same categorization and noted that mathematical programming models guarantee optimal transit network design but sacrifice the level of detail in passenger representation and design parameters, while simulation models address passenger behavior but use heuristic procedures obtaining a TRNDP solution.Ceder_2001_enhanced his earlier categorization by classifying TRNDP models into simulation,ideal network,and mathematical programming models.Finally,in a recent series of studies,Fan and Machemehl_2004,2006a,b_divided TRNDP approaches into practical approaches,analytical optimization models for idealized conditions,and metaheuristic procedures for practical problems.The TRNDP is an optimization problem where objectives are defined,its constraints are determined,and a methodology is selected and validated for obtaining an optimal solution.The TRNDP is described by the objectives of the public transportation network service to be achieved, the operational characteristics and environment under which the network will operate,and the methodological approach for obtaining the optimal network design.Based on this description of the TRNDP,we propose a three-layer structure for organizing TRNDP approaches_Objectives, Parameters,and Methodology_.Each layer includes one or more items that characterize each study.The“Objectives”layer incorporates the goals set when designing a public transportation system such as the minimization of the costs of the system or the maximization of the quality of services provided.The“Parameters”layer describes the operating environment and includes both the design variables expected to be derived for the transit network_route layouts,frequencies_as well as environmental and operational parameters affecting and constraining that network_for example,allowable frequencies,desired load factors,fleet availability,demand characteristics and patterns,and so on_.Finally,the“Methodology”layer covers the logical–mathematical framework and algorithmic tools necessary to formulate and solve the TRNDP.The proposed structure follows the basic concepts toward setting up a TRNDP:deciding upon the objectives, selecting the transit network items and characteristics to be designed,setting the necessary constraints for the operating environment,and formulating and solving the problem. TRNDP:ObjectivesPublic transportation serves a very important social role while attempting to do this at the lowest possible operating cost.Objectives for designing daily operations of a public transportation system should encompass both angles.The literature suggests that most studies actually focus on both the service and economic efficiency when designing such a system. Practical goals for the TRNDP can be briefly summarized as follows_Fielding1987;van Oudheudsen et al.1987;Black1995_:_1_user benefit maximization;_2_operator cost minimization;_3_total welfare maximization;_4_capacity maximization;_5_energy conservation—protection of the environment;and_6_individual parameter optimization.Mandl_1980_indicated that public transportation systems have different objectives to meet. He commented,“even a single objective problem is difficult to attack”_p.401_.Often,these objectives are controversial since cutbacks in operating costs may require reductions in the quality of services.Van Nes and Bovy_2000_pointed out that selected objectives influence the attractiveness and performance of a public transportation network.According to Ceder and Wilson_1986_,minimization of generalized cost or time or maximization of consumer surplus were the most common objectives selected when developing transit network design models. Berechman_1993_agreed that maximization of total welfare is the most suitable objective for designing a public transportation system while Van Nes and Bovy_2000_argued that the minimization of total user and system costs seem the most suit able and less complicatedobjective_compared to total welfare_,while profit maximization leads to nonattractive public transportation networks.As can be seen in Table1,most studies seek to optimize total welfare,which incorporates benefits to the user and to the er benefits may include travel,access and waiting cost minimization,minimization of transfers,and maximization of coverage,while benefits for the system are maximum utilization and quality of service,minimization of operating costs, maximization of profits,and minimization of the fleet size used.Most commonly,total welfare is represented by the minimization of user and system costs.Some studies address specific objectives from the user,theoperator,or the environmental perspective.Passenger convenience,the number of transfers, profit and capacity maximization,travel time minimization,and fuel consumption minimization are such objectives.These studies either attempt to simplify the complex objective functions needed to setup the TRNDP_Newell1979;Baaj and Mahmassani1991;Chakroborty and Dwivedi2002_,or investigate specific aspects of the problem,such as objectives_Delle Site and Fillipi2001_,and the solution methodology_Zhao and Zeng2006;Yu and Yang2006_.Total welfare is,in a sense,a compromise between objectives.Moreover,as reported by some researchers such as Baaj and Mahmassani_1991_,Bielli et al._2002_,Chackroborty and Dwivedi_2002_,and Chakroborty_2003_,transit network design is inherently a multiobjective problem.Multiobjective models for solving the TRNDP have been based on the calculation of indicators representing different objectives for the problem at hand,both from the user and operator perspectives,such as travel and waiting times_user_,and capacity and operating costs _operator_.In their multiobjective model for the TRNDP,Baaj and Majmassani_1991_relied on the planner’s judgment and experience for selecting the optimal public transportation network,based on a set of indicators.In contrast,Bielli et al._2002_and Chakroborty and Dwivedi_2002_,combined indicators into an overall,weighted sum value, which served as the criterion for determining the optimaltransit network.TRNDP:ParametersThere are multiple characteristics and design attributes to consider for a realistic representation of a public transportation network.These form the parameters for the TRNDP.Part of these parameters is the problem set of decision variables that define its layout and operational characteristics_frequencies,vehicle size,etc._.Another set of design parameters represent the operating environment_network structure,demand characters,and patterns_, operational strategies and rules,and available resources for the public transportation network. These form the constraints needed to formulate the TRNDP and are,a-priori fixed,decided upon or assumed.Decision VariablesMost common decision variables for the TRNDP are the routes and frequencies of the public transportation network_Table1_.Simplified early studies derived optimal route spacing between predetermined parallel or radial routes,along with optimal frequencies per route_Holroyd1967; Byrne and Vuchic1972;Byrne1975,1976;Kocur and Hendrickson1982;Vaughan1986_,while later models dealt with the development of optimal route layouts and frequency determination. Other studies,additionally,considered fares_Kocur and Hendrickson1982;Morlok and Viton 1984;Chang and Schonfeld1991;Chien and Spacovic2001_,zones_Tsao and Schonfeld1983; Chang and Schonfeld1993a_,stop locations_Black1979;Spacovic and Schonfeld1994; Spacovic et al.1994;Van Nes2003;Yu and Yang2006_and bus types_Delle Site and Filippi 2001_.Network StructureSome early studies focused on the design of systems in simplified radial_Byrne1975;Black 1979;Vaughan1986_,or rectangular grid road networks_Hurdle1973;Byrne and Vuchic1972; Tsao and Schonfeld1984_.However,most approaches since the1980s were either applied to realistic,irregular grid networks or the network structure was of no importance for the proposed model and therefore not specified at all.Demand PatternsDemand patterns describe the nature of the flows of passengers expected to be accommodated by the public transportation network and therefore dictate its structure.For example,transit trips from a number of origins_for example,stops in a neighborhood_to a single destination_such as a bus terminal in the CBD of a city_and vice-versa,are characterized as many-to-one_or one-tomany_transit demand patterns.These patterns are typically encountered in public transportation systems connecting CBDs with suburbs and imply a structure of radial orparallel routes ending at a single point;models for patterns of that type have been proposed by Byrne and Vuchic_1972_,Salzborn_1972_,Byrne_1975,1976_,Kocur and Hendrickson _1982_,Morlok and Viton_1984_,Chang and Schonfeld_1991,1993a_,Spacovic and Schonfeld_1994_,Spacovic et al._1994_,Van Nes_2003_,and Chien et al._2003_.On the other hand,many-to-many demand patterns correspond to flows between multiple origins and destinations within an urban area,suggesting that the public transportation network is expected to connect various points in an area.Demand CharacteristicsDemand can be characterized either as“fixed”_or“inelastic”_or“elastic”;the later meaning that demand is affected by the performance and services provided by the public transportation network.Lee and Vuchic_2005_distinguished between two types of elastic demand:_1_demand per mode affected by transportation services,with total demand for travel kept constant;and_2_total demand for travel varying as a result of the performance of the transportation system and its modes.Fan and Machemehl_2006b_noted that the complexity of the TRNDP has led researchers intoassuming fixed demand,despite its inherent elastic nature.However,since the early1980s, studies included aspects of elastic demand in modeling the TRNDP_Hasselstrom1981;Kocur and Hendrickson1982_.Van Nes et al._1988_applied a simultaneous distribution-modal split model based on transit deterrence for estimatingdemand for public transportation.In a series of studies,Chang and Schonfeld_1991,1993a,b_ and Spacovic et al._1994_estimated demand as a direct function of travel times and fares with respect to their elasticities,while Chien and Spacovic2001_,followed the same approach assuming that demand is additionally affected by headways,route spacing and fares.Finally, studies by Leblanc_1988_,Imam_1998_,Cipriani et al._2005_,Lee and Vuchic_2005_;and Fan and Machemehl_2006a_based demand estimation on mode choice models for estimating transit demand as a function of total demand for travel.中文译文:公交路线网络设计问题:回顾摘要:公共交通网络的有效设计让交通理论与实践成为众人关注的焦点,随之发展出了很多规划相关公交路线网络设计问题(TRNDP)的模型与方法。
毕业设计外文翻译英文翻译英文原稿
Harmonic source identification and current separationin distribution systemsYong Zhao a,b,Jianhua Li a,Daozhi Xia a,*a Department of Electrical Engineering Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, Shaanxi 710049, Chinab Fujian Electric Power Dispatch and Telecommunication Center, 264 Wusi Road, Fuzhou, Fujian, 350003, China AbstractTo effectively diminish harmonic distortions, the locations of harmonic sources have to be identified and their currents have to be separated from that absorbed by conventional linear loads connected to the same CCP. In this paper, based on the intrinsic difference between linear and nonlinear loads in their V –I characteristics and by utilizing a new simplified harmonic source model, a new principle for harmonic source identification and harmonic current separation is proposed. By using this method, not only the existence of harmonic source can be determined, but also the contributions of the harmonic source and the linear loads to harmonic voltage distortion can be distinguished. The detailed procedure based on least squares approximation is given. The effectiveness of the approach is illustrated by test results on a composite load.2004 Elsevier Ltd. All rights reserved.Keywords: Distribution system; Harmonic source identification; Harmonic current separation; Least squares approximation1. IntroductionHarmonic distortion has experienced a continuous increase in distribution systems owing to the growing use of nonlinear loads. Many studies have shown that harmonics may cause serious effects on power systems, communication systems, and various apparatus [1–3]. Harmonic voltages at each point on a distribution network are not only determined by the harmonic currents produced by harmonic sources (nonlinear loads), but also related to all linear loads (harmonic current sinks) as well as the structure and parameters of the network. To effectively evaluate and diminish the harmonic distortion in power systems, the locations of harmonic sources have to be identified and the responsibility of the distortion caused by related individual customers has to be separated.As to harmonic source identification, most commonly the negative harmonic power is considered as an essential evidence of existing harmonic source [4–7]. Several approaches aiming at evaluating the contribution of an individual customer can also be found in the literatures. Schemes based on power factor measurement to penalize the customer’s harmonic currents are discussed in Ref. [8]. However, it would be unfair to use economical penalization if we could not distinguish whether the measured harmonic current is from nonlinear load or from linear load.In fact, the intrinsic difference between linear and nonlinear loads lies in their V –I characteristics. Harmonic currents of a linear load are i n linear proportion to its supplyharmonic voltages of the same order 次, whereas the harmonic currents of a nonlinear load are complex nonlinear functions of its supply fundamental 基波and harmonic voltage components of all orders. To successfully identify and isolate harmonic source in an individual customer or several customers connected at same point in the network, the V –I characteristics should be involved and measurement of voltages and currents under several different supply conditions should be carried out.As the existing approaches based on measurements of voltage and current spectrum or harmonic power at a certain instant cannot reflect the V –I characteristics, they may not provide reliable information about the existence and contribution of harmonic sources, which has been substantiated by theoretical analysis or experimental researches [9,10].In this paper, to approximate the nonlinear characteristics and to facilitate the work in harmonic source identification and harmonic current separation, a new simplified harmonic source model is proposed. Then based on the difference between linear and nonlinear loads in their V –I characteristics, and by utilizing the harmonic source model, a new principle for harmonic source identification and harmonic current separation is presented. By using the method, not only the existence of harmonic source can be determined, but also the contributions of the harmonic sources and the linear loads can be separated. Detailed procedure of harmonic source identification and harmonic current separation based on least squares approximation is presented. Finally, test results on a composite load containing linear and nonlinear loads are given to illustrate the effectiveness of the approach.2. New principle for harmonic source identification and current separationConsider a composite load to be studied in a distribution system, which may represent an individual consumer or a group of customers supplied by a common feeder 支路in the system. To identify whether it contains any harmonic source and to separate the harmonic currents generated by the harmonic sources from that absorbed by conventional linear loads in the measured total harmonic currents of the composite load, the following assumptions are made.(a) The supply voltage and the load currents are both periodical waveforms withperiod T; so that they can be expressed by Fourier series as1()s i n (2)h h h v t ht T πθ∞==+ (1)1()sin(2)h h h i t ht πφ∞==+The fundamental frequency and harmonic components can further be presented bycorresponding phasorshr hi h h hr hi h hV jV V I jI I θφ+=∠+=∠ , 1,2,3,...,h n = (2)(b) During the period of identification, the composite load is stationary, i.e. both its composition and circuit parameters of all individual loads keep unchanged.Under the above assumptions, the relationship between the total harmonic currents of the harmonic sources(denoted by subscript N) in the composite load and the supply voltage, i.e. the V –I characteristics, can be described by the following nonlinear equation ()()()N i t f v t = (3)and can also be represented in terms of phasors as()()122122,,,...,,,,,,...,,Nhr r i nr ni Nh Nhi r inr ni I V V V V V I I V V V V V ⎡⎤=⎢⎥⎣⎦ 2,3,...,h n = (4)Note that in Eq. (4), the initial time (reference time) of the voltage waveform has been properly selected such that the phase angle u1 becomes 0 and 10i V =, 11r V V =in Eq. (2)for simplicity.The V –I characteristics of the linear part (denote by subscript L) of the composite load can be represented by its equivalent harmonic admittance Lh Lh Lh Y G jB =+, and the total harmonic currents absorbed by the linear part can be described as,Lhr LhLh hr Lh Lhi LhLh hi I G B V I I B G V -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2,3,...,h n = (5)From Eqs. (4) and (5), the whole harmonic currents absorbed by the composite load can be expressed as()()122122,,,...,,,,,,...,,hr Lhr Nhr r i nr ni h hi Lhi Nhi r inr ni I I I V V V V V I I I I V V V V V ⎡⎤⎡⎤⎡⎤==-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 2,3,...,h n = (6)As the V –I characteristics of harmonic source are nonlinear, Eq. (6) can neither be directly used for harmonic source identification nor for harmonic current separation. To facilitate the work in practice, simplified methods should be involved. The common practice in harmonic studies is to represent nonlinear loads by means of current harmonic sources or equivalent Norton models [11,12]. However, these models are not of enough precision and new simplified model is needed.From the engineering point of view, the variations of hr V and hi V ; ordinarily fall into^3% bound of the rated bus voltage, while the change of V1 is usually less than ^5%. Within such a range of supply voltages, the following simplified linear relation is used in this paper to approximate the harmonic source characteristics, Eq. (4)112222112322,ho h h r r h i i hnr nr hni ni Nh ho h h r r h i i hnr nr hni ni a a V a V a V a V a V I b b V b V b V b V b V ++++++⎡⎤=⎢⎥++++++⎣⎦2,3,...,h n = (7)这个地方不知道是不是原文写错?23h r r b V 其他的都是2The precision and superiority of this simplified model will be illustrated in Section 4 by test results on several kinds of typical harmonic sources.The total harmonic current (Eq. (6)) then becomes112222112222,2,3,...,Lh Lh hr ho h h r r h i i hnr nr hni ni h Lh Lh hi ho h h r r h i i hnr nr hni ni G B V a a V a V a V a V a V I B G V b b V b V b V b V b V h n-++++++⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥++++++⎣⎦⎣⎦⎣⎦= (8)It can be seen from the above equations that the harmonic currents of the harmonic sources (nonlinear loads) and the linear loads differ from each other intrinsically in their V –I characteristics. The harmonic current component drawn by the linear loads is uniquely determined by the harmonic voltage component with same order in the supply voltage. On the other hand, the harmonic current component of the nonlinear loads contains not only a term caused by the same order harmonic voltage but also a constant term and the terms caused by fundamental and harmonic voltages of all other orders. This property will be used for identifying the existence of harmonic source sin composite load.As the test results shown in Section 4 demonstrate that the summation of the constant term and the component related to fundamental frequency voltage in the harmonic current of nonlinear loads is dominant whereas other components are negligible, further approximation for Eq. (7) can be made as follows.Let112'012()()nh h hkr kr hki ki k k h Nhnh h hkr kr hki kik k h a a V a V a V I b b V b V b V =≠=≠⎡⎤+++⎢⎥⎢⎥=⎢⎥⎢⎥+++⎢⎥⎢⎥⎣⎦∑∑ hhr hhi hr Nhhhr hhi hi a a V I b b V ⎡⎤⎡⎤''=⎢⎥⎢⎥⎣⎦⎣⎦hhrhhihr Lh Lh Nh hhrhhi hi a a V I I I b b V ''⎡⎤⎡⎤'''=-=⎢⎥⎢⎥''⎣⎦⎣⎦,2,3,...,hhr hhiLh Lh hhrhhi hhr hhi Lh Lh hhr hhi a a G B a a h n b b B G b b ''-⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥''⎣⎦⎣⎦⎣⎦The total harmonic current of the composite load becomes112012(),()2,3,...,nh h hkr kr hki ki k k hhhrhhi hr h Lh NhLhNh n hhrhhi hi h h hkr kr hki kik k h a a V a V a V a a V I I I I I b b V b b V b V b V h n=≠=≠⎡⎤+++⎢⎥⎢⎥''⎡⎤⎡⎤''=-=-=-⎢⎥⎢⎥⎢⎥''⎣⎦⎣⎦⎢⎥+++⎢⎥⎢⎥⎣⎦=∑∑ (9)By neglecting ''Nh I in the harmonic current of nonlinear load and adding it to the harmonic current of linear load, 'Nh I can then be deemed as harmonic current of thenonlinear load while ''Lh I can be taken as harmonic current of the linear load. ''Nh I =0 means the composite load contains no harmonic sources, while ''0NhI ≠signify that harmonic sources may exist in this composite load. As the neglected term ''Nh I is not dominant, it is obviousthat this simplification does not make significant error on the total harmonic current of nonlinear load. However, it makes the possibility or the harmonic source identification and current separation.3. Identification procedureIn order to identify the existence of harmonic sources in a composite load, the parameters in Eq. (9) should be determined primarily, i.e.[]0122hr h h h rh i hhr hhihnr hni C a a a a a a a a ''= []0122hi h h h rh i hhrhhihnr hni C b b b b b b b b ''=For this purpose, measurement of different supply voltages and corresponding harmoniccurrents of the composite load should be repeatedly performed several times in some short period while keeping the composite load stationary. The change of supply voltage can for example be obtained by switching in or out some shunt capacitors, disconnecting a parallel transformer or changing the tap position of transformers with OLTC. Then, the least squares approach can be used to estimate the parameters by the measured voltages and currents. The identification procedure will be explained as follows.(1) Perform the test for m (2m n ≥)times to get measured fundamental frequency andharmonic voltage and current phasors ()()k k h h V θ∠,()()k k hh I φ∠,()1,2,,,1,2,,k m h n == .(2) For 1,2,,k n = ,transfer the phasors corresponding to zero fundamental voltage phase angle ()1(0)k θ=and change them into orthogonal components, i.e.()()11kkr V V = ()10ki V =()()()()()()()()()()11cos sin kkkkk kkkhr h h hihhV V h V V h θθθθ=-=-()()()()()()()()()()11cos sin k kkkk kkkhrhhhihhI I h I I h φθφθ=-=-,2,3,...,h n =(3)Let()()()()()()()()1221Tk k k k k k k k r i hr hi nr ni VV V V V V V V ⎡⎤=⎣⎦ ,()1,2,,k m = ()()()12Tm X V V V ⎡⎤=⎣⎦ ()()()12T m hr hr hr hrW I I I ⎡⎤=⎣⎦()()()12Tm hi hi hihi W I I I ⎡⎤=⎣⎦ Minimize ()()()211hr mk hr k I C V=-∑ and ()()()211him k hi k IC V=-∑, and determine the parametershr C and hi C by least squares approach as [13]:()()11T T hr hr T T hi hiC X X X W C X X X W --== (10)(4) By using Eq. (9), calculate I0Lh; I0Nh with the obtained Chr and Chi; then the existence of harmonic source is identified and the harmonic current is separated.It can be seen that in the course of model construction, harmonic source identification and harmonic current separation, m times changing of supply system operating condition and measuring of harmonic voltage and currents are needed. More accurate the model, more manipulations are necessary.To compromise the needed times of the switching operations and the accuracy of the results, the proposed model for the nonlinear load (Eq. (7)) and the composite load (Eq. (9)) can be further simplified by only considering the dominant terms in Eq. (7), i.e.01111,Nhr h h hhr hhi hr Nh Nhi ho h hhrhhi hi I a a V a a V I I b b V b b V +⎡⎤⎡⎤⎡⎤⎡⎤==+⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦2,3,,h n = (11) 01111h h Nh ho h a a V I b b V +⎡⎤'=⎢⎥+⎣⎦01111,hr hhrhhi hr h h h LhNh hi hhr hhihi ho h I a a V a a V I I I I b b V b b V ''+⎡⎤⎡⎤⎡⎤⎡⎤''==-=-⎢⎥⎢⎥⎢⎥⎢⎥''+⎣⎦⎣⎦⎣⎦⎣⎦2,3,,h n = (12) In this case, part equations in the previous procedure should be changed as follows[]01hr h h hhrhhi C a a a a ''= []01hi h h hhrhhiC b b b b ''= ()()()1Tk k k hr hi V V V ⎡⎤=⎣⎦ Similarly, 'Nh I and 'Lh I can still be taken as the harmonic current caused by thenonlinear load and the linear load, respectively.4. Experimental validation4.1. Model accuracyTo demonstrate the validity of the proposed harmonic source models, simulations are performed on the following three kind of typical nonlinear loads: a three-phase six-pulse rectifier, a single-phase capacitor-filtered rectifier and an acarc furnace under stationary operating condition.Diagrams of the three-phase six-pulse rectifier and the single-phase capacitor-filtered rectifier are shown in Figs. 1 and 2 [14,15], respectively, the V –I characteristic of the arc furnace is simplified as shown in Fig. 3 [16].The harmonic currents used in the simulation test are precisely calculated from their mathematical model. As to the supply voltage, VekT1 is assumed to be uniformly distributed between 0.95 and 1.05, VekThr and VekThi ek 1; 2;…;m T are uniformly distributed between20.03 and 0.03 with base voltage 10 kV and base power 1 MVFig. 1. Diagram of three-phase six-pulse rectifier.Fig. 2. Diagram of single-phase capacitor-filtered rectifierFig. 3. Approximate V –I characteristics of arc furnace.Three different models including the harmonic current source (constant current) model, the Norton model and the proposed simplified model are simulated and estimated by the least squares approach for comparison.For the three-phase six-pulse rectifier with fundamental currentI=1.7621; the1 parameters in the simplified model for fifth and seventh harmonic currents are listed in Table 1.To compare the accuracy of the three different models, the mean and standard deviations of the errors on Ihr; Ihi and Ih between estimated value and the simulated actual value are calculated for each model. The error comparison of the three models on the three-phase six-pulse rectifier is shown in Table 2, where mhr; mhi and mha denote the mean, and shr; shi and sha represent the standard deviations. Note that I1 and _Ih in Table 2are the current values caused by rated pure sinusoidal supply voltage.Error comparisons on the single-phase capacitor-filtered rectifier and the arc furnace load are listed in Table 3 and 4, respectively.It can be seen from the above test results that the accuracy of the proposed model is different for different nonlinear loads, while for a certain load, the accuracy will decrease as the harmonic order increase. However, the proposed model is always more accurate than other two models.It can also be seen from Table 1 that the componenta50 t a51V1 and b50 t b51V1 are around 20:0074 t0:3939 0:3865 and 0:0263 t 0:0623 0:0886 while the componenta55V5r and b55V5i will not exceed 0:2676 £0:03 0:008 and 0:9675 £0:003 0:029; respectively. The result shows that the fifth harmonic current caused by the summation of constant term and the fundamental voltage is about 10 times of that caused by harmonic voltage with same order, so that the formal is dominant in the harmonic current for the three-phase six-pulse rectifier. The same situation exists for other harmonic orders and other nonlinear loads.4.2. Effectiveness of harmonic source identification and current separationTo show the effectiveness of the proposed harmonic source identification method, simulations are performed on a composite load containing linear load (30%) and nonlinear loads with three-phase six-pulse rectifier (30%),single-phase capacitor-filtered rectifier (20%) and ac arc furnace load (20%).For simplicity, only the errors of third order harmonic current of the linear and nonlinear loads are listed in Table 5, where IN3 denotes the third order harmonic current corresponding to rated pure sinusoidal supply voltage; mN3r ;mN3i;mN3a and mL3r ;mL3i;mL3a are error means of IN3r ; IN3i; IN3 and IL3r ; IL3i; IL3 between the simulated actual value and the estimated value;sN3r ;sN3i;sN3a and sL3r ;sL3i;sL3a are standard deviations.Table 2Table 3It can be seen from Table 5 that the current errors of linear load are less than that of nonlinear loads. This is because the errors of nonlinear load currents are due to both the model error and neglecting the components related to harmonic voltages of the same order, whereas only the later components introduce errors to the linear load currents. Moreover, it can be found that more precise the composite load model is, less error is introduced. However, even by using the very simple model (12), the existence of harmonic sources can be correctly identified and the harmonic current of linear and nonlinear loads can be effectively separated. Table 4Error comparison on the arc furnaceTable 55. ConclusionsIn this paper, from an engineering point of view, firstly anew linear model is presented for representing harmonic sources. On the basis of the intrinsic difference between linear and nonlinear loads in their V –I characteristics, and by using the proposed harmonic source model, a new concise principle for identifying harmonic sources and separating harmonic source currents from that of linear loads is proposed. The detailed modeling and identification procedure is also developed based on the least squares approximation approach. Test results on several kinds of typical harmonic sources reveal that the simplified model is of sufficient precision, and is superior to other existing models. The effectiveness of the harmonic source identification approach is illustrated using a composite nonlinear load.AcknowledgementsThe authors wish to acknowledge the financial support by the National Natural Science Foundation of China for this project, under the Research Program Grant No.59737140. References[1] IEEE Working Group on Power System Harmonics, The effects of power system harmonics on power system equipment and loads. IEEE Trans Power Apparatus Syst 1985;9:2555–63.[2] IEEE Working Group on Power System Harmonics, Power line harmonic effects on communication line interference. IEEE Trans Power Apparatus Syst 1985;104(9):2578–87.[3] IEEE Task Force on the Effects of Harmonics, Effects of harmonic on equipment. IEEE Trans Power Deliv 1993;8(2):681–8.[4] Heydt GT. Identification of harmonic sources by a State Estimation Technique. IEEE Trans Power Deliv 1989;4(1):569–75.[5] Ferach JE, Grady WM, Arapostathis A. An optimal procedure for placing sensors and estimating the locations of harmonic sources in power systems. IEEE Trans Power Deliv 1993;8(3):1303–10.[6] Ma H, Girgis AA. Identification and tracking of harmonic sources in a power system using Kalman filter. IEEE Trans Power Deliv 1996;11(3):1659–65.[7] Hong YY, Chen YC. Application of algorithms and artificial intelligence approach for locating multiple harmonics in distribution systems. IEE Proc.—Gener. Transm. Distrib 1999;146(3):325–9.[8] Mceachern A, Grady WM, Moncerief WA, Heydt GT, McgranaghanM. Revenue and harmonics: an evaluation of someproposed rate structures. IEEE Trans Power Deliv 1995;10(1):474–82.[9] Xu W. Power direction method cannot be used for harmonic sourcedetection. Power Engineering Society Summer Meeting, IEEE; 2000.p. 873–6.[10] Sasdelli R, Peretto L. A VI-based measurement system for sharing the customer and supply responsibility for harmonic distortion. IEEETrans Instrum Meas 1998;47(5):1335–40.[11] Arrillaga J, Bradley DA, Bodger PS. Power system harmonics. NewYork: Wiley; 1985.[12] Thunberg E, Soder L. A Norton approach to distribution networkmodeling for harmonic studies. IEEE Trans Power Deliv 1999;14(1):272–7.[13] Giordano AA, Hsu FM. Least squares estimation with applications todigital signal processing. New York: Wiley; 1985.[14] Xia D, Heydt GT. Harmonic power flow studies. Part I. Formulationand solution. IEEE Trans Power Apparatus Syst 1982;101(6):1257–65.[15] Mansoor A, Grady WM, Thallam RS, Doyle MT, Krein SD, SamotyjMJ. Effect of supply voltage harmonics on the input current of single phase diode bridge rectifier loads. IEEE Trans Power Deliv 1995;10(3):1416–22.[16] Varadan S, Makram EB, Girgis AA. A new time domain voltage source model for an arc furnace using EMTP. IEEE Trans Power Deliv 1996;11(3):1416–22.。
毕业设计(论文)外文文献原文及译文
毕业设计(论文)外文文献原文及译文Chapter 11. Cipher Techniques11.1 ProblemsThe use of a cipher without consideration of the environment in which it is to be used may not provide the security that the user expects. Three examples will make this point clear.11.1.1 Precomputing the Possible MessagesSimmons discusses the use of a "forward search" to decipher messages enciphered for confidentiality using a public key cryptosystem [923]. His approach is to focus on the entropy (uncertainty) in the message. To use an example from Section 10.1(page 246), Cathy knows that Alice will send one of two messages—BUY or SELL—to Bob. The uncertainty is which one Alice will send. So Cathy enciphers both messages with Bob's public key. When Alice sends the message, Bob intercepts it and compares the ciphertext with the two he computed. From this, he knows which message Alice sent.Simmons' point is that if the plaintext corresponding to intercepted ciphertext is drawn from a (relatively) small set of possible plaintexts, the cryptanalyst can encipher the set of possible plaintexts and simply search that set for the intercepted ciphertext. Simmons demonstrates that the size of the set of possible plaintexts may not be obvious. As an example, he uses digitized sound. The initial calculations suggest that the number of possible plaintexts for each block is 232. Using forward search on such a set is clearly impractical, but after some analysis of the redundancy in human speech, Simmons reduces the number of potential plaintexts to about 100,000. This number is small enough so that forward searches become a threat.This attack is similar to attacks to derive the cryptographic key of symmetric ciphers based on chosen plaintext (see, for example, Hellman's time-memory tradeoff attack [465]). However, Simmons' attack is for public key cryptosystems and does not reveal the private key. It only reveals the plaintext message.11.1.2 Misordered BlocksDenning [269] points out that in certain cases, parts of a ciphertext message can be deleted, replayed, or reordered.11.1.3 Statistical RegularitiesThe independence of parts of ciphertext can give information relating to the structure of the enciphered message, even if the message itself is unintelligible. The regularity arises because each part is enciphered separately, so the same plaintext always produces the same ciphertext. This type of encipherment is called code book mode, because each part is effectively looked up in a list of plaintext-ciphertext pairs.11.1.4 SummaryDespite the use of sophisticated cryptosystems and random keys, cipher systems may provide inadequate security if not used carefully. The protocols directing how these cipher systems are used, and the ancillary information that the protocols add to messages and sessions, overcome these problems. This emphasizes that ciphers and codes are not enough. The methods, or protocols, for their use also affect the security of systems.11.2 Stream and Block CiphersSome ciphers divide a message into a sequence of parts, or blocks, and encipher each block with the same key.Definition 11–1. Let E be an encipherment algorithm, and let Ek(b) bethe encipherment of message b with key k. Let a message m = b1b2…, whereeach biis of a fixed length. Then a block cipher is a cipher for whichE k (m) = Ek(b1)Ek(b2) ….Other ciphers use a nonrepeating stream of key elements to encipher characters of a message.Definition 11–2. Let E be an encipherment algorithm, and let Ek(b) bethe encipherment of message b with key k. Let a message m = b1b2…, whereeach bi is of a fixed length, and let k = k1k2…. Then a stream cipheris a cipher for which Ek (m) = Ek1(b1)Ek2(b2) ….If the key stream k of a stream cipher repeats itself, it is a periodic cipher.11.2.1 Stream CiphersThe one-time pad is a cipher that can be proven secure (see Section 9.2.2.2, "One-Time Pad"). Bit-oriented ciphers implement the one-time pad by exclusive-oring each bit of the key with one bit of the message. For example, if the message is 00101 and the key is 10010, the ciphertext is01||00||10||01||10 or 10111. But how can one generate a random, infinitely long key?11.2.1.1 Synchronous Stream CiphersTo simulate a random, infinitely long key, synchronous stream ciphers generate bits from a source other than the message itself. The simplest such cipher extracts bits from a register to use as the key. The contents of the register change on the basis of the current contents of the register.Definition 11–3. An n-stage linear feedback shift register (LFSR)consists of an n-bit register r = r0…rn–1and an n-bit tap sequence t =t 0…tn–1. To obtain a key bit, ris used, the register is shifted one bitto the right, and the new bit r0t0⊕…⊕r n–1t n–1 is inserted.The LFSR method is an attempt to simulate a one-time pad by generating a long key sequence from a little information. As with any such attempt, if the key is shorter than the message, breaking part of the ciphertext gives the cryptanalyst information about other parts of the ciphertext. For an LFSR, a known plaintext attack can reveal parts of the key sequence. If the known plaintext is of length 2n, the tap sequence for an n-stage LFSR can be determined completely.Nonlinear feedback shift registers do not use tap sequences; instead, the new bit is any function of the current register bits.Definition 11–4. An n-stage nonlinear feedback shift register (NLFSR)consists of an n-bit register r = r0…rn–1. Whenever a key bit is required,ris used, the register is shifted one bit to the right, and the new bitis set to f(r0…rn–1), where f is any function of n inputs.NLFSRs are not common because there is no body of theory about how to build NLFSRs with long periods. By contrast, it is known how to design n-stage LFSRs with a period of 2n– 1, and that period is maximal.A second technique for eliminating linearity is called output feedback mode. Let E be an encipherment function. Define k as a cryptographic key,(r) and define r as a register. To obtain a bit for the key, compute Ekand put that value into the register. The rightmost bit of the result is exclusive-or'ed with one bit of the message. The process is repeated until the message is enciphered. The key k and the initial value in r are the keys for this method. This method differs from the NLFSR in that the register is never shifted. It is repeatedly enciphered.A variant of output feedback mode is called the counter method. Instead of using a register r, simply use a counter that is incremented for every encipherment. The initial value of the counter replaces r as part of the key. This method enables one to generate the ith bit of the key without generating the bits 0…i – 1. If the initial counter value is i, set. In output feedback mode, one must generate all the register to i + ithe preceding key bits.11.2.1.2 Self-Synchronous Stream CiphersSelf-synchronous ciphers obtain the key from the message itself. The simplest self-synchronous cipher is called an autokey cipher and uses the message itself for the key.The problem with this cipher is the selection of the key. Unlike a one-time pad, any statistical regularities in the plaintext show up in the key. For example, the last two letters of the ciphertext associated with the plaintext word THE are always AL, because H is enciphered with the key letter T and E is enciphered with the key letter H. Furthermore, if theanalyst can guess any letter of the plaintext, she can determine all successive plaintext letters.An alternative is to use the ciphertext as the key stream. A good cipher will produce pseudorandom ciphertext, which approximates a randomone-time pad better than a message with nonrandom characteristics (such as a meaningful English sentence).This type of autokey cipher is weak, because plaintext can be deduced from the ciphertext. For example, consider the first two characters of the ciphertext, QX. The X is the ciphertext resulting from enciphering some letter with the key Q. Deciphering, the unknown letter is H. Continuing in this fashion, the analyst can reconstruct all of the plaintext except for the first letter.A variant of the autokey method, cipher feedback mode, uses a shift register. Let E be an encipherment function. Define k as a cryptographic(r). The key and r as a register. To obtain a bit for the key, compute Ek rightmost bit of the result is exclusive-or'ed with one bit of the message, and the other bits of the result are discarded. The resulting ciphertext is fed back into the leftmost bit of the register, which is right shifted one bit. (See Figure 11-1.)Figure 11-1. Diagram of cipher feedback mode. The register r is enciphered with key k and algorithm E. The rightmost bit of the result is exclusive-or'ed with one bit of the plaintext m i to produce the ciphertext bit c i. The register r is right shifted one bit, and c i is fed back into the leftmost bit of r.Cipher feedback mode has a self-healing property. If a bit is corrupted in transmission of the ciphertext, the next n bits will be deciphered incorrectly. But after n uncorrupted bits have been received, the shift register will be reinitialized to the value used for encipherment and the ciphertext will decipher properly from that point on.As in the counter method, one can decipher parts of messages enciphered in cipher feedback mode without deciphering the entire message. Let the shift register contain n bits. The analyst obtains the previous n bits of ciphertext. This is the value in the shift register before the bit under consideration was enciphered. The decipherment can then continue from that bit on.11.2.2 Block CiphersBlock ciphers encipher and decipher multiple bits at once, rather than one bit at a time. For this reason, software implementations of block ciphers run faster than software implementations of stream ciphers. Errors in transmitting one block generally do not affect other blocks, but as each block is enciphered independently, using the same key, identical plaintext blocks produce identical ciphertext blocks. This allows the analyst to search for data by determining what the encipherment of a specific plaintext block is. For example, if the word INCOME is enciphered as one block, all occurrences of the word produce the same ciphertext.To prevent this type of attack, some information related to the block's position is inserted into the plaintext block before it is enciphered. The information can be bits from the preceding ciphertext block [343] or a sequence number [561]. The disadvantage is that the effective block size is reduced, because fewer message bits are present in a block.Cipher block chaining does not require the extra information to occupy bit spaces, so every bit in the block is part of the message. Before a plaintext block is enciphered, that block is exclusive-or'ed with the preceding ciphertext block. In addition to the key, this technique requires an initialization vector with which to exclusive-or the initial plaintext block. Taking Ekto be the encipherment algorithm with key k, and I to be the initialization vector, the cipher block chaining technique isc 0 = Ek(m⊕I)c i = Ek(mi⊕ci–1) for i > 011.2.2.1 Multiple EncryptionOther approaches involve multiple encryption. Using two keys k and k' toencipher a message as c = Ek' (Ek(m)) looks attractive because it has aneffective key length of 2n, whereas the keys to E are of length n. However, Merkle and Hellman [700] have shown that this encryption technique can be broken using 2n+1encryptions, rather than the expected 22n(see Exercise 3).Using three encipherments improves the strength of the cipher. There are several ways to do this. Tuchman [1006] suggested using two keys k and k':c = Ek (Dk'(Ek(m)))This mode, called Encrypt-Decrypt-Encrypt (EDE) mode, collapses to a single encipherment when k = k'. The DES in EDE mode is widely used in the financial community and is a standard (ANSI X9.17 and ISO 8732). It is not vulnerable to the attack outlined earlier. However, it is vulnerable to a chosen plaintext and a known plaintext attack. If b is the block size in bits, and n is the key length, the chosen plaintext attacktakes O(2n) time, O(2n) space, and requires 2n chosen plaintexts. The known plaintext attack requires p known plaintexts, and takes O(2n+b/p) time and O(p) memory.A second version of triple encipherment is the triple encryption mode [700]. In this mode, three keys are used in a chain of encipherments.c = Ek (Ek'(Ek''(m)))The best attack against this scheme is similar to the attack on double encipherment, but requires O(22n) time and O(2n) memory. If the key length is 56 bits, this attack is computationally infeasible.11.3 Networks and CryptographyBefore we discuss Internet protocols, a review of the relevant properties of networks is in order. The ISO/OSI model [990] provides an abstract representation of networks suitable for our purposes. Recall that the ISO/OSI model is composed of a series of layers (see Figure 11-2). Each host, conceptually, has a principal at each layer that communicates with a peer on other hosts. These principals communicate with principals at the same layer on other hosts. Layer 1, 2, and 3 principals interact only with similar principals at neighboring (directly connected) hosts. Principals at layers 4, 5, 6, and 7 interact only with similar principals at the other end of the communication. (For convenience, "host" refers to the appropriate principal in the following discussion.)Figure 11-2. The ISO/OSI model. The dashed arrows indicate peer-to-peer communication. For example, the transport layers are communicating with each other. The solid arrows indicate the actual flow of bits. For example, the transport layer invokes network layer routines on the local host, which invoke data link layer routines, which put the bits onto the network. The physical layer passes the bits to the next "hop," or host, on the path. When the message reaches the destination, it is passed up to the appropriatelevel.Each host in the network is connected to some set of other hosts. They exchange messages with those hosts. If host nob wants to send a message to host windsor, nob determines which of its immediate neighbors is closest to windsor (using an appropriate routing protocol) and forwards the message to it. That host, baton, determines which of its neighbors is closest to windsor and forwards the message to it. This process continues until a host, sunapee, receives the message and determines that windsor is an immediate neighbor. The message is forwarded to windsor, its endpoint.Definition 11–5. Let hosts C0, …, Cnbe such that Ciand Ci+1are directlyconnected, for 0 i < n. A communications protocol that has C0 and Cnasits endpoints is called an end-to-end protocol. A communications protocolthat has Cj and Cj+1as its endpoints is called a link protocol.The difference between an end-to-end protocol and a link protocol is that the intermediate hosts play no part in an end-to-end protocol other than forwarding messages. On the other hand, a link protocol describes how each pair of intermediate hosts processes each message.The protocols involved can be cryptographic protocols. If the cryptographic processing is done only at the source and at the destination, the protocol is an end-to-end protocol. If cryptographic processing occurs at each host along the path from source to destination, the protocolis a link protocol. When encryption is used with either protocol, we use the terms end-to-end encryption and link encryption, respectively.In link encryption, each host shares a cryptographic key with its neighbor. (If public key cryptography is used, each host has its neighbor's public key. Link encryption based on public keys is rare.) The keys may be set on a per-host basis or a per-host-pair basis. Consider a network with four hosts called windsor, stripe, facer, and seaview. Each host is directly connected to the other three. With keys distributed on a per-host basis, each host has its own key, making four keys in all. Each host has the keys for the other three neighbors, as well as its own. All hosts use the same key to communicate with windsor. With keys distributed on a per-host-pair basis, each host has one key per possible connection, making six keys in all. Unlike the per-host situation, in the per-host-pair case, each host uses a different key to communicate with windsor. The message is deciphered at each intermediate host, reenciphered for the next hop, and forwarded. Attackers monitoring the network medium will not be able to read the messages, but attackers at the intermediate hosts will be able to do so.In end-to-end encryption, each host shares a cryptographic key with each destination. (Again, if the encryption is based on public key cryptography, each host has—or can obtain—the public key of each destination.) As with link encryption, the keys may be selected on a per-host or per-host-pair basis. The sending host enciphers the message and forwards it to the first intermediate host. The intermediate host forwards it to the next host, and the process continues until the message reaches its destination. The destination host then deciphers it. The message is enciphered throughout its journey. Neither attackers monitoring the network nor attackers on the intermediate hosts can read the message. However, attackers can read the routing information used to forward the message.These differences affect a form of cryptanalysis known as traffic analysis.A cryptanalyst can sometimes deduce information not from the content ofthe message but from the sender and recipient. For example, during the Allied invasion of Normandy in World War II, the Germans deduced which vessels were the command ships by observing which ships were sending and receiving the most signals. The content of the signals was not relevant; their source and destination were. Similar deductions can reveal information in the electronic world.第十一章密码技术11.1问题在没有考虑加密所要运行的环境时,加密的使用可能不能提供用户所期待的安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
供配电系统摘要:电力系统的基本功能是向用户输送电能。
lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。
对于所有用户都期望以最低的价格买到具有高度可靠性的电能。
然而,经济性与可靠性这两个因素是互相矛盾的。
要提高供电网络的可靠性就必须增加网络建设投资成本。
但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。
通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。
关键词:供配电,供电可靠性,无功补偿,负荷分配1 引言电力体制的改革引发了新一轮大规模的电力建设热潮从而极大地推动了电力技术革命新技术新设备的开发与应用日新月异特别是信息技术与电力技术的结合在很大程度上提高了电能质量和电力供应的可靠性由于技术的发展又降低了电力建设的成本进而推动了电网设备的更新换代本文就是以此为契机以国内外配电自动化中一些前沿问题为内容以配电自动化建设为背景对当前电力系统的热点技术进行一些较深入的探讨和研究主要完成了如下工作.(1)提出了配电自动化建设的两个典型模式即―体化模式和分立化模式侧重分析了分立模式下的配电自动化系统体系结构给出了软硬件配置主站选择管理模式最佳通讯方式等是本文研究的前提和实现平台.(2)针对配电自动化中故障测量定位与隔离以及供电恢复这一关键问题分析了线路故障中电压电流等电量的变化导出了相间短路工况下故障定位的数学描述方程并给出了方程的解以及故障情况下几个重要参数s U& s I& e I& 选择表通过对故障的自动诊断与分析得出了优化的隔离和恢复供电方案自动实现故障快速隔离与网络重构减少了用户停电范围和时间有效提高配网供电可靠性文中还给出了故障分段判断以及网络快速重构的软件流程和使用方法.(3)状态估计是实现配电自动化中关键技术之一本文在阐述状态估计方法基础上给出了不良测量数据的识别和结构性错误的识别方法针对状态估计中数据对基于残差的坏数据检测和异常以及状态量中坏数据对状态估计的影响及存在的问题提出了状态估计中拓扑错误的一种实用化检测和辩识方法针对窃电漏计电费问题独创性提出一种通过电量突变和异常分析防止窃电的新方法并在潍坊城区配电得到验证.(4)针对配电网负荷预测建模困难参数离散度大以及相关因素多等问题本文在分析常规负荷预测模型及方法基础上引入了气象因素日期类型社会环境影响等参数给出了基于神经网络的电力负荷预测方法实例验证了方法的正确性.(5)针对无源滤波在抑制谐波和无功补偿方面的不足以及补偿度的不连续性本文提出了一种PWM 主电路拓朴结构和基于无功功率理论的有源滤波方案建立了基于Saber Designer 仿真平台仿真分析证明了方案的可行性同时结合配电自动化技术对配电网动态无功优化补偿和降低线损的方法进行了设计分析通过实例计算验证了其客观的经济效益.(6)针对中国电力市场未来的发展趋势以及政府监管下的电力市场公平交易设计了一种适合我国电力市场现状按照电价分组电量协调分组竞价的短期电力交易模式给出了基于边际电价的机组组合算法制订交易计划的数学模型以及安全经济约束等在竞争比例逐步提高的情况下能够较好地解决原有中长期合同电价和短期竞争电价的矛盾减少电厂不公平的收益差异同时也可在电力市场全网的负荷曲线上对所有电厂进行限量优化减少总的系统购电费用.2 配电网分析配电网是电力系统中的一个重要环节,配电网接地方式和安全运行直接关系到电力系统的安全和稳定。
而接地方式的选择,是与本国国情、自然环境、设备制造和运行水平等有关的,例如,雷电的活动情况、绝缘结构的设计、对周边的干扰等因素,都会影响中性点接地方式的选择;反过来,中性点接地方式对电力系统的设计、运行、调试以及发展都有很大影响。
一般在电压等级较高的系统中,绝缘费用在设备总价格中占相当大的比重,降低绝缘水平带来的经济效益很显著,通常就采用中性点直接接地的方式,而采用自动重合闸来保证供电可靠性:相反,在电压等级较低的系统中,通常都采用中性点不接地的方式来提高供电可靠性。
因此,在综合考虑供电可靠性、安全因素、过电压因素、继电保护的选择、投资费用等各方面因素的情况下,来论证正确选择配电网接地方式的重要性,以及如何不断开发,利用新型接地装置来应用在配电网接地系统中是当今配电网接地方式的一个重要课题。
本文主要工作是对lOkV配电网接地方式进行研究和比较选择。
分别论述各类接地方式的优缺点,主要有国内外比较常用的中性点不接地方式、中性点经消弧线圈接地方式(也称谐振接地方式)、中性点电阻接地方式、中性点直接接地方式。
通过技术比较确定最优接地方式,还利用一种近几年研究开发的,应用在谐振接地方式中的自动跟踪补偿装置,再配以灵敏的小电流接地选线保护,能够有效限制电网的故障接地电弧,更有利于电网的安全运行。
本文首先对配电网各类接地方式做深入的研究。
全面介绍国内外几种常用的中性点接地方式的运行特性,通过技术经济比较对不同的接地方式进行综合评价,再结合不同的接地方式的发展前景得出结论,优化了的谐振接地方式表现出很大的发展潜力。
然后,本文对lOkV配电网中性点谐振接地方式的运行特性进行了研究和介绍。
从限制故障接地电弧的危害出发,重点论述如何利用电流谐振原理,有效熄灭故障接地电弧等。
接着,本文结合国内外科技的发展和创新成果,对谐振接地优化方式中的微机接地保护性和自动跟踪补偿装置进行全面的分析与论述,说明谐振接地优化方式在供电可靠性、人身安全、设备安全和通信干扰等方面,具有较好的运行特性,既解决了小电流接地系统接地保护的选择性,又实现了自动调谐,使此种接地方式成为配电网比较理想的中性点接地方式。
本文同时还对谐振接地方式实施技术进行了研究,包括消弧线圈的参数选择、安装、调整、运行与维护等内容。
最后,本文总结了本课题研究的内容。
谐振接地籍助微机技术的支持,近些年来国内外均在进行优化,优化谐振接地技术是提高供电可靠性、保护人身安全、设备安全和电磁环境等的一项合理的重要技术手段,而谐振接地实施技术更充分发挥谐振接地方式的功能,使谐振接地方式具有更好的技术经济指标。
随著电网的不断发展和丰富的实践结果表明,以谐振接地方式为代表的小电流接地方式优于其他接地方式,这是配电网的中性点接地方式发展的总趋势,在今后的配电网接地方式中应推广应用。
本论文提出的思路、方案和结论不仅对于lOkV配电网中性点接地方式选择研究、实际工程应用具有实际的参考作用,对于其他电压等级中性点接地方式选择同样具有借鉴的作用。
电力系统的基本功能是向用户输送电能。
lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。
对于所有用户都期望以最低的价格买到具有高度可靠性的电能。
然而,经济性与可靠性这两个因素是互相矛盾的。
要提高供电网络的可靠性就必须增加网络建设投资成本。
但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。
通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。
论文针对配电网各种接线模式的特点,就各种接线模式的经济性和可靠性进行了分析。
3 小结论文首先介绍lOkV配电网各种典型的接线模式和国外几个国家的典型接线模式,然后确定配电网接线模式分析的思路,明确进行分析的必要性和重要性。
再提出最优分段数计算的必要性,阐述最优分段数对经济性和可靠性的影响,然后建立最优分段数计算模型,并简单介绍各种接线模式的供电方案。
而后对配电网各种接线模式的可靠性和经济性进行了计算和分析,通过计算并描绘的各种图表。
并对最优分段数作了分析和讨论。
文章最后对各种接线模式的经济性和可靠性进行总结,分析了各种接线模式各自的优点和缺点,其适用情况。
并结合实际情况针对lOkV配电网的规划和建设提出有益的建议。
为lOkV配电网的规划设计及为建成网架坚实、布局合理、管理科学、能够安全、优质、高效运行的配电网提供理论的依据和有益的指引。
参考文献[1]苏文成.工厂供电[M].机械工业出版社.1999.9[2]刘介才.工厂供电设计指导[M].机械工业出版社.1999.12[3]供配电系统设计规范[S].中国计划出版社.1996[4]低压配电设计规范[S].中国计划出版社.1996.6Power Supply and Distribution System ABSTRACT:The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWORDS: power supply and distribution, power distribution reliability,reactive compensation, load distributionThe revolution of electric power system ,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research introduces the building condition of distributionautomation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power fromburthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can in safety and limit the earth electric arc byusing auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improvethe reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us subsection, elaborating the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electricdistribution net.References[1] Wencheng Su. Factories power supply [M]. Machinery Industry Publishing House. 1999.9[2] Jiecai Liu. Factories power supply design guidance [M]. Machinery Industry Publishing House.1999.12[3] Power supply and distribution system designspecifications[S].China plans Press. 1996[4] Low-voltage distribution design specifications [S].China plans Press. 1996.6。