D53换元法与分部积分法58677
换元积分法与分部积分法
d
xn
(3) 统一函数: 利用三角公式 ; 配元方法
(4) 巧妙换元或配元
2022年9月29日8时31分
21
上一页 下一页 主 页 返回 退机出动 目录 上页 下页 返回 结束
思考与练习 1. 下列各题求积方法有何不同?
(1)
dx 4 x
(2)
4
d
x x
2
(3)
x 4 x2
dx
1 2
d(4 x2 ) 4 x2
13
上一页 下一页 主 页 返回 退出
例10 求
解法1
cos x cos2 x
dx
1
d
sin x sin2 x
1 2
1 1 sin
x
1 1 sin
x
d
sin
x
1 ln 1 sin x ln 1 sin x C
2 1 ln 1 sin x C
2 1 sin x
2022年9月29日8时31分
ax t
a2 x2
26
例17 求
解
令
x
a
tan
t
,
t
(
2
,
2
)
,
则
x2 a2 a2 tan2 t a2 a sect
dx a sec2 t d t
∴ 原式
a sec2 a sec t
t
d
t
sec t
d
t
ln sect tan t C1
ln
x2 a2
x a
C1
x2 a2
不定积分是求导运算的逆运算, 相应 于复合函数求导数的链式法则和乘法 求导公式, 不定积分有换元积分法和分 部积分法.
第三节定积分的换元法和分部积分法市公开课获奖课件省名师示范课获奖课件
原式
lim
n
1 n
sin
n
sin
2 n
sin
(
n
1) n
sin
n n
lim 1 n sin i n n i1 n
1
lim
n
n i 1
sin
i n
n
1
0
sin
xdx
1
[
cos
x]0
2
i
xi
或上式 lim 1
n sin i lim n sin i 1
1
sinxdx
n n i1 n n i1 n n 0
1
[ cosx]10
2
i xi
15
机动 目录 上页 下页 返回 结束
16
二、小结
1.定积分旳分部积分公式
b udv
b
uv
b
vdu.
a
aa
(注意与不定积分分部积分法旳区别)
2.利用定积分定义求无限(和、积)项旳极限
参见《高等数学学习指导》P86-87 例1、例2、例3
1
0
2
x
sin
x 2dx
1 2
1
0
sin
x
2dx 2
1 2
cos x2
1 0
1 (cos1 1). 2
7
机动 目录 上页 下页 返回 结束
8
【教材例10】 证明定积分公式(华里士(Wallis)公式)
In
2 sinn xdx
0
2 cosn xdx
0
n n
n
1 1
n n n
1
第三节 定积分旳换元法和分部积分法 (二)
高等数学D5.3
2m 2m1
22Im2mm121
I 2m354
2 3
I1
而
I0
2
0
dx
2
,
I1
2 sin x dx 1
0
故所证结论成立 .
作业:p-249 习题5-3
1 (4) , (8), (10) , (13), (15),(19) ; 6 ; 11 (4), (6),(9), (11)
2
x )0
( ) 2 . 2 44 4
二、定积分的分部积分法
定理2. 设u(x), v(x) C1[a , b] , 则 b a
证: [u(x)v(x)] u(x)v(x) u(x)v(x)
两端在 [a,b] 上积分
u( x) v( x)
b a
b
a
u
(
x)v(
x)
dx
b
a
u(
x)v(
5xx]02[s52ins3inx52(1x]s2in252x)
(si52n)23x54|cos
x|
在 [0,
]
2
上|cos
x|cos
x
在 [
2
, ] 上|cos
x|cos
x
(t) (t)
例4. 计算
解: 令 t 2x 1,则 x t 2 1, dx t d t , 且 2
当 x 0 时, t 1; x 4 时, t 3 .
(1) 02 f (sin x)dx02 f (cosx)dx
(2)
0
xf
(sin
x)dx
2由此计算
x sin x
0
1 cos2
dx. x
高等数学课件--D5_3换元法与分部积分法
同济高等数学课件
习题课 目录 上页 下页 返回 结束
备用题
1. 证明 是以 为周期的函数.
证:
令u t π
是以 为周期的周期函数.
2012-10-12 同济高等数学课件
目录 上页 下页 返回 结束
2. 设 f ( x) 在 [a, b] 上有连续的二阶导数 , 且 f (a)
同济高等数学课件
二、定积分的分部积分法
定理2. 设 u ( x) , v( x) C1[a , b] , 则
b a
证: [u ( x) v( x)] u( x)v( x) u ( x)v( x)
两端在 [a, b] 上积分
u ( x) v( x)
b a
a u ( x)v( x) dx a u ( x)v( x) dx
2 m 1 2 m 1
π 2
5
3
π 2
而
I 0 dx
0
π 2
,
I1 sin x dx 1
0
故所证结论成立 .
2012-10-12 同济高等数学课件
目录 上页 下页 返回 结束
内容小结
基本积分法 换元积分法
分部积分法
换元必换限 配元不换限 边积边代限
思考与练习 1.
0 sin dx
目录 上页 下页 返回 结束
(t ) (t )
说明: 1) 当 < , 即区间换为[ , ] 时, 定理 1 仍成立 . 2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
(t ) (t )
a f ( x) d x
高数53换元法与分部积分法
在运用换元法和分部积分法时,需要注意一些积分技巧,如选择合适的代换变量、合理拆分被积函数等。这 些技巧可以帮助我们更有效地求解复杂积分。
04 复杂函数求解技巧与实例 分析
复杂函数类型及特点
01
02
03
复合函数
由多个基本初等函数通过 四则运算或复合而成的函 数,如$f(g(x))$。
隐函数
THANKS FOR WATCHING
感谢您的观看
高数53换元法与分部积分法
目录
• 换元法基本概念与原理 • 分部积分法基本概念与原理 • 换元法与分部积分法关系探讨 • 复杂函数求解技巧与实例分析 • 实际应用问题中换元和分部积分思想体现 • 总结回顾与拓展延伸
01 换元法基本概念与原理
换元法定义及作用
换元法是一种通过变 量代换简化复杂数学 表达式或方程的方法。
解。
06 总结回顾与拓展延伸
关键知识点总结回顾
换元法
通过变量代换将复杂积分转化为简单积分,包括第一类换元法(凑微分法)和第 二类换元法(三角代换、根式代换等)。
分部积分法
将复杂被积函数拆分成两个简单函数的乘积,通过求导和积分降低计算难度,特 别适用于含有幂函数、指数函数、三角函数等基本初等函数的积分。
易错点剖析及注意事项
换元法易错点
在换元过程中,需要注意新变量 的取值范围与原变量保持一致, 同时在最后要将结果代换回原变
量。
分部积分法易错点
在选择u和dv时,需要遵循“反对 幂指三”的优先级顺序,同时要注 意计算过程中的符号变化。
注意事项
在应用换元法和分部积分法时,需 要熟练掌握基本初等函数的求导和 积分公式,以便进行正确的代换和 拆分。
三节定积分换元法和分部积分法省公开课一等奖全国示范课微课金奖PPT课件
sec2tdt
3
4
cos t sin2 t
dt
3
4
1 sin 2
t
d(sint)
1 sin t
|3
4
22
2
( ) 2 3.
32
3
第9页
例5 证明
(1)若f (x)在 a, a上连续,且为偶函数,则
a
a
f
( x)dx
20a
f
( x)dx,
(2)若f (x)在 a, a上连续,且为奇函数,则
第三节 定积分换元法和分部积分法
一、换元积分法 二、分部积分法
第1页
一、换元积分法
定理5.6 设函数f(x)在区间[a,b]上连续,若 x (t)
满足以下条件:
(1)( ) a,( ) b,
(2)当t在α与β之间改变时, 值(t)在区间[a,b] ,且 连续',(则t)
ab
f
( x)dx
f
(t )' (t )dt.
例9
求
1
0
xe
2
x
dx.
解
令u
x,dv
e2x
dx;du
dx,v
1 2
e2
x
,
代入分部积分公式,得
01 xe2xdx
1 2
xe2
x
1 0
1 2
01 e2 x dx
1 2
e2
1 4
e2x
|10
1 e2 (1 e2 1) 2 44
1 (e2 1). 4
第18页
例10 求 01e xdx. 解 令 x t,则x t 2,dx 2tdt,
换元积分法和分部积分法
4.3 换元积分法和分部积分法课题: 换元积分法和分部积分法目的要求: 掌握不定积分的第一类换元法和分部积分法,会用第二类换元法(限于三角置换,幂置换),会查积分表。
重点: 不定积分的第一类换元法和分部积分法难点: 不定积分的第一类换元法教学方法: 讲练结合教学时数: 6课时教学进程:当被积函数较为复杂,运用基本积分法不能奏效时,常采用换元积分法和分部积分法.4.3.1换元积分法由于积分是微分的逆运算,因此有一个微分公式就有一个相应的积分公式,有一个微分方法也就有一个相应的积分方法.与复合函数的微分法相对应的积分法称为换元积分法.换元积分法分为第一类换元积分法和第二类换元积分法两类.1. 第一类换元积分法先看下面的例.例1 求⎰xdx 3cos .解 在基本积分公式里虽有⎰+=C x xdx sin cos但这里不能直接应用,这是因为被积函数x 3cos 是一个复合函数.为了运用这个公式,需先把原积分作下列变形,然后作变量代换x u 3=后再进行计算:1cos3cos3(3)3xdx xd x =⎰⎰⎰=udu cos 31C x C u +=+=3sin 31sin 31. 由于x C x 3cos 3sin 31='⎪⎭⎫ ⎝⎛+,所以C x +3sin 31确实是x 3cos 的原函数,这说明上述方法是正确的.例1说明,如果不定积分不能用基本积分公式直接求出,但被积表达式具有形式)()]([)()]([x d x f dx x x f ϕϕϕϕ='则作变量代换)(x u ϕ=,得⎰⎰='du u f dx x x f )()()]([ϕϕ 而积分⎰du u f )(可以求出,不妨设⎰+=C u F du u f )()(则⎰'dx x x f )()]([ϕϕ)()]([x d x f ϕϕ⎰=⎰=du u f )(C u F +=)(C x F +=)]([ϕ. 于是得定理1(第一类换元积分法)设)(u f 及)(x ϕ'连续,且)()(u f u F =',则作变量代换)(x u ϕ=后,有⎰'dx x x f )()]([ϕϕ)()]([x d x f ϕϕ⎰=⎰=du u f )(C u F +=)(C x F +=)]([ϕ.由定理1知:在不定积分基本公式中若积分变量不是自变量x ,而是中间变量u (设)(),(x x u ϕϕ'=连续),则公式仍成立.例如: ⎰-≠++=+)1(11ααααC u du u ; C u du u +=⎰ln 1; ⎰+=-C u du u arcsin 112. 有了上面的结论,我们可以将一些不能直接运用公式的积分通过变量代换化为基本公式的形式而求得.运用第一类换元积分法求不定积分的主要步骤分为两步:第一步把被积函数分解为两部分因式相乘的形式,其中一部分是)(x ϕ的函数)]([x f ϕ,另一部分是)(x ϕ的导数)(x ϕ'.第二步凑微分dx x )(ϕ')(x d ϕ=,并作变量代换 )(x u ϕ=,从而把关于积分变量x 的不定积分转化为关于新积分变量u 的不定积分.例2 求⎰+dx x 121. 解 把被积函数中的12+x 看作新变量u ,即12+=x u ,且dx du 2=,所以令12+=x u 作代换,得 ⎰⎰⎰=+=+u du x dx dx x 2112221121C x C u ++=+=|12|ln 21||ln 21.例3 求 (1) ⎰dx x x )sin(22; (2) ⎰-dx x x 21. 解 (1) 把被积函数中的2x 看作新变量u ,即2x u =,且x d x du 2=.于是令2x u =,则⎰dx x x )sin(22⎰=)()sin(22x d x ⎰=udu sinC u +-=)cos(C x +-=)cos(2. (2) 把被积函数中的21x -看作新变量u ,即21x u -=,而xdx du 2-=,于是令21x u -=,则 dx x x x xdx dx x x ⎰⎰⎰-'--=---=-22221)1(2112211⎰---=221)1(21xx d ⎰-=u du 21C x C u +--=+-=21. 很多情况下被积函数需乘以适当的常数才能化为复合函数与其中间变量导数的乘积的形式。
换元积分法与分部积分法
§2 换元积分法与分部积分法教学目的:掌握第一、二换元积分法与分部积分法. 教学内容:第一、二换元积分法;分部积分法.基本要求:熟练掌握第一、二换元积分法与分部积分法.教学建议:(1) 布置足量的有关换元积分法与分部积分法的计算题.(2) 总结分部积分法的几种形式:升幂法,降幂法和循环法.教学程序:一. 第一类换元法 ——凑微法:有一些不定积分,将积分变量进行适当的变换后,就可利用基本积分表求出积分.例如,求不定积分cos 2xdx ⎰,如果凑上一个常数因子2,使成为()11cos 2cos 2cos 2222xdx x xdx xd x =∙=⎰⎰⎰令2x u =则上述右端积分()111cos 22cos sin 222xd x udu u C ==+⎰⎰ 然后再代回原来的积分变量x ,就求得原不定积分1cos 2sin 22xdx x C =+⎰ 更一般的,若函数()F x 是函数()f x 的一个原函数,()x μϕ=是可微函数, 并且复合运算()F x ϕ⎡⎤⎣⎦有意义,根据复合函数求导法则(){}()()()()F x F x x f x x ϕϕϕϕϕ''''==⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 及不定积分的定义,有()()()f x x dx F x C ϕϕϕ'=+⎡⎤⎡⎤⎣⎦⎣⎦⎰ 由于()()f u du F u C =+⎰ 从而()()()()()u x f x x dx f u du ϕϕϕ='=⎡⎤⎣⎦⎰⎰ (1)综上所述,可得如下结论【定理8.4】 (第一换元积分法) 设()f u 是连续函数,()F u 是()f u 的一个原函数.又若()u x ϕ=连续可微,并且复合运算()f x ϕ⎡⎤⎣⎦有意义,则()()()()()()u x f x x dx f u du F x C ϕϕϕϕ='==+⎡⎤⎡⎤⎣⎦⎣⎦⎰⎰ (2)第一换元积分公式(2)说明如果一个不定积分()g x dx ⎰的被积表达式()g x dx 能够写成()()f x x dx ϕϕ'⎡⎤⎣⎦的形式,可通过变量代换()u x ϕ=把被积表达式等同于()f u du ,若不定积分()()f ud uFu C=+⎰ 容易求得,那么再将()u x ϕ=代入()F u ,便求出原不定积分()()g x dx F x C ϕ=+⎡⎤⎣⎦⎰ 由于第一换元积分法的基本手段就是将被积表达式()g x dx 变为()()()()f x x dx f x d x ϕϕϕϕ'=⎡⎤⎡⎤⎣⎦⎣⎦的形式.也就是把被积函数()g x 分解成两个因子的乘积,其中一个因子与dx 凑成某一函数()x ϕ的微分,而另一因子是()x ϕ的函数()f x ϕ⎡⎤⎣⎦,且经过这样的微分变形后被积表达式()()f x d x ϕϕ⎡⎤⎣⎦变为容易积分的形式,所以人们也经常称第一换元积分法为“凑微分法”.凑微分法技巧性强,无一般规律可循,因而不易掌握,初学者只有多做练习,不断总结经验,才能运用自如. 凑法1.)(1)()(1)(du u f ab ax d b ax f a dx b ax f =++=+ 【例1】 利用()()1,,0dx d ax b a b R a a=+∈≠,求下列积分()()()131134343x d x =++⎰,令34u x =+有14433311313344u du u C u C==⋅+=+⎰再将34u x=+代入,有()431344d x x C=++()()2()0xaa==>令xua=,有arcsin u C==+再将xxa=代入,有arcsinxCa=+()22222()13[(1())]1()xddx dx ax xa x aaa a==+++⎰⎰⎰令xua=22211arctan1dx duu Ca x a u a==+++⎰⎰再将xua=代入,有221arctandxx Ca x a=++⎰如果运算比较熟练,为了简化解题步骤,变量代换()u xϕ=可以不写出来,只需默记在头脑中就可以了.凑法2 du u f kx d x f k dx x f x k k k k )(1)()(1)(1==- . 特别地, 有 . du u f x d x f xdx x f )(21)()(21)(222==和 ()x dx f dx xx f 2)(=.【例2】利用()()()11,,,0,11x dx d ax b a b R a a μμμμμ+=+∈≠≠-+,求下列积分()()()()2221157575752x xdx x d x +=++=⋅⎰⎰()()()222211157575710102x d x x C ++=⋅++⎰=()2215720X C ++()()11121121()x x x e dx e d e C x x=-=-+⎰⎰()()232211C x ===++⎰⎰()()40x >【解】11x x ⎛⎫=-=-= ⎪⎝⎭2112x ⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1222111112d x x -⎡⎤⎡⎤⎛⎫⎛⎫-++⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎰12211212C C x ⎡⎤⎛⎫=-⋅++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【例3】若被积函数()()(),x f x x ϕϕ'=±利用()()()()()x d x f x dx dx x x ϕϕϕϕ'=±=±,有如下公式()()()()()()ln x d x f x dx dx x C x x ϕϕϕϕϕ'=±=±=±+⎰⎰⎰求下列积分 ()ln 1ln ln ln ln dx d xx C x x x==+⎰⎰()sin cos 2tan ln cos cos cos x d xxdx dx x C x x ==-=-+⎰⎰⎰()cos sin 3cot ln sin sin sin x d xxdx dx x C x x===+⎰⎰⎰ 以上3例都是直接利用“凑微分法”求不定积分.如果进一步把“凑微分法”与不定积分的运算性质结合起来,就可以利用基本积分表来处理非常广泛的初等函数的积分.【例4】 将下列被积函数先作代数恒等变形再求其不定积分()2211112dx dx a x a a x a x ⎛⎫=+= ⎪--+⎝⎭⎰⎰()()11ln 22d x a d x a x a C a x a x a a x a +-⎡⎤+-=+⎢⎥+--⎣⎦⎰⎰⎰ ()()()()()2221121111x x xx x x x d e dxe e dx dx e e e e ++-==-=++++⎰⎰⎰⎰()11111111xx x x x xxd e e e dx dx e e e e++-+=-+=++++⎰⎰⎰ ()21l n 11x x e C e-++++()22222sin 111311sin 1sin sin 1sin x dx dx dx dx x x x x⎛⎫=-=- ⎪++⎝⎭+⎰⎰⎰⎰=2cot 2cot 1d x x x x +=+++⎰x C ++凑法3 ;)(sin )(sin cos )(sin du u f x d x f xdx x f == ;)(cos )(cos sin )(cos du u f x d x f xdx x f -=-= .)()(sec )(2du u f dtgx tgx f xdx tgx f ==【例5】对于sin n xdx ⎰与cos nxdx ⎰()n N ∈形式的积分,当n 是偶数时,可利用三角恒等式()()2211sin 1cos 2cos 1cos 222x x x x =-=+ 来降低三角函数的幂,当n 是奇数时,变正(余)弦函数的积分为余(正)弦函数的积分.()()()242111sin 1cos 212cos 2cos 224xdx x dx x x dx ⎡⎤=-=-+⎢⎥⎣⎦⎰⎰⎰= ()112cos 21cos 442dx xdx x dx ⎡⎤-++=⎢⎥⎣⎦⎰⎰⎰ 11sin 2sin 4428x x x x C ⎛⎫-+++ ⎪⎝⎭=131s i n 2s i n 4428x x x C ⎛⎫-++ ⎪⎝⎭()()322cos 1sin cos xdx x xdx =-=⎰⎰231cos sin sin sin sin 3xdx xd x x x C -=-+⎰⎰ 【例6】 对于sin sin ,cos sin cos cos x xdx x xdxx xdx αβαβαβ⎰⎰⎰和形式的积分,可利用三角函数的积化和差公式 ()(()11cos cos 1cos 12x x dx ⎡⎤=++-⎣⎦⎰⎰s i n 21212x x C ⎡⎤+=+()()()12cos 2sin 3sin 23sin 322x xdx x x dx =+--⎡⎤⎣⎦⎰⎰= ()111sin 5sin cos cos5255xdx xdx x x C ⎛⎫-=-+ ⎪⎝⎭⎰⎰ 【例7】 根据 2s i n 2s i n c o s 2t a n c o s2222x x xxx ==1c o s t a n c s c c o t2s i nx x x x x -==- ()2111csc tan 22tan cos tan 222x xdx dx d x x x ⎛⎫===⎪⎝⎭⎰⎰⎰ l n t a n l n c s c c o t2xC x x C +=-+ ()22sec ln csc cot 22sin 2d x xdx x x C x ππππ⎛⎫+ ⎪⎛⎫⎛⎫⎝⎭==+-++ ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭⎰⎰=ln sec tan x x C ++ 【例8】22===(22C =+⎰凑法4 .)()()(du u f de e f dx e e f x x x x ==.【例9】 ⎰--.2tedt凑法5 .)(ln )(ln )(ln du u f x d x f xdxx f == 【例10】 ⎰+.)ln 21(x x dx凑法6 ;)(arcsin )(arcsin 1)(arcsin 2du u f x d x f dx xx f ==-du u f darctgx arctgx f dx xarctgx f )()(1)(2==+. 【例11】 ⎰⎰⎰=++=+=dt t arctgtx d x x arctg dx x x xarctg x t 21212)1( ⎰+=+==c x arctg c arctgt tgt arctgtdarc 22)()(2. 其他凑法举例:【例12】 c e e ee e e d dx e e e e x x x x x x x xx x ++=++=+------⎰⎰)ln()(. 【例13】 ⎰⎰==+ 22)ln ()ln ()ln (1ln x x x x d dx x x x 【例14】 ⎰⎰⎰=++=++=dx tgx x xtgxx dx tgx x tgx x x xdx sec sec sec sec )(sec sec sec 2⎰++=++=c tgx x tgxx tgx x d |sec |ln sec )(sec .【例15】 ⎰-+dx xx x x 5cos sin sin cos .【例16】 ⎰++dx xx xx cos sin sin 5cos .【例17】 ⎰⎰⎰=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=++=++ 21111111222242x x x x d dx x x x dx x x 【例18】 ⎰++-dx x x x 2252.Ex [1]P188—189 1⑴—(24);以上例子大都采用了初等数学(代数或三角函数)中的运算技巧将被积函数进行适当的变形,然后再进行变量带换.因此在作积分运算时,应该重视有关初等数学知识的灵活运用.二. 第二类换元法 —— 拆微法:从积分⎰tdt 2cos 出发,从两个方向用凑微法计算,即 ⎰⎰-====-=t d t dx x tx sin sin 112sin 2= tdt ⎰2cos = =⎰++=+,2sin 4121)2cos 1(21c t t dt t 引出拆微原理.在式(1)中,如果()()()2.1x x ϕϕ'连续可微且定号,式中左端的不定积分()()()f x x dx F x C ϕϕ'=+⎡⎤⎣⎦⎰ 容易求得,并且()()1x u u x ϕϕ-==是的反函数,则式(2)右端的不定积分()()1f ud u F xC ϕ-⎡⎤=+⎣⎦⎰.利用这个过程求不定积分的方法,称为第二换元积分法.第二换元积分法可以确切的叙述如下.【定理8.5】 (第二换元积分法)设()f x 是连续函数,()x ϕ是连续可微函数,且()x ϕ'定号,复合运算()f t ϕ⎡⎤⎣⎦有意义.设()F t 是()()f t t ϕϕ'⎡⎤⎣⎦的一个原函数,即 ()()()f t t dt F t C ϕϕ'=+⎡⎤⎣⎦⎰ 则 ()()()()()1t x f x dx f t t dt ϕϕϕ-='=⎡⎤⎣⎦⎰⎰=()1F x C ϕ-⎡⎤+⎣⎦(3)其中()()1x t ϕϕ-是的反函数.【证明】有定理假设()x ϕ'定号,,故函数()t ϕ存在反函数()1u ϕ-,又()()()dF t f t t dtϕϕ'=⎡⎤⎣⎦ 于是()()()()()()111t x dF t d dt F x f t t dx dt dx t ϕϕϕϕϕ--=⎛⎫⎛⎫'⎡⎤==⎡⎤ ⎪ ⎪⎣⎦⎣⎦ ⎪'⎝⎭⎝⎭()1t x ϕ-==()()()()1t x f t f x ϕϕ-==⎡⎤⎣⎦可见()1F x ϕ-⎡⎤⎣⎦是式(3)左端不定积分的被积函数的一个原函数,所以式(3)成立.第二换元积分法指出,求式(3)左端不定积分,作变量代换()x t ϕ=,从而()()(),f x f t dx t dt ϕϕ==⎡⎤⎣⎦,于是()()()f x dx f t t dt ϕϕ'=⎡⎤⎣⎦⎰⎰ 若上式右端的不定积分()()()f t t dt F t C ϕϕ'=+⎡⎤⎣⎦⎰(4) 容易求出,那么再代回原来的变量()1t x ϕ-=,便求出原不定积分()()1f x dx F x C ϕ-⎡⎤=+⎣⎦⎰由于第二换元积分法的关键在于选择满足定理8.5条件的变换()x t ϕ=,从而使式(4)的不定积分容易求出.那么如何选择变换()x t ϕ=呢?这往往与被积函数的形式有关.例如,若被积函数中有根式,一般选择适当的变换()x t ϕ=来去掉根式,从而使被积函数得到简化,不定积分容易求出.常用代换有所谓无理代换, 三角代换, 双曲代换, 倒代换, 万能代换, Euler 代换等.我们着重介绍三角代换和无理代换. 1. 三角代换:⑴ 正弦代换: 正弦代换简称为“弦换”. 是针对型如22x a -)0(>a 的根式施行的, 目的是去掉根号. 方法是: 令)0( ,sin >=a t a x , 则 ,cos 22t a x a =- ,cos tdt a dx = .arcsinax t =【例19】计算()0a >【解】令sin ,,arcsin ,22xx a t t t a x a aππ=-≤≤=-≤≤则,且cos cos ,cos ,a t a t dx a tdt ===从而=()222cos .cos cos 1cos 22a a t a tdt a tdt t dt ==+⎰⎰⎰=2221sin 2sin cos 2222a a a t t C t t t C ⎛⎫++=++ ⎪⎝⎭由图2.1知sin cos xt t a==所以=22arcsin 22a x a C a ++= 2arcsin 2a x C a (2)正割代换: 正割代换简称为“割换”. 是针对型如 22a x - )0(>a 的根式施 行的, 目的是去掉根号. 方法是: 利用三角公式,1sec 22t tg t =- 令,sec t a x = 有,22atgt a x =- .sec tgtdt t x dx ⋅= 变量还愿时, 常用辅助三角形法.【例20】计算()0a >【解】令s e c ,0s e c 22x a t t t x a t πππ=<<<<=当或时,存在反函数arcsinxt a=.这里仅讨论02t π<<的情况,同法可讨论2t ππ<<的情况.由于02t π<<0<t<2πtan tan ,tan sec a t a t dx a t tdt ===,从而1tan sec tan a t tdt a t=⋅=⎰sec ln sec tan tdt t t C =++⎰由图2.2知,sec tan x t t a==ln x C a '=+ln x C =这里ln C C a '=-(3)正切代换: 正切代换简称为“切换”. 是针对型如22x a +)0(>a 的根式施行 的, 目的是去掉根号. 方法是: 利用三角公式,1sec 22=-t tg t 即,sec 122t t tg =+ 令 ,atgt x = tdt a dx 2sec =. 此时有 ,sec 22t a x a =+ .axarctg t = 变量还原时, 常用所谓辅助三角形法.【例21】计算(0a >sec sec ,a t a t ==【解】令tan ,,22x a t t ππ=-<<则tan x a t =存在反函数.且sec sec ,a t a t ==2sec dx a tdt =,从而=21sec sec ln sec tan sec a t dt tdt t t C a t'⋅==++⎰⎰ 由图2.3知tan xt a =所以=ln xC x C a'+=++ 这里ln C C a '=-.总结例2.19~2.21,有如下规律:(1sin x a t =或cos x a t =(2sec csc x a t x a t ==或(3tan cot x a t x a t ==或••2. 无理代换:若被积函数是k nn n x x x , , , 21 的有理式时, 设n 为)1(k i n i ≤≤的最小公倍数, 作代换n x t =, 有dt nt dx t x n n 1 ,-==. 可化被积函数为 t 的有理函数.【例22】计算⎰【解】为了去掉被积函数的根式,令t =()211,02x t t =-≥ 则dx tdt =,从而⎰=()()24211122t t tdt t dt t dt -⋅=-⎰⎰⎰=531253t t C ⎛⎫-+ ⎪⎝⎭ =()()5322111212106x x C +-++ 【例23】 ⎰⎰⎰⎰==-++-=-=====-= t dtdt t t dt t x x dxxt 16)1(6162326 c x x x +⎪⎭⎫⎝⎛-++-=6361ln 216.若被积函数中只有一种根式n b ax +或,necx bax ++可试作代换n b ax t +=或 .n ecx bax t ++=. 从中解出x 来. 【例24】 ⎰⎰⎰=⋅+======-=--=tdt t t x d x x dx x xx t 2)1(21)( 121121222232⎰+-+-=++=+=c x x c t t dt t t 2322523524)1(31)1(5135)(.本题还可用割换计算, 但较繁.3. 双曲代换: 利用双曲函数恒等式 122=-x sh x ch , 令 asht x =, 可去掉 型如 22x a +的根式. achtdt dx =. 化简时常用到双曲函数的一些恒等式, 如:.22 ),12(21),12(2122shtcht t sh t ch t sh t ch t ch =-=+=).1ln(21++=-x x x sh :参阅复旦大学 (陈传璋等)编, 数学分析, 上册P24.【例25】 ⎰⎰⎰==⋅=====+=tdt ch a achtdt acht dx x a ashtx 2222='++=-=⎰c t a t sh a dt t ch a 224)12(2222 c x a x a x a x +++++=)ln(2222222. 本题可用切换计算,但归结为积分⎰tdt 3sec , 该积分计算较繁. 参阅后面习题课例3. 【例26】 ⎰+.22xdx (可用切换计算过该题. 现用曲换计算 ).解 ⎰⎰⎪⎪⎭⎫ ⎝⎛++='+===122ln 2222x xc t dt dt cht chtI shtx c '+ 2ln .)2ln( 2-'=+++=c c c x x . 【例27】 ⎰-22ax dx . (曾用割换计算过该题. 现用曲换计算 ).解 ='+-+='+======⎰⎰=c ax a x c t dt dt asht asht I achtx 1 ln 22.||ln .|| ln 22a c c c a x x -'=+-+=4. 倒代换: 当分母次数高于分子次数, 且分子分母均为“因式”时, 可试用 倒代换.1,12dt tdx t x -==【例28】 ⎰⎰⎰>=======+====+=+01224222421)(212tu x u uu u du x x x x d x x x dx⎰⎰++-=+⎪⎭⎫ ⎝⎛+-=++-=+-=+-c x x c x c t t dt tt t dt t ||111)1(12111112122122122. 5. 万能代换: 万能代换常用于三角函数有理式的积分(参[1]P261). 令2x tgt =, 就有 22122sec222cos 2sin 2sin t t x xtgx x x +===,,11cos 22tt x +-= 212t t tgx -= , ,122t dtdx +=.2arctgt x = 【例29】 ⎰+xdxcos 1.解法一 ( 用万能代换 ) ⎰⎰+=+==+-++======c x tg c t dt dt t t t I x tgt 2111122222. 解法二 ( 用初等化简 ) c xtg x d x x dx I +===⎰⎰2)2(2sec 2cos 2122. 解法三 ( 用初等化简, 并凑微 )⎰⎰⎰=-=--=x x d xdx dx x x I 222sin sin csc cos 1cos 1 .2csc sin 1c xtg c ctgx x c x ctgx +=+-=++-= 【例30】 .cos sin 1⎰++θθθd 解 ⎰⎰++=+=+⋅+-+++======c t t dtdt t t t t t I x tgt |1|ln 11211121122222= c xtg ++=|12|ln .代换法是一种很灵活的方法.Ex [1]P189 1(25)(27)(28)—(30);三.分部积分法设()u x 与()v x 均为x 的连续可微函数.于是,由函数乘积的求导公式,有[()()]()()()()u x v x u x v x u x v x '''=+或 ()()[()()]()()u x v x u x v x u x v x '''=-再由不定积分的定义及线性性质,有()(){[()()]()()}u x v x dx u x v x u x v x dx '''=-=⎰⎰[()()]()()u x v x dx u x v x dx ''-=⎰⎰()()()()u x v x u x v x dx '-⎰即()()()()()()u x v x dx u x v x u x v x dx ''=-⎰⎰ (5) 或()()()()()()u x dv x u x v x v x du x =-⎰⎰ (6)公式(5)或公式(6)称为不定积分的分部积分公式.一般地说,利用分部积分公式求不定积分就是追求被积函数形式的转变,把比较难求甚至无法求出的不定积分()()u x v x dx '⎰转变成容易求的不定积分()()u x v x dx '⎰,起到化繁为简的作用.对于给定的不定积分()f x dx ⎰作分部积分运算,通常要把被积函数()f x 分解为两个因子的乘积,这会有多种选择,对两个因子中哪一个选作()u x 也会有多种选择.选择不同,效果不一样的.例如,在积分sin x xdx ⎰中,若选择()sin u x x =,()v x x '=,则222sin sin sin cos 222x x x x xdx xd x xdx ⎛⎫==- ⎪⎝⎭⎰⎰⎰ 并没有达到简化积分计算的目的.若选择()u x x =,()sin v x x '=,则()()()sin cos cos cos x xdx xd x x x x dx =-=---=⎰⎰⎰cos cos cos sin x x xdx x x x C -+=-++⎰由此可见,()u x 与()v x 的选择对于初学者来讲,只有认真总结规律,才能熟练地运用分部积分技巧.一般来说,在使用分部积分法求不定积分时,若被积函数是幂函数n x 与指数函数或三角函数的乘积时,应选择()n u x x =;若被积函数是幂函数n x 与对数函数或反三角函数的乘积时,应选择()n v x x '=.1. 幂 ⨯ X 型函数的积分: 分部积分追求的目标之一是: 对被积函数两因子之一争取求导, 以使该因子有较大简化, 特别是能降幂或变成代数函数. 代价是另一因子用其原函数代替( 一般会变繁 ), 但总体上应使积分简化或能直接积出. 对“幂X ⋅”型的积分, 使用分部积分法可使“幂”降次, 或对“X ”求导以使其成为代数函数.【例31】 计算下列不定积分⑴ 2222x x x x x e dx x de x e e xdx ==-⋅=⎰⎰⎰ 2222()x x x xx e xdx x e xe e dx -=--=⎰⎰2(22)x e x x C -++⑵ ()2111sin 1cos 2cos 2222x xdx xx dx xdx x xdx =-=-=⎰⎰⎰⎰ 221111111sin 2sin 2sin 24224422x xd x x x x xdx ⎛⎫-=-+= ⎪⎝⎭⎰⎰ 211sin 2cos 2448x x x x C --+ ⑶ 2ln 111ln ln ln x dx xd x d x x x x x ⎛⎫=-=-+= ⎪⎝⎭⎰⎰⎰ 211ln (ln 1)dx x x C x x x-+=-++⎰ ⑷ arcsin arcsin arcsin xdx x x xd x =-=⎰⎰211arcsin arcsin 2d x x x x x --=+=⎰1221arcsin 2(1)arcsin 2x x x C x x C +⋅-+=+⑸ 23(16)arctan arctan (2)x xdx xd x x +=+=⎰⎰()33222arctan 1x x x x x dx x ++-=+⎰()322arctan 21x x x x x dx x ⎛⎫+--=⎪+⎝⎭⎰ ()()32212arctan ln 12x x x xx C +-+++ 2 建立所求积分的方程求积分: 分部积分追求的另一个目标是: 对被积函数两 因子之一求导, 进行分部积分若干次后, 使原积分重新出现, 且积分前的符号不为 1. 于 是得到关于原积分的一个方程. 从该方程中解出原积分来.【例32】 ⎰.sin xdx e x【例33】 求⎰=bxdx e I ax cos 1 和). 0 (,sin 2≠=⎰a bxdx e I ax 解 ⎪⎪⎩⎪⎪⎨⎧-=+=.sin 1,cos 11221I a b bx e a I I ab bx e a I ax ax 解得 .cos sin ,cos sin 222221c e b a bx b bx a I c e b a bx a bx b I ax ax ++-=+++=【例34】 ⎰>+). 0 ( ,22a dx x a 解 ⎰+⋅-+=dx xa x x x a x I 2222==⎰⎰++++-+dx xa a dx xa x a x a x 222222222=,)ln(122222c x a x a I x a x ++++-+= (参阅例41)解得 .)ln(2222222c x a x a x a x I +++++= 【例35】 ⎰⎰⎰+==xdx x x x xd xdx 22sin sin cos sin cos cos = ⎰-+=xdx x x x 2cos sin cos ,解得 ⎰++=c x x xdx 2sin 412cos 2. 【例36】⎰⎰⎰⎰-==⋅=xtgxdx tgx xtgx xdtgx xdx x xdx sec sec sec sec sec sec 23=⎰⎰⎰=+-=--xdx xdx xtgx xdx x xtgx sec sec sec sec )1(sec sec 32 =⎰-++xdx tgx x xtgx 3sec |sec |ln sec , 解得 ⎰=xdx 3sec c tgx x xtgx +++|sec |ln 21sec 21.分部积分法也常用来产生循环现象,然后经过代数运算求出不定积分. 【例37】计算下列不定积分⑴.设I=,则I===⎰=⎰2dx⎫⎰2I a=+再由例21,有=ln x C'+故原积分2ln2aI x C=+这里2CC'=()2计算sinxe xdxαβ⎰和cosxe xdxαβ⎰【解】sinxe xdxαβ⎰=1sin xxd eαβα⎛⎫⎪⎝⎭⎰=()1sin cosx xe x e xdxααβββα-⋅⎰11sin cosx xe x xd eααβββααα⎛⎫=- ⎪⎝⎭⎰()21sin cos sinx x xe x e x e x dxαααβββββαα⎡⎤=--⋅-⎣⎦⎰=1sinxe xαβα-222cos sinx xe x e xdxααββββαα-⎰移项,整理,有sin xe xdx αβ⎰=()22sin cos xe x x C ααβββαβ-++同理可得cos xe xdx αβ⎰=()22sin cos xe x x C αββαβαβ-++ 在含有自然数n 的不定积分中,常用分部积分法来建立求不定积分的递推公式. 【例38】()()1ln (nn I x dxn =∈⎰N )【解】()()()ln ln ln nnnn I x dx x x xd x ==-=⎰⎰()()()()111ln ln ln ln n n nnx x x n x dx x x n x dx x---⋅=-⎰⎰ =()1ln nn x x nI -- 即()1ln nn n I x x nI -=-这就是递推公式.例如3n =时有()()()()333221ln ln 3ln 3ln 2x dx x x I x x x x I ⎡⎤=-=--⎣⎦⎰=()()321ln 3ln 6ln x x x x x x x dx x ⎛⎫-+-⋅= ⎪⎝⎭⎰()()32ln 3ln 6ln 6x x x x x x x C -+-+()2()22ndxx a +⎰(n ∈N ,0a >)【解】设 n I =()22ndxx a +⎰,则()()22221n n n xI xd x a x a ⎛⎫⎪=- ⎪++⎝⎭⎰=()()122222n n x xx n dxx a x a +⎡⎤⎢⎥--⎢⎥++⎣⎦⎰ =()()()2122222212n n n x a n dx x a x a x a +⎡⎤⎢⎥+-=⎢⎥+++⎣⎦⎰()212222n n n xnI na I x a ++-+ 从而()()12221212n n n x I n I na x a +⎡⎤⎢⎥=+-⎢⎥+⎣⎦(7)特别当1n =时,有1221arctan dxxI C x a a a ==++⎰于是利用递推公式(2.7),有21222222111arctan 22x xxI I C a x a a x a a a ⎛⎫⎛⎫=+=++ ⎪ ⎪++⎝⎭⎝⎭=212a 22x x a ++312a arctan x a +C '这里C '=32Ca分部积分法与换元积分法有时在同一题中配合使用效果更佳.【例39】计算2⎰【解】2⎰=2arcsin x dx x +⎰=()()2arcsin arcsin cos sin sin cos uxd x udu x u u u +=⎰⎰作变量代换=()()2211arcsin cot arcsin cot cot 22x ud u x u u udu -=-+⎰⎰= ()21arcsin 2x -cot ln sin u u u C ++ 由图8.2.4知cot u x=所以2⎰()21arcsin 2x =ln x x C ++ 通过本节的讨论,我们还应在基本积分表中再补充如下公式:基本积分表(补充)()()()()()2215sec ln sec tan 16csc ln csc cot 17tan ln cos 18cot ln sin 1119arctan xdx x x Cxdx x x Cxdx x Cxdx x Cx dx C a x a a =++=-+=-+=+=++⎰⎰⎰⎰⎰()()()()2220arcsin 21arcsin 22223ln 2x C a a x C a x C a x C =+=+++++ 综上所述,我们已经对求不定积分的基本方法进行了全面的讨论.由不定积分的定义知,求不定积分的运算是微分法的逆运算.而第一、第二换元积分法对应与复合函数求导的链式法则,分部积分法则是基于乘积函数的求导法则推导出来的.求不定积分的基本思想是:采用各种方法将被积函数化为基本积分表中的被积函数的形式或它们的线性组合.然后利用基本积分表和线性性质求出不定积分.显然,掌握较多的不定积分公式会给求不定积分带来方便,为此人们把一些常用的不定积分公式汇集起来,做成基本积分表.同学们可以利用这个表进行运算.但是无论容量多么大的积分表也不能把所有的不定积分都罗列出来.所以,上面介绍的求不定积分的各种方法都是最基本的,作为初学者必须掌握.另外,把不定积分法与微分法相比较,求积分要比求微分困难的多,复杂的多,甚至于有些被积函数很简单,但他们的不定积分却无法积出.例如:2x e dx -⎰ ()2sin sin ln x dx dx x dx x x ⎰⎰⎰,等等 这说明在初等函数类中,不定积分的运算是不封闭的,即初等函数的原函数不一定是初等函数.今后把被积函数的原函数能用初等函数表示的积分称为积得出的,否则,称为积不出的.结论:当n 是正整数时,如⎰dx e x x n ,⎰xdx x n sin ,⎰xdxx n cos ,这种类型的积分,都可用分部积法解决,这时,设n x u =,dv 分别为dx e x ,xdx sin ,xdx cos ;同样⎰xdx x n ln ,⎰xdx x n arctan ,⎰xdx x n arcsin ,这种类型的积分,也可用分部积分法解决,这时,设dx x dv n =,u 分别为x ln ,x arctan ,x arcsin . ⎰+dx b ax e kx )sin(,dx b ax e kx )cos(+⎰(a ,b ,k 为常数)这种类型的积分如例15那样,也可以用分部积分法来解决.Ex [1]P189 2⑴―⑼;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝特西.贝尔斯
53换元法与分部积分法58677
一、定积分的换元法
定理1. 设函数 f(x) C [a ,b ],单值函数 x(t)满足:
1) (t)C1[,], () a ,() b ;
2) 在[,]上 a(t)b,
则 a bf(x )d x f[(t)](t)d t
证: 所证等式两边被积函数都连续, 因此积分都存在 ,
目录 上页 下页 返回 结束
例6.
证明
In
π2sinnxdx
0
π 2
cosn
xdx
0
结论牢记!!
n n n n 1 1 n n n n 2 3 2 3 5 4 4 3 3 2 1 2 ,π 2,
n n
为偶数 为奇数
证: 令 t π2x,则
π 2
sinn
0
xdx π0sinn(π 2t)dt 2
a T
T
(1 )a f(x)d x0f(x)d x 结论牢记!!
( 2 )a nfT ( x )d x n T f( x )d x( n N )并,由此计算
a
0
nπ
I0 1sin2xdx
解:
(1)
记
(a)aTf(x)dx,则 a
( a ) f( a T ) f( a )0
可见 (a)与a无关 因 , (此 a ) (0 )即,
习题课 目录 上页 下页 返回 结束
备用题
1. 证明
f(x)
xπ 2
sinx
dx是以
为周期的函数.
x
证:
xππ
f(xπ) 2siundu
xπ
令 utπ
xπ
2 sint(π)dt x
xπ
xπ
2 sint dt 2 sinx dx
x
x
f(x)
f(x)是以 为周期的周期函数.
目录 上页 下页 返回 结束
π2π2cosntxddtx
00
令 usinn1x,vsixn,则 u (n 1 )sin 2 n xco x, s
v cx os
π
In [ cx o sn s i 1 x n ]02 (n1)0 π 2sin n 2xco 2xd sx
0
目录 上页 下页 返回 结束
In(n 1 )0 π 2sin n 2xco 2xd sx ((n n 1 1 ) )I0 n π 2 s2in ( n n 2 x1 (1 )I nsi2x n )d xIn0π2sinnxdx
b
b
u(x)v(x)dxu(x)v(x)
a
a
abu(x)v(x)dx
证: [ u ( x ) v ( x ) ] u ( x ) v ( x ) u ( x ) v ( x )
两端[a在 ,b]上积分
u(x)v(x) b a
a b u (x )v (x )d x a b u (x )v (x )d x
证:
a
0
a
f (x)dx f (x)dx f (x)dx
a
a
0
a
a
0 f (t)dt 0 f (x)dx
令xt
a
0[f(x)f(x)]dx
a
20 f (x)dx,
f(x)f(x)时
0,
f(x)f(x)时
目录 上页 下页 返回 结束
例4. 设 f (x) 是连续的周期函数, 周期为T, 证明:
当 x0时 ,t0; xa时 ,tπ 2.
π
∴
原式
=
a2
2
0
cos2tdt
y y a2x2
a220π 2(1co2st)dt
S
a2(t1sin2t)
π 2
πa2
O
22
04
ax
目录 上页 下页 返回 结束
例2.
计算
4
0
x2 dx. 2x1
解: 令 t 2x1,则 xt21, dxtdt, 且 2
当x0时,t 1; x4时, t 3.
分部积分法
换元必换限 凑微不换限 边积边代限
牢记奇(偶)函数,周期函数及正(余)弦函数n 次 幂的积分,如例3,4,6的结论!
思考与练习
1.
d xsi1n0(0xt)dt_s_in1_00x_____ dx 0
提示: 令 uxt,则
xsi1n0(0xt)dt 0sin100udu
0
x
目录 上页 下页 返回 结束
aT
T
a f(x)dx0f(x)dx
目录 上页 下页 返回 结束
( 2 )a nfT ( x )d x n T f( x )d x( n N )并,由此计算
a
0
n
0 1si2 nxdx
(2)
anT
n1
f (x)dx
akTT
f(x)dx
a
akT
k0
将 ak看 T (1)作 中a,的 则有
∴
原式 =
3
t21 2
2 t
dt
1t
1 3(t23)dt
21
1(1t33t) 3 22
23
13
目录 上页 下页 返回 结束
例3. 设 f(x ) C [ a ,a ],结论牢记!! 偶倍奇零
(1) 若 f( x)f(x),则 a af(x)dx20 af(x)dx
(2) 若 f( x ) f(x ),则 aaf(x)dx0
且它们的原函数也存在 . 设F(x)是f(x)的一个原, 函
则F[(t) ]是 f[(t) ](t)的原函数 , 因此有
b
a
f
(x)
dx
F (b ) F (a )F[()]F[()]
f[(t) ](t)dt
目录 上页 下页 返回 结束
a bf(x )d x f[(t)](t) d t
说明:
1) 当 < , 即区间换为[,]时,定理 1 仍成立 .
abu(x)v(x)dxu(x)v(x)ba abu(x)v(x)dx
目录 上页 下页 返回 结束
1
例5. 计算 2arcsinxdx. 0
1
解: 原式 = xarcsixn 2
1 2
00
x dx 1 x2
π 11 2(1x2) 2 1d(1x2)
12 20
π
1
(1x2)2
1 2
12
0
π 3 1 12 2
n0
(cxo ssix)n 2dx
n0cox ssixndx
n20 sin x(4)dx
令 tx4
Байду номын сангаас
5
n
2
4
sint dt
4
n 2 sint dt 0
aT
(1) a f (x)dx
T
0 f (x)dx
n 2 sintdt2 2n 0
目录 上页 下页 返回 结束
二、定积分的分部积分法
定理2. 设 u (x ),v (x ) C 1 [a ,b ],则
2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
f[(t)
](t)
dt
b
f (x)dx
a
(令 x(t))
或凑微
f[(t)
](t)
dt
f
[(t)
]
d(t)
凑微不换限
目录 上页 下页 返回 结束
例1. 计算 a a2x2dx(a0). 0
解: 令 xasitn,则 d xaco tdts ,且
aT
(1) a f (x)dx
T
0 f (x)dx
a k T T
T
f(x)d x f(x)d x
a kT
0
T
n0f(x)dx(nN)
n
0
1si2 nxdx
n0 1si2nxdx
1si2n x是以 为
周期的周期函数
目录 上页 下页 返回 结束
n
0 1 s2 ix d n x n 01 s2 ix d n x
2. 设
解法1. lnx x3 f(t)dt 1
f (x3)
解法2. 对已知等式两边求导,
得
3x2f(x3)1x
思考: 若改题为
x3 f(3t)dtlnx 1
提示: 两边求导, 得
1 3
目录 上页 下页 返回 结束
3. 设 求
解:
(分部积分)
目录 上页 下页 返回 结束
作业
P253 1 (7) , (13) , (15) ,(19), (26) ; 3 ; 7 (6), (11), (12)
由此得递推公式 Innn1In2
于是
I2m22mm1 2I22mmm232 I 2m443 12 I 0
I2m12
2m m 1
2I2m2mm121
I 2m354 32 I 1
而
π
I0
2 dx
0
π 2
,
π
I1
2sinxdx
0
1
故所证结论成立 .
目录 上页 下页 返回 结束
内容小结
换元积分法 基本积分法