第七节放射治疗时间剂量分割方式

合集下载

放射治疗过程教程

放射治疗过程教程
有两种方法可以确定肿瘤的最佳靶区剂 量:前瞻性临床研究和回顾性病例分析。
计划确定与执行
治疗方针的确定
根治性放射治疗:根治性放射治疗的病人条
件是一般状况较好,肿瘤不能太大并无远处脏 器转移,病理类型属于对射线敏感或中度敏感 的肿瘤。根治性放射治疗的照射野要包括原发 灶和淋巴引流区,照射范围较大,剂量较高。 因此对肿瘤附近的正常组织和器官,特别是一 些敏感的组织或器官的防护非常重要。
患者诊断与放疗适应征确定 靶区及放疗剂量确定 计划确定与执行
患者诊断与放疗适应征确定
诊断:病史、临床特征、影像学检查、 病理确诊。
一、二类肿瘤是根治性放射治疗
恶 性 肿 瘤 三、四类肿瘤应以手术为主,
酌情补充放射治疗
放射敏感的肿瘤
肿瘤给予较低的剂量即可达到临床治愈, 但是由于这类肿瘤恶性程度较高,容易 出现远距离转移,需要与化学疗法等方 法进行综合治疗,才能取得远期疗效。
内照射技术
内照射又称近距离照射是将封装好的放射源, 通过施源器或输源导管直接植入患者的肿瘤部 位进行照射。其基本特征是放射源贴近肿瘤组 织,肿瘤组织可以得到有效的杀伤剂量,而邻 近的正常组织,由于辐射剂量随距离增加而迅 速跌落,受量较低。
内照射大致可分为腔内照射、组织间插植照射、 管内照射和表面施源器照射。
根据影像学检查确定ቤተ መጻሕፍቲ ባይዱ区
模拟定位机 :模拟放射治疗机的各种几何参
数、机械和光学特点,重复治疗机的所有自由 度,保证靶区定位时的一切条件与治疗时完全 一致,病人按照治疗时的体位在模拟机下通过 透视、拍片来确定病变的范围。
它能显示靶区及重要器官的位置、活动范 围,拍摄照射野定位片,多用于胸部肿瘤的定 位;食管和胃肠病变定位可通过喝钡来确定食 管病变的长度和胃肠肿瘤的位置。

不同剂量分割方案放射治疗在乳腺癌根治术后治疗中的应用效果比较

不同剂量分割方案放射治疗在乳腺癌根治术后治疗中的应用效果比较

A N Q 一 y u . S h e n g i f n g H o s p i t a l A il f i a t e d t o C h i n a M e d i c a l U n i v e r s i t y , S h e n y a n g , L i a o n i n g 1 1 0 0 0 0 , C h i n a
【 关键词 】 乳腺 癌放 射方法 ; 乳房切除术 , 根治性 ; 剂量分割 ; 疗效 【 中图分 类号】 R 7 3 7 . 9 【 文献标识码 】 A 【 文章 编号】 1 0 0 4 - 0 5 0 1 ( 2 0 1 3 ) 0 1 01 - 0 6 0 - 3
Co mp a r e t h e t r e a t me n t e fe c t o f r a d i o t h e r a p y d i fe r e n t f r a c t i o n a t e d d o s e s i n p o s t - ma s t e c t o my . j | Xu e — y i n g DU ・
d , 5次 /周 , 总放 射 剂 量 为 5 0 G y ; 隔 日照射 组 1 6 4例 , 3 G y / 次, 3次/周 , 总 放 射 剂量 为 4 5 G y; 快 速照射 组 5 8
例, 第 l天和第 4天 5 . 5 G y / 次, 第l 6天和第 1 8天 7 G y / 次, 总2 5 G y。全部入组 患者均接 受 了化 疗和 ( 或)内分泌 治疗。 比较 两组 患者 1 、 3及 5年总生存率、 局部控制率和远 处转移 率。结果 分割 照射组 、 隔 日照射组 、 快速照射组三组 患者放
金 雪瑛 , 段 琼 玉

2024年卫生专业技术资格考试肿瘤放射治疗学(中级343)基础知识试题与参考答案

2024年卫生专业技术资格考试肿瘤放射治疗学(中级343)基础知识试题与参考答案

2024年卫生专业技术资格考试肿瘤放射治疗学(中级343)基础知识模拟试题(答案在后面)一、A1型单项选择题(本大题有40小题,每小题1分,共40分)1、题干:以下哪项不属于肿瘤放射治疗的基本原理?A、细胞周期特异性B、细胞增殖动力学C、正常组织耐受性D、细胞凋亡2、题干:以下哪种剂量水平的放射治疗通常用于治疗急性放射性皮炎?A、0.5 GyB、2 GyC、10 GyD、20 Gy3、在肿瘤放射治疗中,以下哪种情况最有可能导致放射性肺炎?A、照射剂量低于常规剂量B、照射剂量适中C、照射剂量超过常规剂量D、照射剂量低于常规剂量,但照射范围广泛4、在肿瘤放射治疗计划中,以下哪项不是影响剂量分布均匀性的主要因素?A、照射野的大小B、照射野的形状C、源皮距(源到皮肤的距离)D、患者体位5、题干:以下哪种放射治疗技术主要用于治疗肿瘤的局部控制?A、立体定向放射治疗(SRT)B、调强放射治疗(IMRT)C、电子线放射治疗D、粒子植入治疗6、题干:以下哪种放射治疗设备主要用于治疗体部肿瘤?A、直线加速器B、模拟定位机C、CT模拟定位机D、γ刀7、在肿瘤放射治疗中,以下哪种剂量用于确定肿瘤靶区的外缘?A. 90%等剂量线B. 80%等剂量线C. 70%等剂量线D. 60%等剂量线8、在肿瘤放射治疗中,以下哪种技术可以减少肿瘤周围正常组织的损伤?A. 3D适形放疗B. 调强放疗C. 载波粒子放疗D. 重离子放疗9、在肿瘤放射治疗中,以下哪种情况最有利于提高肿瘤局部控制率?A. 单次大剂量照射B. 分次小剂量照射C. 单次低剂量照射D. 长时间连续照射 10、在放射治疗计划设计中,以下哪个参数是评估靶区剂量分布均匀性的关键指标?A. 最大剂量点B. 平均剂量C. 治疗剂量D. 靶区剂量均匀性指数(Dose Uniformity Index, DUI)11、肿瘤放射治疗学中,下列哪项不是放疗计划设计的三大要素?A. 线束类型B. 治疗剂量C. 治疗时间D. 照射野大小12、以下哪种放射治疗技术属于立体定向放射治疗(SRS)?A. 适形放疗B. 三维适形放疗C. 立体定向放射治疗D. 刀射线放射治疗13、肿瘤放射治疗中,下列哪种剂量分布是正常组织接受剂量最小,而肿瘤组织接受剂量最大的?A. 等剂量线重叠B. 靶区剂量均匀分布C. 肿瘤剂量梯度分布D. 等剂量线集中14、以下哪项不是肿瘤放射治疗计划设计中的主要步骤?A. 肿瘤定位B. 治疗计划评估C. 放射源选择D. 计划优化15、肿瘤放射治疗学中,以下哪种放射源被称为“快中子”?A. 60CoB. 192IrC. 6MV X线D. 10MeV电子16、关于肿瘤放射治疗中的剂量分布,以下哪项描述是正确的?A. 剂量分布总是均匀的,没有剂量热点B. 剂量分布是均匀的,但存在剂量热点C. 剂量分布不均匀,但可以通过技术手段优化D. 剂量分布不均匀,且技术手段无法优化17、肿瘤放射治疗学中,以下哪种剂量单位用于描述放射线的强度?A. 毫居里(mCi)B. 毫格雷(mGy)C. 拉德(rad)D. 西弗(Sv)18、在放射治疗计划设计中,以下哪个参数通常用于确定治疗野的大小?A. 治疗目标体积(PTV)B. 临界器官剂量限制C. 治疗剂量D. 皮肤入射剂量19、在肿瘤放射治疗中,以下哪项不是常见的放射源?A. 铯-137B. 铅-208C. 氪-85D. 钴-60 20、关于放射治疗中靶区体积的定义,以下哪项描述是错误的?A. GTV(Gross Tumor Volume):大体肿瘤体积B.CTV(Clinical Target Volume):临床靶区体积C. PTV(Planning Target Volume):计划靶区体积D. ITV(Internal Target Volume):内部靶区体积21、肿瘤放射治疗中,哪种类型的剂量分布对周围正常组织损伤最小?A. 靶区剂量分布均匀B. 靶区剂量分布不规则C. 靶区周围剂量梯度较大D. 靶区周围剂量梯度较小22、以下哪项不是放射治疗计划设计中的关键参数?A. 治疗靶区大小B. 治疗剂量C. 分次剂量D. 治疗时间23、下列哪项不属于肿瘤放射治疗的基本原理?A. 乏氧细胞放射敏感性降低B. 放射性同位素治疗C. 放射性粒子植入治疗D. 靶向放射治疗24、关于肿瘤放射治疗中的剂量分布,以下哪种说法是正确的?A. 高剂量区应与肿瘤体积完全重合B. 低剂量区应与肿瘤体积完全重合C. 高剂量区应远离肿瘤边缘D. 低剂量区应远离肿瘤边缘25、肿瘤放射治疗中,以下哪种剂量用于治疗局部肿瘤?A. 5Gy/次B. 10Gy/次C. 15Gy/次D. 20Gy/次26、在放射治疗计划中,以下哪个不是影响剂量分布的因素?A. 治疗机头角度B. 治疗野大小C. 穿透深度D. 患者体位27、以下哪种放疗技术主要用于早期乳腺癌的保乳治疗?A. 刀片放疗B. 三维适形放疗C. 调强放疗D. 伽马刀放疗28、以下哪项不是放疗反应的急性反应?A. 皮肤反应B. 腹泻C. 咽炎D. 瘢痕增生29、在肿瘤放射治疗计划中,以下哪个剂量分布是治疗计划优化的关键指标?A. 平均剂量B. 最大剂量C. 最低剂量D. 等剂量线覆盖范围 30、关于肿瘤放射治疗的靶区定义,以下哪种描述是正确的?A. 靶区仅包括肿瘤组织B. 靶区包括肿瘤组织及其周围一定范围的正常组织C. 靶区仅包括肿瘤组织及其邻近的淋巴结D. 靶区包括肿瘤组织、淋巴结以及可能的远处转移灶31、下列哪种放射治疗设备主要用于治疗肿瘤?A. X线治疗机B. γ-刀C. 同步加速器D. 线性加速器32、在放射治疗计划中,以下哪项不是影响治疗计划的关键因素?A. 患者的体型B. 肿瘤的大小和位置C. 治疗师的经验D. 治疗机的能量33、以下哪项不是放射治疗计划设计的基本原则?A. 确保肿瘤剂量覆盖B. 减少正常组织剂量C. 最大程度地提高肿瘤局部控制率D. 忽略肿瘤周围正常组织保护34、以下哪种情况不属于放射治疗适应症?A. 早期宫颈癌B. 晚期肺癌C. 中晚期食管癌D. 原发性肝癌35、肿瘤放射治疗学中,以下哪项不是影响放射治疗效果的因素?A、肿瘤体积大小B、肿瘤与正常组织的分界C、患者的年龄和性别D、放射治疗的剂量和次数36、关于肿瘤放射治疗中的“分割剂量”,以下哪项描述是正确的?A、分割剂量是指每次照射的剂量B、分割剂量是指整个治疗期间的总剂量C、分割剂量是指每次照射的总时间D、分割剂量是指每次照射后间隔的时间37、肿瘤放射治疗中,下列哪种剂量分布特点是不符合适形放射治疗的?A. 高剂量区与肿瘤形状一致B. 低剂量区与肿瘤形状一致C. 高剂量区边缘与肿瘤形状一致D. 低剂量区边缘与肿瘤形状一致38、关于肿瘤放射治疗的副作用,以下哪项描述是错误的?A. 皮肤反应是常见的早期副作用B. 恶心、呕吐是常见的急性副作用C. 骨髓抑制是常见的晚期副作用D. 放射性肠炎是常见的早期副作用39、下列哪种肿瘤放射治疗计划设计时,应首先考虑肿瘤的最大剂量?A. 鼻咽癌B. 前列腺癌C. 肺癌D. 乳腺癌 40、以下哪种放射治疗技术主要用于早期乳腺癌的保乳治疗?A. 三维适形放疗B. 旋转调强放疗C. 质子治疗D. 腔内放疗二、A2型单项选择题(本大题有50小题,每小题1分,共50分)1、下列哪种放射治疗技术是利用高能X射线或电子束来治疗肿瘤的方法?A、光动力治疗B、近距离放射治疗C、质子束放射治疗D、伽马刀放射治疗2、在肿瘤放射治疗中,以下哪项不是影响放射治疗剂量的因素?A、肿瘤的大小和位置B、患者的年龄和性别C、肿瘤的恶性程度D、放射源的类型3、题干:在肿瘤放射治疗中,以下哪种剂量适用于小细胞肺癌的根治性放疗?A、30-40 GyB、45-50 GyC、50-60 GyD、60-70 Gy4、题干:以下哪种情况不适合进行肿瘤放射治疗?A、肿瘤体积较小,边界清晰B、肿瘤位于重要器官附近C、肿瘤位于活动部位D、患者一般状况良好5、题干:下列关于肿瘤放射治疗中放疗靶区定义的说法,正确的是:A、放疗靶区仅包括肿瘤本身B、放疗靶区包括肿瘤本身和肿瘤周围可能存在微转移的区域C、放疗靶区仅包括肿瘤周围可能存在微转移的区域D、放疗靶区不包括肿瘤周围可能存在微转移的区域6、题干:在肿瘤放射治疗中,下列哪种剂量定义通常用于评估肿瘤的控制情况:A、最大剂量(Dmax)B、最小剂量(Dmin)C、平均剂量(Dmean)D、危及器官的剂量7、题干:以下哪项不属于肿瘤放射治疗的基本原则?A、精确性原则B、剂量学原则C、生物学原则D、疗效最大化原则8、题干:下列关于放射治疗设备中直线加速器的说法,错误的是?A、直线加速器是一种利用微波或射频加速电子的设备B、直线加速器输出的射线能量范围较广,从几兆电子伏特到几十兆电子伏特C、直线加速器输出的射线属于高能射线,穿透力强D、直线加速器输出射线时,会产生X射线,但通过铅帘即可屏蔽9、下列关于肿瘤放射治疗中放射源类型的描述,错误的是:A、高能X射线放射源常用于治疗浅表肿瘤B、电子束放射源适用于治疗较深部位的肿瘤C、质子束放射源具有较好的剂量分布均匀性D、中子束放射源主要用于治疗头颈部肿瘤 10、在肿瘤放射治疗计划设计时,以下哪个因素不是影响剂量分布的主要因素:A、射野大小B、射野形状C、患者体位D、治疗机器的物理特性11、在肿瘤放射治疗计划中,以下哪个剂量范围通常用于确定肿瘤靶区?A. 10-20 GyB. 20-30 GyC. 30-40 GyD. 45-50 Gy12、以下哪种情况最可能导致放射性肺炎?A. 单次大剂量照射B. 分次小剂量照射C. 靶区与正常肺组织界限清晰D. 放射治疗期间定期监测肺功能13、肿瘤放射治疗中,以下哪种剂量分割方式称为分割剂量?A. 分剂量B. 分次剂量C. 分野剂量D. 分区剂量14、以下哪项不是肿瘤放射治疗中的一种放射源?A. 铯-137B. 氙-133C. 铯-137源D. 氩-12515、肿瘤放射治疗过程中,以下哪种剂量适用于预防性照射?A. 30 GyB. 50 GyC. 60 GyD. 70 Gy16、在肿瘤放射治疗计划设计时,以下哪项不是影响剂量分布的因素?A. 患者体型B. 治疗机器类型C. 患者年龄17、在肿瘤放射治疗中,以下哪种剂量水平的放疗通常用于肿瘤的预防性照射?()A. 10GyB. 20GyC. 30GyD. 40Gy18、在放射治疗计划中,以下哪个参数通常用于确定放射治疗中肿瘤和正常组织的剂量分布?()A. 等剂量曲线B. 分配剂量曲线C. 剂量-体积直方图D. 等中心19、某患者,男性,45岁,因肺癌晚期就诊。

放射治疗技术生物

放射治疗技术生物

(3)总治疗时间:因为晚反应组织更新慢,放疗期 间不发生代偿性增殖,所以对治疗时间变化不敏感 ,缩短治疗时间会增长对肿瘤细胞旳杀灭,但不会 增长晚期并发症。早反应组织对治疗时间反应敏感 ,缩短治疗时间早反应组织损伤加重。早反应组织 对射线旳反应类似于肿瘤组织。
二、非常规分割照射旳生物学基础
超分割:指在一样旳总治疗时间内用更多旳分次数。一天内多 于一种分次,但分次剂量降低。 1.2Gy/次,每天2次,间隔6 小时以上。总剂量与常规放疗相同,其目旳是保护正常组织。
细胞存活旳意义
细胞存活曲线
1、细胞存活曲线旳绘制
离体细胞培养 不同剂量照射 单细胞接种 细 胞培养 2周左右计算集落形成数目 计算存活率
绘制存活曲线
2、细胞存活曲线旳形状
1)指数性存活曲线 2)非指数性存活曲线
3、细胞存活曲线有关参数旳含义
D0 (平均致死剂量):是指细胞存活从0.1下降到0.037或从 0.01下降到0.0037所需旳剂量。表达受照射细胞在高剂量 区旳放射敏感性。D0值越大,细胞对放射越抗拒。
线性二次模式与α/β值
S =e -n (αd +βd2) 描述了组织生物效应与分次照射及剂量 之间旳关系 预测不同剂量分割方式旳生物效应 进行不同剂量分割方式旳等效转换
不同组织射线照射后反应不同。根据细胞增殖动力学 和α/β比值将正常组织提成早反应组织和晚反应组织。
早反应组织:指机体内分裂、增殖活跃并对放射线早期反 应强烈旳组织,如上皮、黏膜、造血组织、精原细胞等;( 涉及大多数肿瘤组织) 晚反应组织:指机体内无再增殖能力,损伤后仅以修复代 偿其功能旳细胞组织,如脊髓、肾、肺、肝、结缔组织等。
② 潜在倍增时间(potential doubling time ,T pot), 用来描述肿瘤生长速度旳理论参数,定义:假设在没有细胞 丢失 旳情况下,肿瘤细胞群体增长一倍所需要旳时间。这 取决于细胞周期时间和生长百分比。 潜在倍增时间能够经过测定胸腺嘧啶标识数(LI)或S期百 分比(S-Phase fraction)取得:T pot=λ×Ts/LI ③ 细胞丢失因子(cell loss factor),肿瘤细胞旳丢失 能够经过计算细胞丢失因子来体现。细胞丢失因子=1- T pot/Td

放射治疗的常见并发症及处理对策

放射治疗的常见并发症及处理对策

放射治疗的常见并发症及处理对策(一)放射性肺炎1.定义胸部肿瘤如乳腺癌、食管癌、肺癌和其他恶性肿瘤接受放射治疗后,在放射野内的正常肺组织发生放射性损伤;表现为炎性反应,称为放射性肺炎(radiation pneumo-nitis)。

2.放射性肺炎的诱因在胸部肿瘤的放射治疗中,肺组织往往受到一定剂量的照射,而肺是一个放射敏感的器官,因而易产生不同程度的放射损伤。

肺组织受照射后常见的并发症有急性放射性肺炎和慢性肺纤维化,两者是一个病程的两个阶段,急性者常发生于放疗后1—3个月内,慢性肺纤维化多数在放疗结束后半年至1年发生。

其发生原因与肺受照射体积、放射的总剂量、每次照射的分割剂量和总照射时间有关。

照射面积小于100cm2,剂量达60~70Gy时,不一定发生急性放射性肺炎,照射野面积大于100cm2,剂量30—40Gy时就易出现。

尽管面积较小,只要剂量到70Gy 则可发生慢性肺纤维化。

另外,上呼吸道感染常为其诱因,慢性支气管炎、肺气肿等疾病也容易发生放射性肺炎。

放疗中合并用ADM、PYM、VCR 等抗癌药及吸烟也易促使放射性肺炎的发生。

3.急性放射性肺炎急性放射性肺炎由于肺泡、间质水肿和渗出液明显,临床症状较严重,常表现为低热、干咳、胸闷,较严重者有高热、气急、胸痛、呼吸困难和发绀等。

常伴肺部感染,体检在受照肺可闻及罗音,有肺实变的表现,部分病人可闻及胸膜摩擦音,有胸水的临床表现,较严重者出现急性呼吸窘迫,甚至发生肺源性心脏病而导致死亡。

化验检查白细胞计数多数不高,x线片见照射区内有密度增高的片状或网状阴影和正常组织边缘有明显的分界,与照射野范围相似。

4.慢性肺纤维化慢性肺纤维化进展较缓慢,呈隐匿发展,在1-2年后趋于稳定。

临床症状的出现和严重程度与受照肺的容积和剂量有关,也与放疗前肺功能的状态有关。

大多数病人无明显临床症状,或仅有刺激性咳嗽,咳白色泡沫痰,有时胸闷,少数病人有临床症状,合并肺部感染时可发热。

《放射治疗物理学》讲义教案放射治疗物理学目录.doc

《放射治疗物理学》讲义教案放射治疗物理学目录.doc

放射治疗物理学目录第一章放射治疗物理基础第一节原子和原子核性质一、一些基本概念二、原子核的大小和质量三、原子核结合能四、原子核的自旋与磁矩五、原子核和核外电子的能级第二节射线与物质的相互作用一、基木粒子的种类和物理特性二、核的稳定性和衰变类型三、放射性度量和放射性核素衰减规律四、常见类型射线与物质的相互作用及定量表达第二章临床放射生物学概论第一节电离辐射对生物体的作用一、辐射生物效应的时间标尺二、电离辐射的直接作用和间接作用第二节电离辐射的细胞效应一、辐射诱导的DNA损伤及修复二、细胞死亡的概念三、细胞存活曲线四、细胞周期时相与放射敏感性五、氧效应及乏氧细胞的再氧合六、再群体化笫三节电离辐射对肿瘤组织的作用一、肿瘤的增殖动力学二、在体实验肿瘤的放射生物学研究中得到的一些结论第四节正常组织及器官的放射效应一、正常组织的结构组分二、早期和晚期放射反应的发生机制三、正常组织的体积效应第五节肿瘤放射治疗的基本原则一、照射范围应包括肿瘤二、要达到基本消灭肿瘤的目的三、保护邻近正常组织和器官四、保护全身情况及精神状态良好第六节提高肿瘤放射敏感性的措施一、放射源的选择二、利用时间-剂量-分割关系三、使肿瘤细胞再分布四、利用氧效应第七节肿瘤放射治疗中生物剂量等效换算的数学模型一、“生物剂量”的概念二、放射治疗屮生物剂量等效换算的数学模型三、外推反应剂量(ERD)概念第三章常用放射治疗设备第一节X线治疗机一、X线的发生二、X线机的一般结构三、X线质的改进四、X射线治疗机的改进第二节医用加速器一、概述二、医用电子直线加速器的加速原理三、医用电子直线加速器的结构四、质子放疗系统第三节远距离^Co治疗机一、叫20源的产生与衰变二、远距离治疗机的一般结构三、60Co治疗机种类四、60Co治疗机的半影种类五、垂直照射相邻照射野的设计六、60c°v射线的优缺点七、6°C0源更换八、Y刀第四节远距离控制的近距离治疗机一、H DR后装治疗设备的组成二、现代后装机具有的优点第五节理想放射源条件一、理想的剂量分布二、能杀灭乏氧细胞三、能杀灭非增殖期细胞(Go期)第六节模拟定位设备一、模拟定位机二、C T模拟定位机三、磁共振模拟机四、P ET-CT模拟机第七节体位固定装置一、一般的头颈部支持系统二、乳腺体位辅助托架三、热塑面网(罩)和体罩四、真空成形固定袋(真空袋)第八节放射治疗局域网络一、局域网络的配置二、放射治疗科网络的信息交换三、L ANTIS系统四、科室网络的安全维护第四章辐射剂量学的基本概念第一节辐射剂量学基本定义一、照射量二、比释动能三、吸收剂量四、有关辐射场的几个基本定义第二节各辐射量Z间的关系一、高能光子在介质中的能量转移和吸收二、电子平衡三、照射量和比释动能的关系四、比释动能和吸收剂量的关系五、吸收剂量和照射量的关系第三节空腔理论一、阻止本领二、阻止本领和吸收剂量的关系三、Bragg-Gray空腔理论四、Spencer-Attix 理论五、空腔理论住电离室剂量测量中的应用第五章射线的测量第一节电离室一、电离室基本原理二、指形电离室三、电离室的工作特性以、特殊电离室五、电离室测量吸收剂量的原理第二节热释光剂量计一、原理二、热释光剂量讣的种类三、热释光剂量计使用四、热释光剂量计的刻度第三节胶片剂量计一、原理二、应用第四节半导体剂量计一、原理二、Mapcheck半导体剂量仪第五节场效应管一、原理二、M OSFET探测器的特性第六节剂量的标定一、射线质的测定二、射线吸收剂量的标定第六章光子照射剂量学第一节原射线与散射线一、原射线二、散射线第二节平方反比定律第三节百分深度剂量一、照射野及有关名词定义二、百分深度剂量第四节射野输出因子和模体散射因子一、射野输出因子二、模体散射校正因子第五节组织空气比一、组织空气比定义二、源皮距对组织空气比的影响三、射线能量、组织深度和射野大小对组织空气比的彫响四、反向散射因子五、组织空气比与百分深度剂量的关系六、不同源皮距百分深度剂量的计算一一组织空气比法七、旋转治疗屮的剂量计算八、散射空气比第六节组织最大比一、组织模体比和组织最大剂量比二、散射最大剂量比第七节等剂量线一、等剂量线二、射野离轴比第八节组织等效材料一、组织替代材料二、组织替代材料间的转换三、模体四、剂量准确性要求第九节人体曲而和组织不均匀性的修正一、均匀模体和人体之间的差别二、人体曲面的校正第十节不均匀组织(骨、肺)校正一、射线衰减和散射的修正二、不均匀组织屮的吸收剂量三、组织补偿第十一节楔形野剂量学一、楔形野等剂量分布与楔形角二、楔形因子三、一楔合成四、楔形板临床应用方式及其计算公式五、动态楔形野第十二节不规则射野剂量学第十三节临床剂量计算一、处方剂量二、加速器剂量计算三、钻-60剂量计算四、离轴点剂量计算一一Day氏法第七章电子线照射剂量学第一节电子线中心轴深度剂量分布一、中心轴深度剂量曲线的基木特点二、有效源皮距及平方反比定律三、彫响电子线百分深度剂量的因素四、电子线的输出因子第二节电子线剂量学参数一、电子线的射程二、电子线能量参数三、电子线的离轴比四、电子线的均整度、对称性及半影五、电子线的等剂量线分布特点第三节电子线的一般照射技术一、电子线处方剂量ICRU参考点二、能量和照射野的选择三、射野形状及铅挡技术四、电子线的补偿技术五、电子线的斜入射修正六、电子线的组织不均匀修正和边缘效应七、电子线的射野衔接技术第四节电子线的特殊照射技术一、电子线旋转照射技术二、电子线全身皮肤照射三、电子线术中照射第八章近距离放射治疗剂量学第一节近距离放疗概述一、近距离放射治疗的设备和相关技术二、近距离放疗的常用核素第二节近距离放疗的剂量计算一、单个粒子源的剂量计算方法二、临床多粒子源植入的扰动影响三、组织异质情况下的剂量修正第三节近距离放疗的临床应用和剂量体系一、粒子源植入治疗的临床应用二、粒子源植入的临床剂量体系第九章中子近距离照射剂量学第一节钿中子与制中子相对生物学效应一、钢屮子二、^cf的相对生物效应(RBE)三、屮子近距离治疗的优势第二节钏中子治疗技术一、'叱彳中子后装治疗机(中子刀)简介二、中子刀适应症及禁忌症第三节钿中子治疗的剂量分布一、模体二、确定漩Cf中子束、Y射线吸收剂量分布的探测器三、确定^Cf中子、Y吸收剂量分布的理论方法第四节中子的防护一、中子后装机的辐射防护性能二、患者的辐射防护三、医护人员的辐射防护四、公众的辐射防护五、安全管理第十章临床常用技术和应用第一节挡块一、挡块的厚度二、低熔点铅技术三、挡块制作第二节组织补偿一、组织填充物二、组织补偿器三、电子束的补偿技术第三节多叶准直器一、多叶准直器的基本结构二、多叶准直器的安装位置第四节楔形野一、楔形板二、楔形角与楔形因子三、一楔合成四、动态楔形野第五节独立准直器第十一章临床常用放疗方案第一节放疗临床对剂量学的要求一、提高治疗比二、实现临床剂量学四原则第二节照射技术和射野设计原理一、体外照射技术的分类及其优缺点二、射线及其能量的合理选择三、高能X射线的射野设计原则四、相邻野设计五、不对称射野笫三节临床常见肿瘤放射治疗方案一、鼻咽癌常规照射野设计二、肺癌常规照射野设计三、食管癌常规照射野设计第十二章三维适形放射治疗及调强放射治疗第一节三维适形放疗的发展过程第二节3DCRT工作流程、计划工具一、体模制作二、计划CT扫描与数据传输三、轮廓勾画四、计划设计和评价五、计划验证六、三维适形放疗的临床应用第三节立体定向放射外科和立体定向放射治疗一、立体定向放射外科二、立体定向放射治疗笫以节调强放射治疗一、IMRT的工作流程和基本概念二、IMRT实施方法三、IMRT的优点四、IMRT的可能潜在问题五、IMRT的剂量验证第五节 调强放射治疗的临床应用举例一、 鼻咽癌的调强放射治疗二、 前列腺癌的调强放射治疗三、 肺癌的调强放射治疗第十三章治疗计划系统和治疗计划评估 第一节治疗计划系统概念和历史简介一、 治疗计划系统概念二、 治疗计划系统的发展历史三、 两维和三维治疗计划系统的比较 第二节治疗计划的剂量学原则及靶区剂量规定一、 肿瘤致死剂量与正常组织耐受剂量二、 临床剂量学四项原则 第三节外照射靶区剂量学规定治疗目的 参考点和坐标系 体积的定义 対剂量报告的一般性建议 剂量归一点 吸收剂量二、四、五、八、第六节近距离放射治疗剂量算法近距离治疗特点近距离治疗类型和放射源空间重建近距离主耍剂量计算方法192Ir 放射源的数学模型 近距离照射的剂量优化第七节外照射剂量计算算法一、 剂量计算算法的临床实现进程二、 剂量计算算法第八节 治疗计划系统的设计和体系结构一、 基本组成二、 单个治疗计划工作站系统三、 多工作站系统四、 辅助部件五、 第三方软件六、 治疗计划系统的发展七、 系统说明书二、 四、五、八 第四节TPS 中的图像和图像处理技术一、 放射治疗计划中使用的图像技术二、 图像处理第五节治疗计划设计过程体位固定治疗计划设计放射治疗计划评估治疗计划的验证治计划的执行调强放射治疗的TPS 剂量验证 二、 四、 五、 六、第九节治疗计划系统的验收一、验收内容二、与剂量无关的项目三、外照射野光子剂量计算四、电子线剂量计算五、后装治疗六、数据传输第十节治疗计划系统的质量保证一、系统文件和人员培训二、系统定期QA项目三、患者治疗计划检查第十四章放射治疗的质量保证QA和质量控制QC 第一节QA和QC的目的及重要性第二节放射治疗对剂量准确度的要求一、靶区剂量的确定二、对剂量准确度的要求三、影响剂量准确性的因素第三节外照射治疗物理质量保证内容一、外照射治疗机、模拟机和辅助设备二、等中心及指示装置三、照射野特性的检查四、剂量测量和控制系统五、治疗计划系统六、治疗安全第四节近距离治疗QA内容一、放射源二、污染检查三、遥控后装机QA四、治疗的质量控制第五节QA、QC的管理要求一、部门QA的主要内容二、国家QA的主要内容第十五章发展中的图像引导放射治疗第一节三维适形放射治疗第二节调强放射治疗第三节图像引导放射治疗一、放射治疗实施前影像二、治疗室内图像引导和投照三、图像引导放射治疗四、4维放射治疗第四节剂量引导放疗和循变放疗一、剂量引导放射治疗二、循变放射治疗第十六章放射防护第一节电离辐射的生物效应一、放射损伤机理二、放射生物效应的类型三、影响放射生物效应的主要因素四、辐射对组织、器官的损伤效应第二节放射防护目的与标准一、放射防护的目的二、放射防护应遵守的三项基本原则三、人工照射类型四、放射防护标准第三节外照射防护基本措施一、工作场所区域划分二、减少外照射剂量的三项措施第四节医用电离辐射防护一、医院的防护职责二、医疗照射的正当性判断三、医疗照射的防护最优化四、医疗照射的指导水平与剂量约束章名为小三宋体加粗节名为小四宋体加粗正文为五号宋体加粗一、加粗(一)加粗有必要时1.加粗有必要时(1)a.(a)数字为timenewman公式为(1-1)。

乳腺癌的放疗剂量和分割方案

乳腺癌的放疗剂量和分割方案

乳腺癌的放疗剂量和分割方案乳腺癌是女性最常见的恶性肿瘤之一,放射治疗是乳腺癌综合治疗中的重要环节。

目前,针对乳腺癌的放疗剂量和分割方案的选择一直是临床上的热点问题。

本文将就乳腺癌的放疗剂量和分割方案的相关内容进行探讨,并介绍目前常用的一些方案。

一、放疗剂量的选择放疗剂量是指患者在接受放射治疗时所获得的辐射剂量。

在乳腺癌的放疗中,通常采用总剂量分为多个小剂量进行分割治疗,目的是降低对正常组织的损伤,同时保证对癌细胞的有效杀伤。

1. 标准剂量分割方案常用的标准剂量分割方案是采用50 Gy的总剂量,分为25次,每次给予2 Gy。

这是一种比较传统的方案,广泛应用于乳腺癌的放疗中。

这种方案通过较小的剂量分次给药,可以减少对正常组织的毒副作用,同时保证对癌细胞的杀伤效果。

2. 加速放疗剂量分割方案随着医学技术的进步,加速放疗方案在乳腺癌的治疗中逐渐被采用。

加速放疗方案采用较高的剂量,将总剂量分割为较少的次数给药,通常每次给予2.5 - 3 Gy。

这种方案可以减少放疗的总疗程,缩短治疗时间,提高患者的生活质量。

3. 个体化放疗剂量方案个体化放疗剂量方案是根据患者的具体情况来确定的,包括肿瘤大小、淋巴结转移情况、分子亚型等因素的综合考虑。

这种方案根据患者的不同特点来调整剂量和分割方案,旨在提高治疗的效果,并减少对正常组织的损伤。

二、分割方案的选择在乳腺癌的放疗中,分割方案是指将总剂量分为多个小剂量给药的方式和时间安排。

分割方案的选择关系到治疗效果和患者的生活质量。

1. 标准分割方案标准分割方案是指将总剂量平均分为多次给药。

常用的标准分割方案是每天给药一次,连续5天,然后休息2天,周一至周五进行5次,共计25次。

这种方案通过较长的治疗周期将剂量逐渐积累,既能保证对癌细胞的杀伤效果,又能减少对正常组织的毒副作用。

2. 加速分割方案加速分割方案是指通过缩短给药的间隔时间来加速治疗进程。

常用的加速分割方案是每天给药两次,中间间隔6小时。

肿瘤放射治疗知识点及试题

肿瘤放射治疗知识点及试题

名词解释1.立体定向放射治疗(1.2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。

2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。

3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。

4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修复。

5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的加速增殖现行,此现象被为称为加速再增殖。

6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。

7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进行修正。

一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。

8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提高局控率的药物。

包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。

9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少放射对肿瘤的杀灭效应化学修饰剂。

10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。

11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。

12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边缘病理未净。

13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或部分切除术后。

肿瘤放射治疗学试题及答案(三)

肿瘤放射治疗学试题及答案(三)

肿瘤放射治疗学试题及答案名词解释1.立体定向放射治疗(1.2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。

2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。

3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。

4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立即开始被修复。

5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会出血细胞的加速增殖现行,此现象被为称为加速再增殖。

6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。

7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子的任何因素进行修正。

一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。

8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀灭效应,提高局控率的药物。

包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。

9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤,同时不减少放射对肿瘤的杀灭效应化学修饰剂。

10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的治疗方法。

11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。

12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边缘病理未净。

肿瘤放射治疗学笔记及重点

肿瘤放射治疗学笔记及重点

临床放射生物学第1章/ 临床放射生物学在放射治疗中的作用:1)为放射治疗提供理论基础;2)治疗策略的实证研究;3)个体化放射治疗方案的研究和设计。

第2章/ 电离辐射对生物体的作用1.电离辐射的时间标尺:物理阶段,电离辐射与非电离辐射的主要区别在于单个能量包的大小,而不是射线所含的总能量;化学阶段,该阶段的重要特点是清除反应之间的竞争;生物阶段,放射线早期反应时由于干细胞的杀灭,引起的干细胞的丢失所致。

2. X射线对哺乳动物细胞DNA的损伤,约三分之二是有氢氧自由基所致。

辐射损伤可以通过防护剂或增敏剂等化学途径来修饰,而直接作用是不能被修饰的。

3. 相对生物效应:以250KV X射线为参照,产生相等生物效应所需的X射线剂量与被测试射线的剂量之比。

4. LET与RBE的关系:在LET为100kev/um (中子能量均值)时,RBE最大,LET继续增高,RBE反而下降,这与高LET射线存在超杀效应有关。

5. 常规射线(低LET射线)时,氧增强比约2.5~3;治疗比=正常组织的耐受量/肿瘤组织致死量。

治疗增益因子(TGF)=肿瘤组织的RBE/正常组织的RBE。

第3章/ 电离辐射的细胞效应1. 辐射诱导的DNA损伤的几种主要形式:单链,双链断裂。

其中双链断裂被认为是电离辐射在染色体上所致的最关键损伤,双链断裂大约是单链断裂的0.04倍,与照射剂量呈线性关系,表明是由电离辐射的单击所致。

2. 增殖性细胞死亡:细胞死亡可发生在照射后的第一次或以后的几次分裂。

是辐射所致细胞死亡的主要形式。

细胞死亡时放射线对细胞的遗传物质和DNA造成不可修复的损伤所致。

3. 凋亡作为辐射所引起的细胞死亡形式,是高度细胞类型依赖性的。

细胞死亡与肿瘤细胞在繁殖完整性的丢失在概念上存在根本意义的不同,放射可治愈性结局的主要依据后者。

4. 鉴别细胞存活的唯一标准是,受照射后细胞是否保留无限增殖的能力,即是否具有再繁殖完整性。

在离体细胞培养实验体系中,细胞群受照射后,一个存活的细胞可以分裂繁殖成一个细胞群体(≥50个细胞),称为克隆,这种具有生成克隆能力的原始存活细胞, 称为克隆源性细胞。

放射修饰效应-放射治疗学基础-2011年研究生课程-20110412

放射修饰效应-放射治疗学基础-2011年研究生课程-20110412

重离子治疗临床应用
中科院兰州近代物理研究所 同步加速器 重离子: 12C-Ion 能量: 430 MeV (~1000MeV) 治疗深度: 25 cm
重离子治疗适应症:
1)头颈部肿瘤; 2)中枢神经瘤; 3)肺癌; 4)肝细胞癌; 5)前列腺癌; 6)骨及软组织瘤; 7)子宫颈癌; 8)直肠癌; 9)胰腺癌。
NIRS:水平束、垂直束和水平及 垂直束三个治疗室。扫描方式 为被动式扫描,部分肿瘤的局
部控制率较低。
重离子治癌: 可能是未来放疗最好的工具
生物物理修饰效应
(三)时间、剂量、分次的修饰
(分割放射治疗的生物学基础及临床应用)
分割放射治疗的生物学基础 --- 4R
决定正常组织和肿瘤组织受到分次照射后 的反应的因素主要有4个:4R
剂量率效应:随着剂量率的降低和照射时间 的延长,通常某一特定剂量的生物效应将会降 低。 因此剂量率效应出现对治疗不利的局面。
剂量率效应的解释: 长时间的照射期间会出现SLDR(SDBR)
曲线A是X射线一 次照射的存活线, 曲线F是当每个剂量 都以多分次的小剂 量D照射而获得的, 而两次小剂量的间 隔时间足以让亚致 死损伤修复,多分 次小剂量基本接近 于连续照射。
1915年诺贝尔奖
(二)高LET射线或重粒子修饰
高LET射线生物学特点:
➢ 相对生物效应(RBE)高; ➢ 致死性损伤(SLD)比潜在损伤(PLD)及亚致死损
伤(SLD)高,损伤修复差;高LET射线照射后的细 胞存活曲线比低LET射线照射后细胞存活曲线陡,且 肩区小; ➢ 氧增强比(OER)小; ➢ 对细胞周期的放射敏感性依赖小;
早反应组织:α/β较大,SLD修复能力低 ; 肿瘤组织:类似早反应组织; 晚反应组织:α/β较小,SLD修复能力强;

放射肿瘤科规培考试真题

放射肿瘤科规培考试真题

选择题放射治疗计划中,确定靶区边界时主要依据的是:A. 病理切片结果B. 影像学检查结果(正确答案)C. 患者主诉D. 医生经验判断关于放射治疗剂量分割,下列说法错误的是:A. 分次照射可减轻正常组织损伤B. 总剂量不变时,分割次数越多效果越好C. 适当的分割照射可提高治疗增益比D. 分割方式需根据患者具体情况制定(B为错误选项)放射性皮肤损伤的预防措施中,不包括:A. 保持照射野皮肤清洁干燥B. 避免使用刺激性强的洗涤用品C. 照射野皮肤可随意涂抹化妆品(正确答案)D. 避免阳光直射和过热刺激放射治疗对肿瘤细胞的主要作用机制是:A. 直接杀灭所有肿瘤细胞B. 抑制肿瘤细胞增殖,促进凋亡(正确答案)C. 仅对敏感肿瘤细胞有效D. 通过提高免疫力间接杀伤肿瘤在制定头颈部肿瘤放疗方案时,应特别注意保护的器官是:A. 心脏B. 肺C. 脊髓D. 唾液腺(正确答案)关于放射治疗并发症,下列哪项不属于早期反应:A. 放射性皮炎B. 放射性食管炎C. 放射性肺炎D. 放射性骨坏死(正确答案)在进行放射治疗时,为保护患者和工作人员,必须严格遵守的辐射防护原则是:A. 时间、距离、屏蔽(正确答案)B. 高剂量、短时间、小范围C. 低剂量、长时间、大范围D. 仅依赖个人防护装备下列哪种情况不适合采用放射治疗作为首选治疗方法?A. 鼻咽癌早期B. 皮肤癌浅表病灶C. 广泛转移的晚期恶性肿瘤(正确答案)D. 前列腺癌局限期关于放射治疗的质量保证,下列哪项不是必须建立的制度?A. 设备定期校准和维护B. 治疗计划双人复核C. 患者随意更改治疗时间(正确答案)D. 放射治疗记录完整准确。

放射治疗的剂量分配方法详解

放射治疗的剂量分配方法详解

放射治疗的剂量分配方法详解放射治疗作为一种重要的肿瘤治疗手段,可以通过使用高能量的放射线或颗粒来杀死癌细胞或抑制其生长。

在放射治疗过程中,剂量分配是非常关键的,它决定了病变部位所接受到的治疗剂量。

本文将详细介绍放射治疗的剂量分配方法。

1. 治疗计划设计放射治疗的剂量分配是在治疗计划设计阶段完成的。

这个阶段需要医生和放射治疗技师共同完成。

首先,医生需要进行详细的病情评估,包括病变的类型、大小、位置以及患者的整体健康状况等。

然后,根据这些评估结果,医生会使用放射治疗计划系统进行计算和优化,确定最佳的放射治疗计划。

2. 剂量分配系统放射治疗的剂量分配主要依赖于剂量分配系统。

剂量分配系统是专门为放射治疗设计的计算机软件,它能够模拟放射线在人体组织中的传播和吸收过程,从而确定剂量分布。

现代的剂量分配系统非常先进,能够自动化地进行剂量计算和优化,为医生提供最佳的放射治疗计划。

3. 剂量分配的参数剂量分配的参数主要包括剂量分布、剂量强度和剂量分配图。

剂量分布指的是放射治疗剂量在病变部位的分布情况。

剂量强度是指单位体积组织所接受到的剂量大小,常用的单位是Gray(Gy)。

剂量分配图是将剂量分布以图像的形式展示出来,以便医生和患者可以清晰地了解治疗计划。

4. 剂量计算方法在放射治疗的剂量分配过程中,剂量计算是一个非常重要的环节。

常见的剂量计算方法包括点计算法和直线计算法。

点计算法是通过在病变部位选取一个或多个代表性点,计算该点的剂量,从而获得整个病变区域的剂量分布情况。

直线计算法是通过在病变部位选择一个或多个代表性的直线,计算沿直线方向的剂量分布情况。

5. 剂量调整和优化剂量分配不仅涉及到剂量计算,还包括剂量调整和优化。

在实际治疗中,医生会根据患者的具体情况对治疗计划进行调整和优化。

例如,对于大型病变,医生可能会调整剂量分布,以确保整个病变区域都能够受到足够的治疗剂量。

另外,对于靠近重要器官的病变,医生会对剂量进行优化,以减少对重要器官的损伤。

放射治疗技术大纲

放射治疗技术大纲

《放射治疗技术》教学大纲课程编号:适用专业:三年制医学影像技术专业学时数:64(其中理论52学时,实验12学时)前言【课程性质】放射治疗技术是放射治疗学的重要内容之一,放射治疗学时利用射线束治疗肿瘤的一门学科。

放射治疗技术是在实施放射治疗过程中的一种手段,放射治疗技术是否合理,实施过程是否准确直接会影响放射治疗效果。

自1899年开始使用射线治疗癌症以来,放射治疗学一直在飞速发展,并且相关学科的发展,放射治疗由原来的外照射为主改进成更精确的近距离治疗为主,形成了完整的治疗系统。

不但治疗定位、计划、摆位、照射更加精确,医护人员的防护也更加完善。

这种精确地放射治疗技术被认为是21世纪放射治疗的主流。

【教学目标】通过本课程学习,要求学生达到以下目标:知识教育目标:1、掌握放射治疗基础理论的同时,着重掌握放射治疗技术的临床应用。

2、了解常见放射治疗的概念和用放射治疗设备治疗肿瘤的全过程。

能力培养目标:1、理论联系实际,并能运用于临床。

2、培养创新意识和协作精神树立良好的学风,养成良好的学习习惯,培养严谨的学习态度。

3、提高分析问题、解决问题、主动获取知识的能力。

思想培养目标:1、培养良好的职业素质。

2、培养理论联系实际、实事求是的科学作风。

【考核办法】按照掌握、熟悉和了解三个层次,记忆、解释和应用三个方面进行考核。

实践技能考核占30%、平时成绩占10%、理论考试占60%。

,题型为1、选择题,2、填充题,3、简答题,4、问答题。

【教材】韩俊庆王力军《放射治疗技术》人民卫生出版社【参考教材】⑴谷铣之《肿瘤放射治疗学》北京医科大学中国协和医科大学联合出版社⑵张天泽徐光炜《肿瘤学》天津、辽宁科学技术出版社⑶胡逸民《放射治疗技术》人民卫生出版社⑷王瑞芝《放射治疗技术》人民卫生出版社学时分配表理论教学内容及要求第一章总论【目的要求】1、掌握放射治疗技术的重要性,不同模式及放射治疗工作对放射治疗技术人员的要求2、熟悉放射治疗技术相关专业的形成和发展及发展趋势3、了解放射治疗的发展简史【教学内容】一、放射治疗技术研究的范畴1、放射物理学的形成于发展;2、放射生物学的形成于发展;3、高能线密度计重粒子的应用二、放射治疗在肿瘤治疗中的地位1、肿瘤放射治疗局部控制的重要性;2、常见肿瘤放射治疗效果;3、放射治疗在肿瘤综合治疗中的应用;三、放射治疗技术发展的趋势1、精确放射治疗技术的开展;2、非常规放射治疗技术的应用;3、靶向放射治疗技术的探讨;4、对个体化放射治疗的认识;5、综合治疗模式的应用四、放射治疗技师应具备的知识1、放射物理学知识;2、放射生物学知识;3、放射治疗学知识;4、临床肿瘤学知识;5、医学影像学知识;6、医学心理学知识;7、医学伦理学知识第二章临床放射物理学基础【目的要求】1、掌握常用放射线的物理特性2、掌握常用放射线和电子线的剂量学原则、影响高能放射线百分深度剂量及等剂量曲线、【教学内容】一、常用放射线的物理特性1、高能X射线的物理特性;2、60钴γ射线的物理特性;3、高能电子线的物理特性;4、质子射线的物理特性;5、种子射线的物理特性;6、其他重粒子射线的物理特性二、放射线射野计量学1、放射线的临床剂量学原则;2、高能X射线的百分深度剂量及影响因素;3、60钴γ射线的百分深度剂量计影响因素;4、高能电子线的临床剂量学;5、等剂量曲线的分布及影响因素;6、人体曲面和不均匀组织的修正;7、临床处方剂量的计算方法第三章临床放射生物学基础【目的要求】1、掌握放射线作用机体后产生的电离和激发的生物学效应2、熟悉传能线密度、自由基与活性氧、氧效应、靶学说等概念3、了解放射损伤的机制等【教学内容】一、放射生物学的基本概念1、电离和激发;2、传能线密度和相对生物效能;3、自由基与活性氧;4、氧效应与氧增强剂;5、靶学说和靶分子;6、影响辐射生物效应的主要因素;二、临床放射生物学效应1、正常组织细胞的放射生物学效应;2、肿瘤组织细胞的放射生物学效应;三、放射治疗的时间、剂量分割模式1、常规分割照射的生物学基础;2、非常规分割照射的生物学基础;3、生物剂量等效换算的数学模型;4、不同时间、剂量分割照射是应注意的事项四、提高放射生物学效应的方法1、增加氧在肿瘤细胞内的饱和度;2、放射增敏剂的临床应用;3、放射防护剂的临床应用五、加温治疗的原理及应用1、加温治疗的方法;2、加温治疗的作用机制第四章常用放射治疗设备【目的要求】1、掌握现代放射治疗设备的基本结构和特点2、熟悉放射治疗设备的功能3、了解放射治疗设备的原理【教学内容】一、远距离60钴治疗机1、60钴γ射线的特点;2、60钴治疗机的一般结构;3、60钴治疗机的半影4、60钴源的更换;5、60钴治疗机的种类二、医用直线加速器1、加速器的基本结构;2、电子的加速过程;3、加速管的结构;4、高频功率源;5、线束偏转系统;6、多叶准直器;7、加速器治疗机头三、近距离放射治疗机1、后装治疗机;2、近距离治疗常用核素;3、近距离治疗粒子源的特征;四、立体定向放射治疗系统1、立体定向装置;2、三维治疗计划系统3、放射治疗机五、模拟定位机1、普通模拟定位机;2、模拟CT机;3、CT模拟机第五章常用放射治疗方法【目的要求】1、掌握放射治疗中常用放射源的种类及区别、放射治疗方法及技术。

肿瘤放射治疗中剂量分割和分次治疗的技术要点

肿瘤放射治疗中剂量分割和分次治疗的技术要点

肿瘤放射治疗中剂量分割和分次治疗的技术要点肿瘤放射治疗是一种常见的肿瘤治疗方法,其目标是利用高能射线杀死或抑制肿瘤细胞的生长。

在肿瘤放射治疗中,剂量分割和分次治疗是非常重要的技术要点。

本文将深入探讨肿瘤放射治疗中剂量分割和分次治疗的技术要点。

剂量分割是指将治疗剂量分为多个小剂量,以减小对正常组织的损伤,同时保证足够剂量用于杀灭肿瘤细胞。

剂量分割有助于减少功能组织器官(OAR)的风险和晚期放射副作用,并提高治疗效果。

在剂量分割方面,我们需要注意以下几点:首先,要根据肿瘤类型和位置进行剂量分割。

不同的肿瘤具有不同的生物学行为和敏感性,因此需要对每个肿瘤进行个性化的剂量分割方案。

例如,对于位于关键结构附近的肿瘤,可以使用更多的剂量分割来减小对关键结构的风险。

其次,剂量分割还需考虑肿瘤的体积和发展阶段。

较大体积的肿瘤可能需要更多的分割,以确保足够的剂量到达每个部分。

此外,尚未缩小或稳定的肿瘤可能需要进行更多的剂量分割,以抑制其生长和扩散。

另外,剂量分割还需考虑到放射性治疗设备的限制。

放射治疗设备在给定时间内只能释放一定剂量的辐射,因此需要根据设备的能力和限制来确定剂量分割方案。

合理安排剂量分割有助于提高放疗效果并减少治疗的总体时间。

分次治疗是指将整体治疗剂量分为多个治疗分次进行,以提高肿瘤控制和减少副作用。

分次治疗可以有效分散对正常组织的剂量,让正常组织有时间修复和恢复。

在进行分次治疗时,需要注意以下几点:首先,根据肿瘤特点和患者的整体条件来制定分次治疗方案。

有些肿瘤可能需要更短的时间间隔和更多的分次,而对于一些较小或较慢生长的肿瘤,可以考虑减少分次或延长时间间隔。

其次,分次治疗方案应充分考虑到患者的生活质量。

分次治疗可以对患者的生活质量产生影响,特别是长时间的分次治疗可能会对患者的日常生活造成较大的干扰。

因此,在制定分次治疗方案时,要充分与患者沟通,了解他们的需求和限制。

另外,分次治疗还需考虑到治疗设备的利用率和患者的治疗可接受性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
感性(耐受剂量)将对治疗计划和靶区处方剂量有直接影响。 (七)计划危及器官(planning organ at risk volunm,
PORV) 与计划靶区PTV的定义一样,在确定危险器官范围时,也
应考虑器官本身运动和治疗摆位误差的影响,其扩大后的 范围称计划危险器官。
第七节放射治疗时间剂量分割方式
二、非常规分割放射治疗
加速放疗(AF):1.8~2.0Gy/次,2次/日, 5日/周,疗程缩 短,总剂量减少。
大分割(低分割)放疗:2.5Gy/次以上,1次/日,5日/周, 疗程缩短,总剂量减少。
超分割放疗(HF):1.1~1.2Gy/次,2次/日, 5日/周,疗程 不变,总剂量增加。
加速超分割放疗(AHF):1.2~1.5Gy/次,2次/日, 5日/周, 疗程缩短,总剂量不变。
2.治疗的肿瘤区域内剂量分布要均匀,剂量变化梯度不 能超过±10%,即要达到90%的剂量分布。
3.尽量提高治疗区域内剂量,降低正常组织受到照射的 剂量。
4.保护肿瘤周围重要器官免受或少受照射,至少不能使 它们接受超过其允许耐受剂量范围的照射,避免产生放射 损伤。
第七节放射治疗时间剂量分割方式
第七节放射治疗时间剂量分割方式
二、放射治疗计划中常用的概念
国际放射单位与测量委员会(ICRU)对光子束治疗的处方、记录和报 告规范做了详细的规定,并对三维治疗计划和放射肿瘤学适形放射治 疗技术临床应用的一些基本概念提出了具体规定。
第七节放射治疗时间剂量分割方式
Байду номын сангаас用概念
(一)肿瘤区(gross target volume,GTV)
CTV加上由于呼吸或器官运动引起的CTV外边界扩大照射 的组织范围叫内靶区(internal target volume,ITV)。
PTV=CTV+2cm
第七节放射治疗时间剂量分割方式
常用概念
(四)治疗区(treated volume,TV)
放疗医生根据治疗目标(根治或姑息性放射治疗)选定的可 达到治疗目的的剂量区域。通常选择90%等剂量面所包绕 区域为治疗区。
GTV是指通过临床或影像检查可发现(可测量)的肿瘤范围, 包括原发肿瘤、转移的淋巴结和其他转移灶。转移的淋巴 结或其他转移灶可认为是第二肿瘤区。临床肿瘤区确定一 定要准确,因为放射治疗要给予肿瘤区足够的照射剂量, 使肿瘤得到控制,通过观察肿瘤区在治疗过程中的变化, 判断治疗疗效。
第七节放射治疗时间剂量分割方式
常用概念
(三)计划靶区(planning target volume,PTV)
PTV包括CTV本身、照射中患者器官运动和由于日常治疗 摆位中靶位置和靶体积变化等因素引起的扩大照射的组织 范围。PTV与CTV之间宽度(PTV margin)的确定应以摆位 误差及由于器官移动导致的靶区移位的实际检测结果为依 据。
第七节放射治疗时间剂量分割方式
超分割放疗:1.1~1.2Gy/次,2次/日,10次/周,总
剂量较常规剂量增加10%~20%。
优点是减轻晚反应组织的损伤,增加了总剂量,提高了局 部的控制率。缺点是急性反应较重,有时病人不能耐受, 影响治疗方案进行。
超分割放射治疗两次照射时间的间隔要超过6小时,因为 晚反应的正常组织亚致死损伤修复至少要用6小时,早反 应组织的修复也要3~4小时。
常用概念
(八)剂量一体积直方图(DVH) DVH是用于定量描述所定义的体积(如PTV、PORV)内吸
收剂量的三维分布信息。直方图的横轴为吸收剂量,可为 百分剂量或绝对剂量;纵轴为体积,可为百分体积或绝对 体积。DVH的一个重要功能是帮助分析一个治疗计划是否 达到临床治疗的要求,即确定你所关心的结构有多少体积 受到多大剂量的照射;另一个功能是进行治疗计划的比较 和优选,可同时对比两个计划中PTV和PORV所受照射剂 量,在PTV的照射剂量分布相似情况下,选择PORV受到 照射剂量较小的计划。
这种分割方式适用于头颈部的鳞状细胞癌、肺非小细胞癌 等。
超分割放疗能减轻晚反应组织的损伤,大分割放疗相反。 加速放疗则加重急性反应。
第七节放射治疗时间剂量分割方式
第八节
放射治疗实施过程
第七节放射治疗时间剂量分割方式
一、临床剂量学原则
1.靶区剂量要准确,照射野应对准所要治疗的肿瘤区即 靶区。
GTV和CTV属于临床解剖学概念,能否正确定义GTV和 CTV依赖于影像学知识,肿瘤病理解剖学知识和临床经验。 它是根据患者的肿瘤分布情况、肿瘤生物学行为在静态影 像(如CT、MR、PET等)上确定的,没有考虑到器官的运 动并与所采用的放射治疗方式无关。
CTV=GTV+1.0cm
第七节放射治疗时间剂量分割方式
第七节放射治疗时间剂量分割方式
三、定位
1.模拟定位机(simulator) 模拟定位机能模拟放射治疗机的各种几 何参数、机械和光学特点,重复治疗机的所有运动自由度,保证 靶区定位时的一切条件与治疗时完全一致。病人按治疗时的体位 在模拟机下通过透视来确定病变的范围,决定照射的角度和野数, 拍摄定位片并记录下治疗时所需的各项参数,最后在病人身上画 好标记线。
常用概念
(二)临床靶区(clinical target volume,CTV)
CTV是包括GTV、亚临床病灶以及肿瘤可能侵犯的范围。 对CTV的确定除要考虑原发灶周围的亚临床病灶外,还要 根据肿瘤的生物学行为,如肿瘤可能沿邻近血管、神经浸 润,向区域淋巴结转移的特点,考虑肿瘤可能侵犯和转移 的范围。
第七节
放射治疗时间、剂量分割方式
第七节放射治疗时间剂量分割方式
一、常规分割放射治疗(CF)
1.8~2.0Gy/次,1次/日,5次/周。 这是数十年来的经验方案,是最基本和最常用的放射治疗
方法。这种分割方法对肿瘤有较好的效果,对正常组织损
伤较少,但并不是最好的分割方案。
第七节放射治疗时间剂量分割方式
(五)照射区(irradiated volume,Ⅳ)
50%等剂量线面所包绕的区域为照射区。其剂量受正常组 织特别是正常组织中的敏感器官如脑干、脊髓等耐受量的 限制。
第七节放射治疗时间剂量分割方式
常用概念
(六)危及器官(organs at risk,OAR) 指可能包括在照射野内的重要组织或器官,它们的放射敏
相关文档
最新文档