数字滤波器的设计滤波器系数
实验四IIR数字滤波器的设计(1)(2)课案
实验四 IIR 数字滤波器的设计及网络结构一、实验目的1.了解IIR 数字滤波器的网络结构。
2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。
3.学习编写数字滤波器的设计程序的方法。
二、实验内容数字滤波器:是数字信号处理技术的重要内容。
它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。
1.数字滤波器的分类滤波器的种类很多,分类方法也不同。
(1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。
(3)按时域特性划分:FIR 、IIR2.IIR 数字滤波器的传递函数及特点数字滤波器是具有一定传输特性的数字信号处理装置。
它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。
如果加上A/D 、D/A 转换,则可以用于处理模拟信号。
设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示:1()()()M Ni j i j y n b x n i a y n j ===-+-∑∑(5-1)其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。
与之相对应的差分方程为:10111....()()()1....MM NN b b z b z Y z H Z X z a z a z ----++==++ (5-2)由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。
(2) 系统传递函数H(z)在有限z 平面上有极点存在。
(3) 结构上存在着输出到输入的反馈,也就是结构上是递归型的。
3.IIR 滤波器的结构IIR 滤波器包括直接型、级联型和并联型三种结构:① 直接型:优点是简单、直观。
但由于系数bm 、a k 与零、极点对应关系不明显,一个bm 或a k 的改变会影响H(z)所有零点或极点的分布,所以一方面,bm 、a k 对滤波器性能的控制关系不直接,调整困难;另一方面,零、极点分布对系数变化的灵敏度高,对有限字长效应敏感,易引起不稳定现象和较大误差。
FIR数字滤波器设计函数
FIR 数字滤波器设计函数1. fir1功能:基于窗函数的FIR 数字滤波器设计——标准频率响应。
格式:b=fir1(n,Wn)b=fir1(n,Wn,'ftype')b=fir1(n,Wn,Window)b=fir1(n,Wn,'ftype',Window)说明:fir1函数以经典方法实现加窗线性相位FIR 滤波器设计,它可设计出标准的低通、带通、高通和带阻滤波器。
b=fir1(n,Wn)可得到n 阶低通FIR 滤波器,滤波器系数包含在b 中,这可表示成:n z n b z b b z b --++⋅⋅⋅++=)1()2()1()(1这是一个截止频率为Wn 的Hamming(汉明)加窗线性相位滤波器,0≤Wn ≤1,Wn=1相应于0.5fs 。
当Wn=[W1 W2]时,fir1函数可得到带通滤波器,其通带为W1<ω< W2。
b=fir1(n,Wn,'ftype')可设计高通和带阻滤波器,由ftype 决定:·当ftype=high 时,设计高通FIR 滤波器;·当ftype=stop 时,设计带阻FIR 滤波器。
在设计高通和带阻滤波器时,fir1函数总是使用阶为偶数的结构,因此当输入的阶次为奇数时,fir1函数会自动加1。
这是因为对奇数阶的滤波器,其在Nyquist 频率处的频率响应为零,因此不适合于构成高通和带阻滤波器。
b=fir1(n,Wn,Window)则利用列矢量Window 中指定的窗函数进行滤波器设计,Window 长度为n+1。
如果不指定Window 参数,则fir1函数采用Hamming 窗。
Blackman 布莱克曼窗Boxcar 矩形窗Hamming 海明窗Hann 汉宁窗Kaiser 凯瑟窗Triang 三角窗b=fir1(n,Wn,'ftype',Window)可利用ftype 和Window 参数,设计各种加窗的滤波器。
数字信号处理Matlab实验三-IIR数字滤波器的设计
XX XX 大学XXXX 学院实验名称 IIR 数字滤波器的设计实验目的:加深理解IIR 数字滤波器的时域特性和频域特性,掌握IIR 数字滤波器的设计原理与设计方法,以及I IR数字滤波器的应用。
实验内容:IIR 数字滤波器一般为线性移不变的因果离散系统,N 阶IIR 数字滤波器的系统函数可以表达为-1z 的有理多项式,即 -1-1-2-M =0012-1-2-N -112=1z +z +z ++z (z)==1+z +z ++z 1+zM j j M N Ni i b b b b b H a a a a ∑∑ 式中:系数i a 至少有一个非零。
对于因果II R数据滤波器,应满足M N ≤。
IIR 数字滤波器的设计主要通过成熟的模拟滤波器设计方法来实现。
首先在频域将数字滤波器设计指标转换为模拟滤波器设计指标,然后将任意的模拟滤波器为原型模拟低通滤波器指标,根据模拟滤波器的设计指标来设计出模拟低通滤波器(s)LP H ,然后又(s)LP H 经过相应的复频域转换得到H(s),最后又H(s )经过脉冲响应不变法或双线性变换法得到所需要的III R数字滤波器H (z)。
由此可见,IIR 数字滤波器设计的重要环节是模拟滤波器的设计。
设计模拟低通滤波器的主要方法有Butterwor t、Ch eby shev 、和椭圆等滤波器设计方法。
实验步骤1.Butterw ort 数字滤波器设计(1) Bu tt erwort 滤波器是通带阻带都单调衰减的滤波器。
调用b uttord 函数可以确定巴特沃斯滤波器的阶数,其格式为:[N,Omegac ]=bu tt ord(Omegap,Ome gas,Rp,As ,’s ’)。
其中,输入参数Rp,As 分别为通带最大衰减和阻带最小衰减,以d B为单位;Om eg ap,Omegas 分别为通带截止频率和阻带截止频率,‘s ’说明所设计的是模拟滤波器。
输出参数为滤波器的阶数,Omegac为3dB截止频率。
滤波器设计中的数字滤波器和模拟滤波器的比较
滤波器设计中的数字滤波器和模拟滤波器的比较在信号处理和电子工程领域中,滤波器是非常重要的一类设备。
滤波器的作用是去除信号中的杂散成分,使得输出信号更接近于所期望的信号。
根据滤波器的工作原理和实现方式的不同,可以将滤波器分为数字滤波器和模拟滤波器两种类型。
本文将对这两种类型的滤波器进行比较和分析。
一、数字滤波器数字滤波器是基于数字信号处理的原理设计和实现的。
它将连续时间信号转换为离散时间信号,并利用数字信号处理算法来处理信号。
数字滤波器的主要特点如下:1. 数字化处理:数字滤波器将信号进行采样,将连续信号转换为离散信号。
这种数字化的处理方式能够使得滤波器具备更高的灵活性和可调性。
2. 稳定性:数字滤波器具有较好的稳定性,能够在无失真的情况下处理信号。
而且数字滤波器易于实现自适应滤波算法,能够对输入信号的变化做出及时的响应。
3. 精确性:数字滤波器的处理过程是以数字化精度为基础的,因此可以实现较高的精确性。
通过调整数字滤波器的采样频率和滤波算法,可以实现更精细的滤波效果。
4. 实时性:由于数字滤波器的工作是基于离散时间信号的处理,所以数字滤波器具备较高的实时性能。
这使得数字滤波器广泛应用于实时信号处理和通信系统中。
二、模拟滤波器模拟滤波器是基于电路和模拟信号处理的原理设计和实现的。
它通过电子元器件来实现信号处理和滤波的功能。
模拟滤波器的主要特点如下:1. 连续处理:模拟滤波器通过连续时间信号传输和处理来实现信号滤波。
这种连续处理的方式能够使得模拟滤波器具备更高的带宽和动态范围。
2. 近似性:对于非常复杂的滤波算法,模拟滤波器可以提供较好的近似性能。
模拟滤波器能够较好地对信号进行平滑和抑制噪声等处理,适用于一些对滤波效果要求较高的应用场景。
3. 廉价性:由于模拟滤波器是基于电路的设计和实现,因此相对来说成本更低。
这使得模拟滤波器在某些应用中具有优势,比如对于信号干扰要求较高的环境。
4. 实现复杂度:模拟滤波器的设计和实现过程相对复杂,需要考虑电路的稳定性、元器件的性能和参数等因素。
数字信号处理第五章-IIR数字滤波器的设计
2、由模平方函数确定系统函数
模拟滤波器幅度响应常用幅度平方函数表示:
| H ( j) |2 H ( j)H *( j)
由于冲击响应h(t)为实函数,H ( j) H *( j)
| H ( j) |2 H ( j)H ( j) H (s)H (s) |s j
H (s)是模拟滤波器的系统函数,是s的有理分式;
分别对应:通带波纹和阻带衰减(阻带波纹)
(4种函数)
只介绍前两种
31
32
33
无论N多大,所 有特性曲线均通 过该点
特性曲线单调减小,N越大,减小越慢 阻
特性曲线单调减小,N越大,减小越快
34
20Nlog2:频率增加一倍,衰减6NdB
35
另外:
36
无论N多大,所 有特性曲线均通 过Ωc点: 衰减3dB, Ωc 为 3dB带宽
8
根据
(线性相位滤波器)
非线性相位滤波器
9
问题:
理想滤波器的幅度特性中,频带之间存 在突变,单位冲击响应是非因果的;
只能用逼近的方法来尽量接近实际的要 求。
滤波器的性能要求以频率响应的幅度特 性的允许误差来表征,如下图:
10
p
11
低通滤波器的频率响应包括:
通带:在通带内,以幅度响应的误差δp逼近 于1;
20
3、数字滤波器设计的基本方法
利用模拟理论进行设计 先按照给定的技术指标设计出模拟滤波 器的系统函数H(s),然后经过一定的变 换得到数字滤波器的系统函数H(z),这实 际上是S平面到Z平面的映射过程: 从时域出发,脉冲响应不变法 从频域出发,双线性变换法 适合于设计幅度特性较规则的滤波器, 如低通、高通等。
由于系统稳定, H(s)的极点一定落在s的左半 平面,所以左半平面的极点一定属于H(s),右 半平面的极点一定属于H(-s)。
数字滤波器的参数设计
case 4 :t blf tr () ;/ 3 将带阻数字滤波器的设计指标转换为模拟低通指标 3 / bw lpf () ;/ 3 巴特沃思模拟低通滤波器的设计 3 / br bl tran () ;/ 3 模拟低通滤波器经双线性变换为数字带阻滤波器 3 / }
}
参数设计之后 , 返回主菜单 , 可以通过仿真即频率响应和脉冲响应来检验设计结果 , 其 中频率响应又分为幅频响应和相位响应 1 通过屏幕显示响应曲线 1
The design of digital filter
SHEN Di2fan ,XU Xiang2hua
(Dept . of Phys. ,School of Sci . ,Suzhou Univ. ,Suzhou 215006 ,China)
Abstract : This article uprights a kind of method to get parameter of digital filter via software. Several instances for the IIR digital filter are also enclosed in this paper. Key words : digital filter ; FIR ; IIR ;parameter
k k
( N - 1) / 2
=
θ Ωc ・s + Ω2 s - 2 ( cos k - 1) ・ c
1
2
当 N 为奇数时滤波器的传递函数为 : H ( s ) =
A
k = 1
∏ H ( s)
k
s + Ωc
-1
1
, Hk ( s ) =
IIR数字滤波器的设计方法
将IIR滤波器的系统函数用极、零点表示:
M
M
bk zk
(1 ck z1)
H(z)
k 0 N
A
k 1 N
1 ak zk
(1 dk z1)
k 1
k 1
M≤N
对系统函数的设计就是确定各系数ak, bk或零极点ck,dk和A, 使滤波器满足给定的性能要求
14
第12讲 无限长单位脉冲响应(IIR)数字滤波器的设计方法 6.3.2 巴特沃思低通逼近 (最平幅度逼近)
巴特沃思低通滤波器在通带内有最大平坦的幅度特 性,因而又称为最平幅度特性滤波器
巴特沃思低通滤波器幅度平方函数定义
|
H
a
(
j)
|2
1
(
1 / c
)2
N
式中,N为正整数,代表滤波器的阶数。Ωc为 3dB截止频率。当Ω=Ωc时,衰减为 3 dB
器• Ha(s)Ha(-s)的极点为
sk
1
(1)2N ( jc )
ej
1 2
22kN1
c
k=1, 2, …, 2N
• Ha(s)Ha(-s)的2N个极点等间隔分布在半径为Ωc的圆(巴特沃 思圆)上,极点间的角度间隔为π/N rad
16
第12讲 无限长单位脉冲响应(IIR)数字滤波器的设计方法
|Ha(jΩ)|2单调减小,N越大,通带内特性越平坦,过渡带越窄
15
第12讲 无限长单位脉冲响应(IIR)数字滤波器的设计方法
巴特沃思滤波器的极(零)点分布 (公式法求解低通Ha(s))
|
H
第6章IIR数字滤波器的设计
3、归一化的系统函数 如果将系统函数的 s , 用滤波器的截止频率 c 去除 ,这样对应的截止频率变为1rad/s,即所谓归一化,相 应的系统函数称作归一化的系统函数记作 H an ( s ')
H an ( s ') H a ( s) |s c s '
H a ( s) H an ( s ') |
中北大学信息与通信工程学院
18 /88
数字信号处理 第六章 IIR数字滤波器的设计
N=4
N=5
中北大学信息与通信工程学院
19 /88
数字信号处理 第六章 IIR数字滤波器的设计
取 H a(s) H a(s) 左半平面的极点为 H a(s) 的极点, 这样极点仅有N个,即
sk c e
则
1 2 k 1 j 2 2N
第六章 IIR数字滤波器的设计
中北大学信息与通信工程学院 信号课程建设组 主讲:李沅
中北大学信息与通信工程学院
2 /88
数字信号处理 第六章 IIR数字滤波器的设计
第六章 IIR数字滤波器的设计
6.1 数字滤波器的基本概念 6.2 模拟低通滤波器的设计 6.3 模拟滤波器的数字化方法 6.4 IIR数字滤波器设计的综合实例 6.5 其它类型的IIR数字滤波器设计 6.6 全通滤波器与最小相位系统
所以其零点全部在 s 处;即所谓全极点型, 它的极点为
s k (1)
1 2N
( j c ) c e
1 2 k 1 j 2 2N
, k 1,2,... 2 N
也就是说,这些极点也是呈象限对称的。而且分布 在巴特沃斯圆上(半径为 c),共有2N点。
数字滤波器的设计(MATLAB仿真)
2012-5-9
13
图形:
0 Magnitude (dB) -20
-40
-60
0
100
200
300
400 500 600 Frequency (Hz)
700
800
900
1000
0 Phase (degrees) -20 -40 -60 -80 -100 0 100 200 300 400 500 600 Frequency (Hz) 700 800 900 1000
2012-5-9
24
得出结果: b= 0.2774 -0.0460 -0.0761 0.1008 -0.0571 0.1488 0.1262 -0.3949 -0.0783 0.0512 0.0270
a= 1.0000 -0.0185 0.2372 -0.0633 0.4144 0.1727 0.0393 0.0629 0.3588 0.0496 0.1016
2012-5-9
8
得出结果: N= 2 wn = 0.6630 b= 0.1578 -0.3155 a= 1.0000 0.6062 0.2373 0.1578
2012-5-9
9
图形:
0 Magnitude (dB) -50
-100
0
50
100
150
200 250 300 Frequency (Hz)
2012-5-9
18
设计一个带通Chebyshev II型数字滤波 器,满足:通带边界频率为100-200赫兹; 过渡带宽为30赫兹,通带波纹小于3dB, 阻带衰减大于30dB;采样频率为1000赫 兹。
2012-5-9
19
巴特沃斯高通滤波器系数计算
b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
(4)巴特沃斯带阻滤波器系数计算 [b,a]=butter(ceil(n/2),[W1,W2],′stop′)
n为用buttord()设计出的带阻滤波器阶数。 butter(n,[W1,W2],′stop′)将返回2*n阶滤波器系数;
高通滤波器 在采样频率为8000Hz的条件下设计一个高通滤波器,要求 通带截止频率为1500Hz,阻带起始频率为1000Hz,通带内 波动3dB,阻带内最小衰减65dB。
则有:
ωp=1500/4000 ωs=1000/4000 Rp=3 Rs=65
带通滤波器 在采样频率为8000Hz的条件下设计一个带通滤波器,要求 通 带 截 止 频 率 为 [ 8 0 0 Hz,1500Hz], 阻 带 起 始 频 率 为 [ 5 0 0 Hz,1800Hz], 通 带 内 波 动 3 dB, 阻 带 内 最 小 衰 减 45dB。
数字滤波器
一、数字滤波器的设计参数
fp:通带截止频率(Hz); fs:阻带起始频率(Hz); R
减; Rs:阻带内最小衰减(dB)。
设采样率为fN,则可将以上频率参数转换为归一化角频率: ωp:通带截止角频率(rad/s)
ωp =fp/(fN/2) ωs:阻带起始角频率(rad/s)
2 系数计算 由巴特沃斯滤波器的阶数n以及截止频率ωn可以计算出对应 传递函数H(z) 的分子分母系数。 MATLAB提供的命令是: (1) [b,a]=butter(n,Wn)
n为低通滤波器阶数; Wn为低通滤波器截止频率; b为H(z)的分子多项式系数; a为H(z)的分母多项式系数。
数字滤波器的原理
数字滤波器的原理数字滤波器是一种用于处理数字信号的重要工具,它可以对信号进行去噪、平滑、增强等处理,广泛应用于通信、控制、图像处理等领域。
数字滤波器的原理是基于信号处理和系统理论,通过对输入信号进行加权求和来实现对信号的处理。
本文将介绍数字滤波器的原理及其在实际应用中的一些特点。
数字滤波器的原理主要包括两种类型,时域滤波和频域滤波。
时域滤波是指对信号的时间域进行处理,常见的时域滤波器有移动平均滤波器和中值滤波器。
移动平均滤波器通过对一定时间窗口内的信号取平均值来平滑信号,而中值滤波器则是取窗口内信号的中值来代替当前信号值,从而去除噪声。
频域滤波则是将信号变换到频域进行处理,常见的频域滤波器有低通滤波器和高通滤波器。
低通滤波器可以去除高频噪声,而高通滤波器可以去除低频噪声,从而实现对信号频谱的调整。
数字滤波器的原理基于信号的加权求和,其数学模型可以表示为,y(n) = Σa(k)x(n-k),其中y(n)为输出信号,x(n)为输入信号,a(k)为滤波器的系数。
通过调整滤波器的系数,可以实现对信号的不同处理,比如去噪、平滑、增强等。
数字滤波器的设计通常需要考虑滤波器的类型、截止频率、阶数等参数,以及滤波器的稳定性、相位特性等性能指标。
在实际应用中,数字滤波器具有许多优点,比如可以实现复杂的信号处理算法、易于实现自动化控制、可以实现实时处理等。
然而,数字滤波器也存在一些局限性,比如需要考虑滤波器的延迟、需要对滤波器的性能进行严格的设计和测试、对滤波器的实现要求较高等。
总之,数字滤波器是一种重要的信号处理工具,其原理基于信号的加权求和,通过对输入信号进行加权求和来实现对信号的处理。
数字滤波器的设计需要考虑滤波器的类型、参数、性能指标等,同时也需要注意其在实际应用中的一些特点和局限性。
希望本文能够对读者对数字滤波器的原理有所了解,并对其在实际应用中有所帮助。
FIR数字滤波器的设计
第九章 FIR 数字滤波器的设计有限长单位脉冲响应滤波器的特点:线性相位滤波. §1. 线性相位FIR 数字滤波器、 特点 1. 线性相位FIRDF 含义设滤波器的脉冲响应为()h n , 长为N . 则10()()N j j n H e h n e ωω--==∑,再表成()()()j j g H e H e ωθωω-=其中()g H ω(可正负,|()|0j H e ω≠≥)称为幅度特性函数,()θω称为相位特性函数.注: 不是 arg[()]()()j j j j H e H e H e e ωωω=如4()()x n R n =的3/2sin(2)()sin(/2)j j X e e ωωωω-=它的()g H ω为sin(2)sin(/2)ωω, ()θω为32ω.若()θωωτ=-,τ是与采样点数N 有关的常数,则称滤波器是线性相位的.系统的群时延定义为:()d ()/d τωθωω=-. 对线性相位滤波器, 群时延是常数.2. 线性相位的条件(1) ()h n 的特点 设滤波器是线性相位的, 则应有10()()()N j j n j g n H e h n e H e ωωωτω---===∑即1()(cos sin )()(cos sin )N gn h n n j n Hj ωωωωτωτ-=-=-∑从而有1010()cos ()cos ()sin ()sin N g n N g n H h n n H h n nωωτωωωτω-=-===∑∑上面二式相除且整理为11()cos sin ()sin cos N N n n h n n h n n ωωτωωτ--===∑∑移项化简为1()sin ()0N n h n n ωτ-=-=∑求得一种情形:当()sin ()h n n ωτ-关于12N τ-=奇对称时,上式为零. ()h n ⇒是偶对称的. 即满足()(1),01h n h N n n N =--≤≤-.此时()(1)/2N θωω=--.在()h n 偶对称的条件下, 再分13N = 和 12N =(2) ()g H ω的特点数学推导见参考文献[1], 下面只给出结论. 当N 是奇数时,0 612-0.100.10.25 611-0.10.10.2(1)/2111()2cos 22N g n N N H h h n n ωω-=--⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭∑当N 是偶数时,(1)/2111()2cos 22N g n N H h n n ωω-=-⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭∑所以在()h n 偶对称的条件下, 滤波器有两种形式0.51 1.5200.5100.51 1.52-1-0.500.5113N =12N =(对13=N ,是低通滤波器, 可转换成高通,带通,带阻滤波器)(对12=N 也是低通滤波器,但不可转换成高通,带阻滤波器).(3) 零点分布特点 (()h n 偶对称) 110()()(1)----====--∑∑N N nn n n H z h n zh N n z1(1)(1)1()()N N m Nm h m z z H z -------===∑ 由此可得, 对0k z ≠, 若()0=k H z , 则1()0-=kH z .由()h n 是实数列, 得()H z 是实系数的, 所以, 有三种情形的零点. 例如 hn=[1 3 5 3 1]; zplane(hn,1);(4) 极点均在0z =, 且为1N -阶的, 系统必稳定. 因为 11()[(0)(1)]/N N H z h z h N z --=++-.(5)网络结构特点由()h n 对(1)/2=-n N 的对称性, 推得 当N 为偶数时,-101-1-0.50.514Real PartI m a g i n a r y P a r t/21(1)0()()[]N nN n n H z h n zz -----==+∑当N 为奇数时,1(1)/21(1)21()()[]2N N nN n n N H z h n z zh z--------=-⎛⎫=++ ⎪⎝⎭∑例如当4=N 时,1(3)0()()[]---==+∑n n n H z h n z z312(0)[1](1)[]---=+++h z h z z . 可有如下网络结构.直接型 省了2个乘法器当5=N 时, 情形类似, 见书P185. §2 用窗函数设计FIR 数字滤波器 线性相位的FIR 时域要求是()h n 对称性. 本节讨论如何在幅频特性上逼近期望滤波器.1-z()y n ()x n 1z -(0)h 1z -1z -(1)h (2)h (3)h ()x n ()y n (0)h (1)h 1-z 1-z以低通为例. 设()j d H e ω, 则-1()()d 2=⎰j j n d h n H e e πωωπωπ ()j d H e ω一般为片断函数, 故()d h n 无限长,需处理.1. 基本方法(1) 提出希望频率响应函数 线性相位, 具有片断特点, 即||()0||-⎧≤⎪=⎨<≤⎪⎩j j cd ce H e ωτωωωωωπ(2) 算出O0.25-π|()|j d H e ω0.25πω1π-π-1()()d 2=⎰j j nd h n He e πωωπωπ1d 2--=⎰c cj j ne e ωωτωωωπ s i n (())()-=-c n n ωτπτ(无限长)(3) 加窗()w n ,长N , 得()()()=d h n h n w n (*)要线性相位, 就要()h n 关于(1)/2-N 偶对称, 而()d h n 关于τ偶对称, 故要求10203000.510102030-0.100.10.20.3(1)/2=-N τ所以要求()w n 关于(1)/2=-N τ偶对称.10203000.51102030-0.10.10.20.3再回过来检验()j H e ω是否满足精度要求.1230.51O0.25-π|()|j d H e ω0.25πω1π-π()j H e ω00.51⇒若基本满足, 则依截取的()h n , 制硬件, 编软件.2. 窗函数法的性能分析由(*)式知, 取点一样时, 逼近性质与窗形(值)有关. 下面分析当()()=N w n R n 时的频率性质. 由()()()=d R h n h n w n , 得1()()()2=*j j j d R H e H e W e ωωωπ(1)/2s i n (/2)()F T [()]s i n (/2)--==j j N R RN W e w n e ωωωω()-=j j Rg W e e ωωτ. 其中sin(/2)()sin(/2)=j Rg N W e ωωω,12-=N τ. 代入卷积()1()()()d 2--=⎰j j j d R H e H e W e πωθωθπθπ ()1()e ()e d 2---=-⎰j j dg Rg H W πθτωθτπθωθθπ1e ()()d 2--=-⎰j dg Rg H W πωτπθωθθπ1e ()()2-=*j dg Rg H W ωτωωπ()e ()=j g H θωω,故1()()()2=*g dg Rg H H W ωωωπ,(1)()2--=N ωθω. 相位是线性的. 实际幅度=希望幅度*窗函数幅度. 卷积=对每个ω, 求一积分, 其值记为()g H ω.故有如下图形演示.O -c ω()dg H θωθ1π-πcω-2.5-2-1.5-1-0.50.511.52-100102030θO2/Nπ2/-N π()dg W θ2Nπ⨯主瓣宽度2/Nπ旁瓣宽度2/右图为当/4,31c N ωπ==时,|()||()|j g H H e ωω=的幅频图.阻带最小衰减21dB, 一般不 满足实际工程需要.-1.5-1-0.50.51 1.50.51w-...+147697764.69733060586876851814058 cos(.50000000000000000000000000000000 w)23-2.5-2-1.5-1-0.500.511.52-100102030O ()dg H θc ωω=θ1π-π()-Rg W ωθO|()/(0)|dg dg H H ωω122/B N∆π=⨯加窗后滤波器过渡带宽窗函数的频域主瓣宽00.250.40.60.81-80-60-40-200≈过渡带宽0.13过渡带宽4/310.414/310.13π≈=⇔=(归一化), 这可以通过增加N 来减小. 这是窗函数设计的一个 指标. 3.典型窗函数下面给出各种窗函数的表达式、时域波形、幅度特性,以及理想滤波器加窗后的波形和幅度特性. 以下均设低通滤器(e )j d H ω的/2,31c N ωπ==. (1) 矩形窗()R N w R n =, 已求得sin(/2)()sin(/2)=j Rg N W e ωωω,12-=N τ矩形波形 矩形波形的幅频特性1020300.5100.51-60-40-200%矩形窗时域波形N=31; w=rectwin(N);n=0:30;subplot(1,2,1); stem(n,w);axis([0 33 0 1.3]);grid on ; %矩形窗频域特性[hw,w]=freqz(w,1);subplot(1,2,2);13dBn α=-旁瓣峰值plot(w/pi,20*log10(abs(hw)/abs(hw(1)))); axis([0 1 -60 0]);grid on;pause;%理想滤波器加窗后采样序列wc=pi/2;N=31;n=0:30;t=(N-1)/2;hdn=sin(wc*(n-t))./(pi*(n-t));hdn(16)=0.5;%补点;subplot(1,2,1);stem(n,hdn);axis([0 33 -0.2 0.8]);grid on; %滤波器加窗后的频域特性[hw,w]=freqz(hdn,1);subplot(1,2,2);plot(w/pi,20*log10(abs(hw)/abs(hw(1)))); axis([0 1 -60 8]);grid on;理想滤波器时域采样 加窗后滤波器的频率特性102030-0.200.20.40.600.51-60-40-20过渡带宽度4/31,B ∆π=最小衰减21dB s α=-. 当21,31,63N =时矩形窗的幅频特为0.10.2-50-40-30-20-10000.10.2-50-40-30-20-10000.10.2-50-40-30-20-1004/B N ∆π=与N 成反比, 要改21dB s α=-,需另选.(2) 三角窗(Bartlett Window)21012()212112B n N n N w n n N n N N -⎧≤≤⎪⎪-=⎨-⎪-<≤-⎪-⎩2(1)/22sin(/4)(e )esin(/2)j j N B N W N ωωωω--⎡⎤=⎢⎥⎣⎦22sin(/4)()sin(/2)B N W N ωωω⎡⎤=⎢⎥⎣⎦01020300.5100.51-100-50-250102030-0.200.20.40.600.51-40-20各指标为:25dB,2(4/),25db n s B N α∆πα=-==-. (3) 升余弦窗(汉宁窗, hanning window)2()0.51cos ()1hn N n w n R n N π⎡⎤⎛⎫=- ⎪⎢⎥-⎝⎭⎣⎦,010203000.5100.51-100-50102030-0.200.20.40.600.51-80-60-40-200各指标为:31dB,2(4/),44db n s B N α∆πα=-==-(4) 改进升余弦窗(海明窗, hanning window)2()0.540.46cos ()1hm N n w n R n N π⎡⎤⎛⎫=- ⎪⎢⎥-⎝⎭⎣⎦, 41dB,2(4/),53db n s B N α∆πα=-==-01020300.5100.51-100-50102030-0.200.20.40.600.51-80-60-40-200(5) 布莱克曼窗(blackman window)24()0.420.5cos 0.08coscos ()11bl N n n w n R n N N ππ⎡⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦, 01020300.5100.51-100-60102030-0.200.20.40.600.51-100-50各指标为: 57dB,2(6/),74db n s B N α∆πα=-==-.为便于选择使用, 将5种窗函数基本参数列于下表.类型 窗函数的 旁瓣峰值n α过渡带宽度B ∆加窗后滤波器的 阻带最小衰减s αrectwin -13 4π/N -21 bartlet 三角 -25 8π/N -25 hanning -31 8π/N -44 hamming -41 8π/N -53 blackman-5712π/N-74如阻带最小衰减60dB s α≥,过渡带宽度0.1B ∆π≤. 则选布莱克曼窗, 且由12/0.1N ππ≤, 得120N =. 事实上, 还有很多窗形可供选择. 见P193. 4.设计步骤(1) 由阻带指标选窗型w , 由过渡带宽度选点数N , (2) 构造要逼近的()j d H e ω, 构造c ω(对低通)应使()(0)/26dB g c g H H ω≈⇔(3) 计算-1()()d 2j j n d d h n H e e πωωπωπ=⎰ (4) 加窗()()()d h n h n w n =.例1 用窗函数法设计线性相位高通FIRDF, 指标为 通带截止频率:/2p ωπ=; 通带最大衰减:1dB p α=. 阻带截止频率:/4s ωπ=;阻带最小衰减:40dB s α=解(1)根据阻带指标, 可选汉宁和海明窗, 我们选海明窗, 由84p s B N ππ∆ωω=≤-=, →32N ≥, 对高通滤波器, 必须取奇数33N =.故有 33()0.540.46cos ()16hm n w n R n π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦. (2) 16τ=,/229/66c p B ωω∆π=-=, 则要逼近()00j j c d ce H e ωτωωωπωω-⎧≤≤=⎨≤<⎩(全通-低通) 1O πωp ωs ω|()|j H e ω(3) 求()d h n sin(())sin(())()()c n n n n ωτπτπτπτ--=--- 2966sin[()](16)()n n n πτδπτ-=---表示全通滤波器 低通滤波器 (4) 加窗 ()()()d h n h n w n =(见书, 略) 上述过程可用Matlab 中的命令fir1来实现. 格式1: hn=fir1(N,wc,’ftype ’,window(N+1)); ftype 可选high, stop; window 窗名, 默认hamming. 格式2: hn=fir1(N,wc); 阶数为N, 6dB 截止频率wc16()FT[(16)]j j H en eωωδ-=-=(0~1)的低通滤波器.(注h(n)的长度为N+1)当wc=[wc1,wc2]时, 为带通滤波器.例如上例的命令为(注设计时,对 作归一化)wc=29/66; N=32;%N=h(n)的长度-1hn=fir1(N,wc, 'high'); subplot(1,2,1);n=0:32; stem(n,hn);axis([0 32 -0.4 0.6]);grid on; [hw,w]=freqz(hn,1); subplot(1,2,2);plot(w/pi,20*log10(abs(hw)));axis([0 1 -80 5]);grid on; 注对高通,带阻,阶数必须为偶数.102030-0.4-0.200.20.400.51-80-60-40-200例2 用窗函数法设计一个FIR 带通滤波器, 指标为 阻带下截止频率:0.2ls ωπ=;阻带最小衰减60dB s α= 通带下截止频率:0.35lp ωπ=;通带最大衰减1dB p α= 通带上截止频率:0.65up ωπ=; 阻带上截止频率:0.8us ωπ=;解 由阻带衰减指标, 选blackman 窗, 由过度带宽120.350.20.15lp ls B Nπ∆ωωπππ=≤-=-=, 得80N =, 通带区间约定用c ω表示, 计算如下,22c lp up B B ∆∆ωωωπ⎡⎤=-+⎢⎥⎣⎦程序命令为wls=0.2*pi;wlp=0.35*pi;wup=0.65*pi; B=wlp-wls; N=ceil(12*pi/B); wp=[wlp/pi-6/N,wup/pi+6/N];hn=fir1(N-1,wp,blackman(N));subplot(1,2,1); n=0:79; stem(n,hn); axis([0 80 -0.4 0.4]);grid on;[hw,w]=freqz(hn,1);subplot(1,2,2); plot(w/pi,20*log10(abs(hw))); axis([0 1 -100 5]);grid on;20406080-0.4-0.200.20.400.20.40.60.81-100-80-60-40-200例3 用窗函数法设计FIR 低通滤波器, 实现对模拟信号采样后进行数字低通滤波, 对模拟信号的指标通带截止频率:2kHz p f =; 阻带截止频率:3kHz s f =;阻带最小衰减:40dB s α=;采样频率:10kHz s F =. 选合适窗函数, 求出()h n ,并画出幅频衰减曲线和相频特性曲线.解 (1) 转换成数字频率为 通带数字截止频率:240000.410000p p sf F ππωπ===;阻带数字截止频率: 260000.610000s s s f F ππωπ===;阻带最小衰减:40dB;过渡带宽度:0.2s p B ωωπ=-=.(2) 由衰减:40dB, 选hamming 窗, 由8N B π≤,得840N B N π≥⇒=.(3) 确定/20.40.10.5c p B ωωπππ=+=+=, 命令如下:fp=2000;fs=3000;Fs=10000; wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;B=ws-wp;N=ceil(8*pi/B);wc=(wp+B/2)/pi; hn=fir1(N-1,wc);n=0:N-1;subplot(1,2,1);stem(n,hn,'.'); grid on; [hw,w]=freqz(hn,1); subplot(1,2,2);plot(w/pi,20*log10(abs(hw)));grid on; axis([0 1 -100 4]);0.20.40.60.81-100-80-60-40-200010203040-0.200.20.40.6w=-2.2:0.01:2.2;wg=sin(31*w/2)./sin(w/2);wg(221)=31;plot(w,wg);axis([-2.5 2.2 -10 32]);%理想滤波器的频域特性.ezplot(int('sin((w-x)*16)/sin((w-x)/2)/6.28',-pi/4,pi/4),[-1.7 1.7]);加窗后的幅度函数的频域特性.附录1对称性数据P183n13=0:1:12;%P183h13=[-0.05 -0.03 0 0.08 0.16 0.25 0.28 0.25 0.16 0.08 0 -0.03 -0.05]; subplot(1,2,1);stem(n13,h13);axis([0 13 -0.1 0.3])n12=[0:1:11];h12=[-0.05 -0.03 0 0.08 0.16 0.25 0.25 0.16 0.08 0 -0.03 -0.05]; subplot(1,2,2);stem(n12,h12);axis([0 13 -0.1 0.3])2对称性数据P186N=31;n=0:30;hd=sin(0.25*pi*(n-15))./(pi*(n-15));hd(16)=0.25;subplot(1,2,1);stem(n,ones(1,N));axis([0 31 0 1.3]); subplot(1,2,2);stem(n,hd);axis([0 31 -0.1 0.3]);plot(n,hd); axis([0 30 -0.1 0.27]); %wc=0.25pi加图hk=fft(hd,128); k=0:63; plot(k/64*pi,abs(hk(1,1:64)));axis([0 pi 0 1.1])。
数字滤波器设计
数字滤波器概述一、数字滤波器的基本概念信号处理最广泛的应用是滤波。
数字滤波,是指输入、输出均为离散时间信号,利用离散时间系统特性对输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量输出,抑制无用的信号分量输入。
或者说,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的算法。
数字滤波器是一个离散时间系统。
应用数字滤波器处理模拟信号时,首先须对输入模拟信号进行限带、抽样和模数转换。
数字滤波器输入信号的抽样率应大于被处理信号带宽的两倍。
数字滤波器的频率响应具有以抽样频率为间隔的周期重复特性,且以折叠频率(即二分之一抽样频率点)呈镜像对称。
为得到模拟信号,数字滤波器处理的输出数字信号须经数模转换、平滑。
数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。
数字滤波器在语声信号处理、图像信号处理、医学生物信号处理以及其他应用领域(如通信、雷达、声纳、仪器仪表和地震勘探等)都得到了广泛的应用。
数字滤波器有低通、高通、带通、带阻和全通等类型。
它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。
如果数字滤波器的内部参数不随时间而变化,则称为时不变的,否则为时变的。
如果数字滤波器在某一给定时刻的响应与在此时刻以后的激励无关,则称为因果的,否则为非因果的。
如果数字滤波器对单一或多个激励信号的响应满足线性条件,则称为线性的,否则为非线性的。
应用最广的是线性、时不变数字滤波器。
二、数字滤波器的基本结构作为线形时不变系统的数字滤波器可以用系统函数来表示,而实现一个系统函数表达式所表示的系统可以用两种方法:一种方法是采用计算机软件实现;另一种方法是用加法器、乘法器、和延迟器等组件设计出专用的数字硬件系统,即硬件实现。
不论软件实现还是硬件实现,在滤波器设计过程中,由同一系统函数可以构成很多不同的运算结构。
对于无限精度的系数和变量,不同结构可能是等效的,与其输入和输出特性无关;但是在系数和变量精度是有限的情况下,不同运算结构的性能就有很大的差异。
基于DSP的IIR数字滤波器 (设计实验)(汇编语言)(word文档良心出品)
IIR 数字滤波器 (设计实验)一、实验目的1.了解IIR (Infinite Impulse Response ,无限冲激响应)滤波器原理及使用方法;2.了解使用MA TLAB 语言设计IIR 滤波器的方法;3.了解DSP 对IIR 滤波器的设计及编程方法;4.熟悉在CCS 环境下对IIR 滤波器的调试方法;二、实验原理IIR 数字滤波器的传递函数H(z)为:其对应的差分方程为:对于直接形式的二阶IIR 数字滤波器,其结构如图4.1图4.1 IIR 数字滤波器结构图编程时,可以分别开辟四个缓冲区,存放输入、输出变量和滤波器的系数,如图4.2所示。
图4.2 IIR 数字滤波器算法图三、实验内容与步骤设计一个三阶的切比雪夫Ⅰ型带通数字滤波器,其采样频率Fs =16kHz ,其通频带3.2kHz<f <4.8kHz ,内损耗不大于1dB ;f <2.4kHz 和f >5.6kHz 为阻带,其衰减大于20dB 。
输入信号频率为4000Hz 、6500Hz 的合成信号,通过所设计的带通滤波器将6500Hz 信号滤掉,余下4000Hz 的信号,达到滤波效果。
1、IIR 滤波器的MA TLAB 设计在MA TLAB 中设计IIR 滤波器,程序为: wp=[3.2,4.8];ws=[2.4,5.6];rp=1;rs=2001()1Mii i N ii i b zH z a z -=-==-∑∑01()()()MNi i i i y n b x n i a y n i ===-+-∑∑[n,wn]=cheb1ord(wp/8,ws/8,rp,rs)[b,a]=cheby1(n,rp,wn)设计结果为:N=3wn =0.4000 0.6000b0=0.0114747 a0=1.000000b1=0 a1=0b2=-0.034424 a2=2.13779b3=0 a3=0b4=0.034424 a4=1.76935b5=0 a5=0b6=-0.0114747 a6=0.539758在设计IIR滤波器时,会出现系数≥1的情况,为了用Q15定点小数格式表示系数,可以用大数去所有系数。
基于matlab的IIR数字滤波器设计
基于matlab的IIR数字滤波器设计一.IIR数字滤波器介绍1.IIR数字滤波器的根本原理所谓数字滤波器,是指输入,输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相比照例或者滤除某些频率成分的硬件。
实质上就是一个由有限精度算法实现的线性时不变离散系统。
它的根本工作原理是利用离散系统的特性对系统输入信号进展加工和变换,改变输入序列的频谱或信号波形,让有用的频率分量通过,抑制无用的信号分量输出,因此数字滤波与模拟滤波的概念一样,根据其频率特性同样可以分为低通,高通,带通,带阻,只是信号的形式和实现滤波方式有所不同。
如果要处理的信号是模拟信号,就可以通过A/D或者D/A转换,在信号形式上进展匹配转换,同样可以使用数字滤波器对模拟信号进展滤波。
数字滤波器滤波的数学表达式:y〔n〕=x(n)*h(n); 如果滤波器的输入输出信号都是离散信号,那么该滤波器的脉冲响应也一定是离散信号,这样的滤波器就成为了数字滤波器。
上面的系统为时域离散系统时,其频域特性为:其中分别是数字滤波器的输出序列和输入序列的频域响应,是数字滤波器的频域响应。
可以看见按照输入信号的频谱特点和处理信号的目的适中选择滤波器的频域响应,使得滤波后的输出信号满足设计性能要求,就是滤波器的滤波原理。
2.IIR数字滤波器传输特性IIR数字滤波器的系统函数可以表示为:H(Z)=,式中H(Z)称为N阶IIR滤波器函数。
3..数字滤波器的技术要求.我们通常设计的数字滤波器一般属于选频滤波器,。
我们的目的是要设计一个因果可实现的滤波器,另外买也要考虑到本钱和复杂性问题,因此实用中通带和阻带都允许一定的误差容限,即通带不一定是完全水平的,阻带也不可能完全衰减到零。
而且,通带和阻带之间还要设置一定带宽的过渡带。
如如下图表示低通滤波器的技术要求:图中,分别表示通带截止频率和阻带截止频率,通带频率范围为0≤w≤,通带中要求〔1-δ1〕≤|H≤1,阻带截止频率范围≤w≤Π,再阻带中要求≤δ2,从p w 到s w 称为过渡带,在这个频带内,幅度响应从通带平滑的下落到阻带。
FIR数字滤波器设计
《软件无线电大作业------------FIR设计和NCO设计》学院:通信工程学院班级:010812班学号:01081144作者:FIR 数字滤波器设计(一)FIR 数字滤波器理论简述有限冲激响应(FIR )数字滤波器和无限冲激响应(IIR )数字滤波器广泛应用于数字信号处理系统中。
IIR 数字滤波器方便简单,但它相位的非线性,要求采用全通网络进行相位校正,且稳定性难以保障。
FIR 滤波器具有很好的线性相位特性,使得它越来越受到广泛的重视。
有限冲击响应(FIR )滤波器的特点:1 既具有严格的线性相位,又具有任意的幅度;2 FIR 滤波器的单位抽样响应是有限长的,因而滤波器性能稳定;3只要经过一定的延时,任何非因果有限长序列都能变成因果的有限长序列,因而能用因果系统来实现;4 FIR 滤波器由于单位冲击响应是有限长的,因而可用快速傅里叶变换(FFT)算法来实现过滤信号,可大大提高运算效率。
5 FIR 也有利于对数字信号的处理,便于编程,用于计算的时延也小,这对实时的信号处理很重要。
6 FIR 滤波器比较大的缺点就是阶次相对于IIR 滤波器来说要大很多。
FIR 数字滤波器是一个线性时不变系统(LTI ),N 阶因果有限冲激响应滤波器可以用传输函数H (z )来描述,0()()Nk k H z h k z -==∑(0.1)在时域中,上述有限冲激响应滤波器的输入输出关系如下:0[][][][][]Nk y n x n h n x k h n k ==*=-∑(0.2)其中,x [n ]和y [n ]分别是输入和输出序列。
N 阶有限冲激响应滤波器要用N +1个系数描述,通常要用N+1个乘法器和N 个两输入加法器来实现。
乘法器的系数正好是传递函数的系数,因此这种结构称为直接型结构,可通过式(1.2)来实现,如图1。
图1当冲击响应满足下列条件时, FIR 滤波器具有对称结构,为线性相位滤波器:(1.3) 这种对称性,可使得乘法器数量减半:对n 价滤波器,当n 为偶数时,乘法器的个数为n/2个;当n 为奇数时,乘法器的个数为(n+1)/2个。