九年级上册行知天下答案数学
南京市南京市行知实验中学 九年级数学上册第一单元《一元二次方程》检测题(有答案解析)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .42.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠3.用配方法解方程2x 4x 70+-=,方程应变形为( )A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=4.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有且只有一个实数根 D .没有实数根 5.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .176.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长 D .线段DF 的长7.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( ) A .15%B .40%C .25%D .20%8.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根D .无法确定9.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( ) A .没有实数根 B .有两不等实数根 C .有两相等实数根 D .无法确定 10.一元二次方程x 2=4x 的解是( )A .x=4B .x=0C .x=0或-4D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5C .10319-D .1031912.若()()2222230x y xy ++--=,则22x y +的值是( )A .3B .-1C .3或1D .3或-1二、填空题13.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.14.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.15.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.16.当m ______时,关于x 的一元二次方程2350mx x -+=有两个不相等的实数根. 17.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.18.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.19.当m =___________时,方程(2150m m xmx --+=是一元二次方程.20.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.三、解答题21.已知关于x 的方程()220x mx m -+=-.(1)求证:不论m 为何值,该方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值以及方程的另一个根. 22.(1)x 2﹣8x+1=0; (2)2(x ﹣2)2=x 2﹣4.23.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由. 24.解方程:(1)26160x x +-=. (2)22430x x --=.25.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 26.解方程:212270x x -+=【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答. 【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程, ∴240,20m m -=-≠, ∴m=-2, 故选:B . 【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.B解析:B 【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论. 【详解】 解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B . 【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.3.B解析:B 【分析】根据配方法解一元二次方程的方法解答即可. 【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=.故选:B . 【点睛】本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键.4.D解析:D 【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边, ∴a+b >c .∴c+a+b >0,c-a-b <0, ∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根. 故选:D . 【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.5.B解析:B 【分析】根据一元二次方程的根的定义、根与系数的关系即可得. 【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-,由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++,()()24m m m n =-++,34=-+, 1=, 故选:B . 【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.6.B解析:B 【分析】根据勾股定理求出BF ,利用求根公式解方程,比较即可. 【详解】解:∵四边形ABCD 是矩形 ∴CD=AB=a在Rt △BCD 中,由勾股定理得,BD =∴a ,解方程2240x ax +-=得22x a a -=±=-∴线段BF 的长是方程2240x ax +-=的一个根. 故选:B . 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.7.D解析:D 【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论. 【详解】解:设平均每次降价的百分率为x , 依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去). 故选:D . 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.C解析:C 【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案. 【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8. ∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根. 故选:C . 【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.9.B解析:B 【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根. 【详解】在方程()21210--+=k x kx 中,∵1a k =-,2b k =-,1c =, ∴()()224241b ac k k =-=---214302k ⎛⎫=-+> ⎪⎝⎭,∴无论k (k≠1)为何值,该方程总有两个不相等的实数根. 故选:B . 【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”.10.D解析:D 【分析】先移项,利用因式分解法解一元二次方程. 【详解】解:x 2=4x x 2-4x=0 x (x-4)=0 x=0或x=4, 故选:D. 【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.11.A解析:A 【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解. 【详解】解:由219990n n ++=可得211199910n n⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A . 【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.12.A解析:A 【分析】用22a x y =+,解出关于a 的方程,取正值即为22xy +的值是.【详解】解:令22a x y =+, 则(2)30a a --=, 即2230a a --=, 即(3)(1)0aa ,解得13a =,21a =-,又因为220a x y =+>,所以3a = 故22xy +的值是3,故选:A . 【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>.二、填空题13.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91 【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程. 【详解】解:依题意得支干的数量为x 个, 小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91, 故答案为:1+x+x 2=91. 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.14.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3 【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案. 【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=, ∴1h =-,4k = ∴143h k +=-+= 故答案是:3. 【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.15.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15 【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答. 【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++ =2222(1)(1)(3)15a a b b b -++-+++ =22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15. 故答案为:4,3,15. 【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.m <且m≠0【分析】根据一元二次方程的定义及判别式的意义得出m≠0且△=(-3)2-4m×5=9-20m >0解不等式组确定m 的取值范围【详解】解:∵关于x 的一元二次方程mx2-3x+5=0有两个不相解析:m <920且m≠0. 【分析】根据一元二次方程的定义及判别式的意义得出m≠0,且△=(-3)2-4m×5=9-20m >0,解不等式组,确定m 的取值范围. 【详解】解:∵关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根, ∴m≠0,且△=(-3)2-4m×5=9-20m >0, 解得m <920且m≠0, 故当m <920且m≠0时,关于x 的一元二次方程mx 2-3x+5=0有两个不相等的实数根. 故答案是:m <920且m≠0. 【点睛】本题考查了根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系: (1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16 【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案. 【详解】解:∵关于x 的方程2100x x m -+= ∴1a =,10b =-,c m = ∴1210b x x a +=-=,12cx x m a== ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=. ∴综上所述,m 的值为25或16. 故答案是:25或16 【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.18.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解析:8 【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 19.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.20.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=,故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算.三、解答题21.(1)见解析;(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到△=(m-2)2+4,然后根据判别式的意义得到结论;(2)设方程的另一个为t ,利用根与系数的关系得到2+t=m ,2t=m-2,然后解方程组即可.【详解】(1)证明:∵1a =,b m =-,2c m =-∴()()()222244124824-=--⨯⨯-=-+=-+b ac m m m m m ∵()220m -≥,∴()2240m -+>. ∴无论m 为何值,该方程总有两个不相等的实数根.(2)根据题意:()22220-+-=m m ,∴2m = 则220x x -=,∴10x =,22x =. ∴m 的值为2,另一个根为0.【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a,也考查了判别式的意义.22.(1)x 1=x 2=42)x 1=2,x 2=6.【分析】(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.23.(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.24.(1)18x =-,22x =;(2)122x +=,222x -=. 【分析】(1)运用因式分解法求解即可;(2)运用公式法求解即可.【详解】解:(1)26160x x +-= ()()820x x +-=解得18x =-,22x =.(2)22430x x --=,∵2a =,4b =-,3c =-,∴224(4)42(3)162440b ac -=--⨯⨯-=+=,4422242x ±±===⨯,∴122x +=,222x =. 【点睛】本题考查了解一元二次方程,在解答中注意计算的正确性.25.每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。
九年级上学期 行知天下答案 数学 2016-2017

图形的位似
巩固训练 一! !2 4""2 9"#2 9"%2 4 二! # $ # $ 或# $ &! 8%" 8# %" ( 8%" 8( ! , "(! "*! # 或 ,! $ # $ + $"*+%" %% " $ # $"*+%".! #" %$ %" # $ )" % " % 三! ! )! * # $ 如图所示 ! ! !! !
# " + # + 槡 &" 因为" 所以 %" ’ ’ ’ # +&%) * ,! ) * ) , * , "槡 "
’!’
# 由 )0 ’-1 " 所 以 %" 所 以" # + & %. )0 ! ’ # + . ) 因为 ! " #’"" # +’!! (" -1 ’!! "" 01 ’)! ," )0 " #’)0 "$!! " 所以 . )’ ’ ’!! &"所 以 .’ # + !! ( # 米$ . )5) -’. )501 ’!! &5)! ,’"! # ! 答% 木杆 . 的长度为 "! #米! # 证 明% 因为" " !! !$ + 平 分 #)" #" 所 以 #)" +’ 因 为 #" " 所 以 %" " #! ) + ’ #" + # ’. ) ) +& #+ ") " + " 所以 " 所以 " + #" ’ + ’" #’")! %" " + " # ! # $ 证明 % 因为 * 为" " # 的中点 "所以 + *’ " #’ " 所 以 #* 因为 " " *" " + ’ #* + "! + 平 分 #)" #" 所以 #+ 所 以 #)" ")’ #+ " #" +’ #* + ""所 以 + *$")! # 因为+ #$解 % * $ ")"所 以 #)" , ’ #* + "" ") 所 以 %" ,’ #+ * ," , ) & %+ , *"所 以 #") + * " , 因为 ! ! 所以 + 因为 ’ ! + *’ " #" *’ $(’#! + , " " ," , 所 以" , %" 由") ’" 得 % ’" 所 ")’%" ! ’ + * + , , " + * # + + * 以" ’ ! " , %
上海行知实验中学九年级数学上册第一单元《一元二次方程》检测题(有答案解析)

一、选择题1.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±- 2.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-= 3.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0 4.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( ) A .k-4且k≠0 B .k≥-4C .k>-4且k≠0D .k>-4 5.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠ 6.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 7.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==- 8.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 9.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=x D .2(31)1x -= 10.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1 B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 11.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0 12.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1二、填空题13.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m 的值为______.14.当a =______,b =_______时,多项式22222425a ab b a b -+--+有最小值,这个最小值是_____.15.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.16.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.17.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____.18.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.19.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.20.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 三、解答题21.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元?22.解方程:2410y y --=.23.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?24.如图,为了美化街道,刘大爷准备利用自家墙外的空地种两种不同的花卉,墙外宽度无限,墙的最大可用长度是11.5m ,现有长为21m 的篱笆,计划靠着院墙围成一个中间有一道隔栏的长方形花圃.(1)若要围成总面积为36平方米的花圃,边AB 的长应是多少?(2)花的面积能否达到39平方米?若能,求出边AB 的长;若不能,请说明理由.25.定义:若关于x 的一元二次方程()200++=≠ax bx c a 的两个实数根1x ,()212x x x <,分别以1x ,2x 为横坐标和纵坐标得到点()12,M x x ,则称点M 为该一元二次方程的衍生点.(1)若关于x 的一元二次方程为()22210x m x m m --+-=.①求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M 的坐标;②由①得到的衍生点M 在直线l :3y x =-+与坐标轴围成的区域上,求m 的取值范围.(2)是否存在b ,c ,使得不论()0k k ≠为何值,关于x 的方程20x bx c ++=的衍生点M 始终在直线()25y kx k =+-的图象?若有,求出b ,c 的值:若没有,说明理由. 26.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.C解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a 的值即可.【详解】解:∵关于x 的一元二次方程x 2+(a 2-3a )x+a=0的两个实数根互为倒数,∴x 1•x 2=a=1.故选:C .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 4.B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.6.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.7.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.8.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】 移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 10.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1x 2-4x+4=1+4(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.11.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.12.C解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.二、填空题13.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找解析:-8【分析】先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.【详解】解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8,故答案为:-8.本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键. 14.4315【分析】利用配方法将多项式转化为然后利用非负数的性质进行解答【详解】解:===∴当a=4b=3时多项式有最小值15故答案为:4315【点睛】此题考查了配方法的应用以及非负数的性质熟练掌握完全解析:4 3 15【分析】利用配方法将多项式22222425a ab b a b -+--+转化为22(1)(3)15a b b --+-+,然后利用非负数的性质进行解答.【详解】解:22222425a ab b a b -+--+=22222691152b a a b b b a b --+-+++++=2222(1)(1)(3)15a a b b b -++-+++=22(1)(3)15a b b --+-+∴当a=4,b=3时,多项式22222425a ab b a b -+--+有最小值15.故答案为:4,3,15.【点睛】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键. 15.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%【分析】设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 16.120【分析】设平均年增长率为x 列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果.【详解】解:设平均年增长率为x ,根据题意得:()21001144x +=,整理得:()21 1.44x +=,开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去),则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元).故答案为:120.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法. 17.﹣【分析】由根与系数的关系即可求出答案【详解】解:∵一元二次方程2x2+3x ﹣1=0的两个根是x1x2∴x1x2=﹣故答案为:﹣【点睛】本题考查了根与系数的关系解题的关键是掌握根与系数的关系进行解题解析:﹣12 【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】 本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.18.﹣2【分析】直接根据根与系数的关系求解即【详解】解:∵mn 是一元二次方程x2+2x ﹣7=0的两个根∴m+n =﹣2故答案为﹣2【点睛】本题考查一元二次方程根与系数的关系是重要考点难度较易掌握相关知识是解析:﹣2.【分析】 直接根据根与系数的关系求解,即b m n a +=-. 【详解】解:∵m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2.故答案为﹣2.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.19.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x=5∴x2﹣8x+16=5+16即(x﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x2﹣8x=5,∴x2﹣8x+16=5+16,即(x﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.20.2021【分析】把x=a代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a代入已知方程,并求得a2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0,得a2+a+1=0,解得a2+a=-1,所以2020-a2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.三、解答题21.每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.22.12y =,22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 23.(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)AB 的长应是4米;(2)花的面积不能达到39平方米.【分析】(1)设AB=x 米,根据题意列一元二次方程,解方程,把不合题意的解舍去即可求解; (2)设AB=x 米,根据题意列一元二次方程,方程无实数根,即可求解.【详解】解:(1)设AB=x 米,由题意得 x (21-3x )=36,整理得 27120x x -+=,解得123,4x x ==,当x=3时,21-3x=12>11.5,不合题意,舍去;当x=4时,21-4x=9<11.5,符合题意.答:若要围成总面积为36平方米的花圃,边AB 的长应是4米.(2)设AB=x 米,由题意得 x (21-3x )=39,整理得 27130x x -+=,()2247411330b ac ∆=-=--⨯⨯=-<∴方程无实数根,∴无法围成总面积为39平方米的花圃.答:无法围成总面积为39平方米的花圃.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题关键,解题时注意根据题意检验根的合理性.25.(1)①见解析,()1,M m m -;②12m ≤≤;(2)存在,12b =-,20c =【分析】(1)①根据根的判别式和衍生点的定义,即可得出结论;②先确定点出点M 在在直线y=x+1上,借助图象即可得出结论;(2)求出定点,利用根与系数的关系解决问题即可.【详解】解:(1)①()22210x m x m m --+-=, ∵()()2221410m m m ⎡⎤∆=----=>⎣⎦,∴不论x 为何值,该方程总有两个不相等的实数根,()22210x m x m m --+-=,解得:11x m =-,2x m =,方程()22210x m x m m --+-=的衍生点为()1,M m m -.②由①得,()1,M m m -,令1-=m x ,m y =,∴1y x =+,∴点M 在在直线1y x =+上,与y 轴交于A 点,当x=0时,y=1,∴()0,1A ,∵直线1l :3y x =-+与直线1y x =+交于B 点,解31y x y x =-+⎧⎨=+⎩, 解得12x y =⎧⎨=⎩, ∴()1,2B ,∵点M 的在直线l :3y x =-+与坐标轴围成的区域上∴12m ≤≤;(2)存在.直线()()25210y kx k k x =+-=-+,过定点()2,10M ,∴20x bx c ++=两个根为12x =,210x =,∴210b +=-,210c ⨯=,∴12b =-,20c =.【点睛】本题考查了新定义,一元二次方程根的判别式,一元二次方程的根与系数的关系,两条直线相交问题,解题的关键是理解题意,学会用转化的思想思考问题.26.(110333;(221+;(3)42;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可;(3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可;(4)移项,利用直接开平方法即可求解.【详解】(13 =+3 =;(2|11)=-1=12=+;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.。
第二十一章 一元二次方程 单元测试(含答案) 2024-2025学年人教版九年级数学上册

第二十一章一元二次方程一、选择题(每题3分,共24分)1.在一元二次方程x2−2x−3=0中,一次项系数是( )A.1B.0C.−2D.−3 2.若x=−1是关于x的方程x2+ax=0的一个根,则a的值为( )A.1B.2C.3D.43.用配方法解方程x2-6x-1=0时,配方结果正确的是( )A.(x-3)2=10B.(x-3)2=8C.(x-6)2=10D.(x-3)2=1 4.一元二次方程x2−2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=−2D.x1=−2,x2=−15.一元二次方程x(x−1)=2(x−1)的解完全正确的是( )A.x=2B.x1=2,x2=1C.x1=−2,x2=1D.x1=3,x2=−1 6.若关于x的一元二次方程(k−1)x2−4x−1=0有实数根,则k的取值范围( )A.k>−3B.k≥−3且k≠1C.k>−3且k≠0D.k≤−37.若一元二次方程2x2+3x﹣6=0的两个根分别为x1,x2,则x1•x2的值等于( )A.﹣6B.6C.﹣3D.38.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x人,经过两轮传染后共有256人感染了“甲流”.则关于x的方程为( )A.x+x(x+1)=256B.x2+x=256C.1+x+x(x+1)=256D.(x+1)+(x+1)2=256二、填空题(每题4分,共20分)9.若方程(m−1)x2+6x−1=0是关于x的一元二次方程,则m的取值范围是 .10.用配方法解一元二次方程x2+6x+3=0时,将它化为(x+m)2=n的形式,则m−n的值为 .11.已知关于x的一元二次方程2m x2−4x+1−5n=0有两个相等的实数根,则2m+5n的值为 .12.已知三角形两边的长分别是2和5,第三边的长是方程x2-7x+10=0的根,则这个三角形的周长是 .13.已知m,n是方程x2+4x−3=0的两个实数根,则m2+5m+n+2024的值是 .三、计算题(共10分)14.解方程:(1)x2−4x−12=0;(2)x(x−9)=8(9−x).四、解答题(共46分)15.关于x的一元二次方程2x2−4x+(2m−1)=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程有一个根为x=3+1,求m的值和另一根.16.已知关于x的一元二次方程x2−(m+2)x+m−1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且x21+x22−x1x2=9,求m的值.17.为了提升居民生活质量,完善社区公共区域配套设施,今年夏天长春市在多个城区实施了旧城改造工程.已知某工程队在开始施工的7月份为某小区翻新道路12000m2,为了在入冬前完成道路翻新工程,之后加快了工程进度,结果9月份为该小区翻新道路14520 m2.(1)求这两个月该工程队工作效率的月平均增长率.(2)若10月份该工程队的工作效率按此增长率增长,估计到10月末该工程队能否完成该小区共55000m2的道路翻新任务?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.C2.A3.A4.B5.B6.B7.C8.C9.m≠110.−311.112.1213.202314.(1)解:x2−4x−12=0 x2−4x=12x2−4x+4=12+4(x−2)2=16x−2=±4即:x−2=4或x−2=−4∴x1=6,x2=−2(2)解:x(x−9)=8(9−x)解:x(x−9)−8(9−x)=0x(x−9)+8(x−9)=0(x−9)(x+8)=0即:x−9=0或x+8=0∴x1=9,x2=−815.(1)解:∵方程2x2−4x+(2m−1)=0有两个不相等的实数根,∴Δ=16−8(2m−1)=24−16m>0解得m<32;∵方程有一个根x=3+1,∴2×(3+1)2−4×(3+1)+(2m−1)=0解得m=−32,则2x2−4x−4=0,x2−2x−2=0∵x1+x2=2,∴x2=2−(1+3)=1−3,则x1=1+3,x2=1−3,即m的值是−32,另一根是1−3.16.(1)证明:Δ=[−(m+2)]2−4×1×(m−1)=m2+8,∵无论m取何值,m2+8>0,恒成立,∴无论m取何值,方程都有两个不相等的实数根;(2)解:∵x1,x2是方程x2−(m+2)x+m−1=0的两个实数根,∴x1+x2=m+2,x1⋅x2=m−1,∵x21+x22−x1x2=(x1+x2)2−3x1x2=9,∴(m+2)2−3(m−1)=9解得:m1=1或m2=−2.17.(1)解:设该工程队工作效率的月平均增长率为x,根据题意,得12000(1+x)2=14520.解这个方程,得x1=0.1,x2=−2.1(不合题意舍去).答:该工程队工作效率的月平均增长率为10%.(2)解:8月的工程量为:13200m2;10月的工程量为:15972m2;12000+13200+14520+15972=55692>55000.所以该工程队能完成该小区的道路翻新任务.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
西安行知中学九年级数学上册第三单元《旋转》检测题(答案解析)

一、选择题1.如图,已知在正方形ABCD 中,AD =4,E ,F 分别是CD ,BC 上的一点,且∠EAF =45°,EC =1,将△ADE 绕点A 沿顺时针方向旋转90°后与△ABG 重合,连接EF ,则以下结论:①DE +BF =EF ,②BF =47,③AF =307,④S △AEF =507中正确的是( )A .①②③B .②③④C .①③④D .①②④ 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.如图,已知平行四边形ABCD 中,AE BC ⊥于点,E 以点B 为中心,取旋转角等于,ABC ∠把BAE △顺时针旋转,得到BA E '',连接DA '.若60,50ADC ADA '∠=︒∠=︒,则DA E ''∠的大小为( )A .130︒B .150︒C .160︒D .170︒ 4.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .2B .3C .3D .325.如图,在△ABC 中,以C 为中心,将△ABC 顺时针旋转34°得到△DEC ,边ED ,AC 相交于点F ,若∠A =30°,则∠EFC 的度数为( )A .60°B .64°C .66°D .68°6.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .87.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 8.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕A 逆时针转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是 ( )A .2B .3C .4D .不能确定 9.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°10.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5-- 11.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D . 12.如图,在等边△ABC 中,AC =9,点O 在AC 上,且AO =3,P 是AB 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,若使点D 恰好落在BC 上,则线段AP 的长是( )A .4B .5C .6D .8第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案二、填空题13.若点M (3,a ﹣2),N (b ,a )关于原点对称,则ab =_____.14.在直角坐标系中,已知()2,3A -,()10B ,,则点A 关于点B 的对称点A '的坐标为______.15.点()1,2--A 绕点()10B ,旋转180︒得到点C ,则点C 坐标为_______________________.16.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .17.如图,在ABC 中,108BAC ∠=︒,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,则C '∠的度数为_______.18.如图,已知EAD 32∠=,ADE 绕着点A 旋转50后能与ABC 重合,则BAE ∠=________度.19.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.20.如图,在Rt △ABC 中,已知∠C=90°,∠A=60°,AC=3cm ,以斜边AB 的中点P 为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt △A′B′C′,则旋转前后两个直角三角形重叠部分的面积为______________.三、解答题21.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为(5,1)A -,(2,2)B -,(1,4)C -,请按下列要求画图:(1)画出ABC 关于x 轴对称得到的111A B C △,并写出1B 的坐标;(2)画出与ABC 关于原点O 成中心对称的222A B C △,并写出点2A 的坐标; (3)若x 轴上有一点P ,到1B 、2A 的距离和最短,在平面直角坐标系内确定点P 的位置,并求点P 的坐标.22.如图,在10×10的正方形方格之中,ABC 的顶点都在格点上(1)在图1中画出ABC 关于格点O 成中心对称的A B C '''.(2)在图2中画出格点ABEF ,使得ABE A C F B S S =.23.已知30AOB ∠=,P 为射线OB 上一点,M 为射线OA 上一动点,连接PM , 满足OMP ∠为钝角,将线段PM 绕点 P 顺时针旋转150,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)在射线 MA 上取点D ,点M 关于点D 的对称点为E ,连接EP ,当PDO ∠= 时,使得对于任意的点M ,总有ON EP =,并证明24.在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC 绕着点A 顺时针旋转90︒,画出旋转后得到的△AB 1C 1;直接写出点B 1的坐标;(2)作出△ABC 关于原点O 成中心对称的△A 2B 2C 2,并直接写出点B 2的坐标. 25.如图,已知△ABC 的三个顶点的坐标分别为A (﹣6,0)、B (﹣2,3)、C (﹣1,0).(1)请直接写出与点B 关于坐标原点O 的对称点B1的坐标;(2)将△ABC 绕坐标原点O 顺时针旋转90°.画出对应的△A′B′C′图形,直接写出点A 的对应点A′的坐标;26.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为()6,1-,点B 的坐标为()3,1-,点C 的坐标为()3,3-.(1)将Rt ABC 先沿x 轴正方向平移7个单位长度,再沿y 轴负方向平移1个单位长度得到111Rt A B C △,请在图上画出111Rt A B C △并标明相应字母,并写出点1A 的坐标; (2)若Rt ABC 内部一点P 的坐标为(),a b ,则按(1)中的方式平移后点P 的对应点1P 的坐标是 ;(3)将Rt ABC 绕点O 顺时针旋转180︒得到222RtA B C ,请在图上画出222Rt A B C 且标明相应字母,并写出点2A 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用全等三角形的性质及勾股定理求出BF的长,再利用勾股定理求出AF的长,从而求得GF,即可求解出△AEF的面积,最终即可判断出所有选项.【详解】∵将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,∴AG=AE,∠DAE=∠BAG,DE=BG,∵∠EAF=45°,∴∠DAE+∠BAF=45°=∠GAB+∠BAF=∠GAF=45°,∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,则EF=x+3,CF=4﹣x,在Rt△ECF中,(x+3)2=(4﹣x)2+12,解得x=47,∴BF=47,AF2216202=16+=497AB BF,故②正确,③错误,∴GF=3+47=257,∴S△AEF=S△AGF=12AB×GF=507,故选:D .【点睛】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.2.D解析:D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B 、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C 、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D 、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D .【解答】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C解析:C【分析】先根据平行四边形的性质可得60,//AD BC ABC ∠=︒,再根据平行线的性质可得130DA B '∠=︒,然后根据直角三角形的性质、旋转的性质可得30BA E BAE ''∠=∠=︒,最后根据角的和差即可得.【详解】四边形ABCD 是平行四边形,60ADC ∠=︒,60,//AD BC ABC ∴∠=︒,50ADA '∠=︒,180130DA B ADA ''∴∠=︒-∠=︒,AE BC ⊥,9030BAE ABC ∴∠=︒-∠=︒,由旋转的性质得:30BA E BAE ''∠=∠=︒,13030160DA E DA B BA E '''''∴∠=∠+∠=︒+︒=︒,【点睛】本题考查了平行四边形的性质、旋转的性质、平行线的性质等知识点,熟练掌握平行四边形与旋转的性质是解题关键.4.A解析:A【分析】由△ABP绕点B顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到BP,即可得到答案..【详解】解:解:∵△ABP绕点B顺时针旋转90°得到△CBP',而四边形ABCD为正方形,BA=BC,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴.故选:A.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质.5.B解析:B【分析】由旋转性质得到∠D和∠DCF的度数,再由外角性质得到∠EFC的度数即可.【详解】解:由旋转的性质可得:∠D=∠A=30°,∠DCF=34°,∴∠EFC=∠A+∠DCF=30°+34°=64°;故选:B.【点睛】本题考查旋转的性质以及三角形的外角性质,熟练掌握旋转的性质是解本题的关键.6.C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.7.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图形重合.8.B解析:B【分析】B=°,当DQ⊥CQ时,DQ的长最小,再根据根据旋转的性质,即可得到∠ACQ=∠60勾股定理,即可得到DQ的最小值.【详解】B=°.解:由旋转可得∠ACQ=∠60因为点D是AC的中点,所以CD=4.当DQ⊥CQ时,DQ的长最小,此时∠CDQ=30︒.所以122CQ CD==,223422DQ=-=,所以DQ的最小值是23,故选B.【点睛】本题主要考查了旋转的性质,旋转前后的图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.9.C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.10.C解析:C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选C.点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.11.D解析:D【分析】根据中心对称图形的定义和图形的特点即可求解.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项正确;故选D .【点睛】考核知识点:中心对称图形的识别.12.C解析:C【分析】根据题意通过“角角边”证明△AOP ≌△CDO ,进而得到AP=OC=AC ﹣AO=6.【详解】解:根据题意可知:∠A=∠C=60°,∵线段OP 绕点O 逆时针旋转得到线段OD ,∴OP=DO ,∵∠DOP=60°,∴∠AOP+∠COD=∠CDO+∠COD=120°,∴∠AOP=∠CDO ,在△AOP 与△CDO 中,A C AOP CDO OP DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△CDO (AAS ),∴AP=OC=AC ﹣AO=6.故选C.【点睛】本题主要考查旋转的性质,全等三角形的判定与性质,等边三角形的性质,熟练掌握其知识点是解此题的关键.二、填空题13.﹣3【分析】直接利用关于原点对称点的性质得出ab 的值即可得出答案【详解】∵点M (3a ﹣2)N (ba )关于原点对称∴b=﹣3a ﹣2=﹣a 解得:a=1则ab=1×(﹣3)=﹣3故答案为:﹣3【点睛】本题解析:﹣3【分析】直接利用关于原点对称点的性质得出a ,b 的值,即可得出答案.【详解】∵点M (3,a ﹣2),N (b ,a )关于原点对称,∴b =﹣3,a ﹣2=﹣a ,解得:a =1,则ab =1×(﹣3)=﹣3.故答案为:﹣3.【点睛】本题主要考查了关于原点对称点的性质,正确得出a ,b 的值是解题关键.14.【分析】设点的坐标为(xy )然后根据中心对称的点的坐标特点解答即可【详解】解:设点的坐标为(xy )∵点是点关于点的对称点∴解得:x=4y=﹣3∴点的坐标为故答案为:【点睛】本题考查了坐标与图形变化—解析:()4,3-【分析】设点A '的坐标为(x ,y ),然后根据中心对称的点的坐标特点解答即可.【详解】解:设点A '的坐标为(x ,y ),∵点A '是点A 关于点B 的对称点, ∴231,022x y -++==,解得:x =4,y =﹣3, ∴点A '的坐标为()4,3-.故答案为:()4,3-.【点睛】本题考查了坐标与图形变化—对称,熟记对称点公式是解题的关键.15.【分析】过AC 两点向x 轴作垂线构造全等三角形得到CF 和AE 相等BF 和BE 相等即可得到结果【详解】解:过点A 作AE ⊥x 轴过点C 作CF ⊥x 轴∴∠AEB=∠CFB=90°由旋转性质可得AB=BC ∵∠CBF解析:()32,【分析】过A 、C 两点向x 轴作垂线,构造全等三角形,得到CF 和AE 相等,BF 和BE 相等,即可得到结果.【详解】解:过点A 作AE ⊥x 轴,过点C 作CF ⊥x 轴,∴∠AEB=∠CFB=90°,由旋转性质可得AB=BC ,∵∠CBF=∠EBA ,∴△ABE ≌△CFB∴CF=AE ,BF=EB ,又∵EB=2,∴BF=2,CF=2,∴OF=2+1=3,∴C (3,2)故答案为:(3,2).【点睛】本题考查旋转变换和三角形全等的判定和性质,正确作出辅助线证明全等是解题的关键. 16.【分析】先根据旋转的定义和性质可得从而可得再利用勾股定理即可得【详解】由旋转的定义和性质得:在中故答案为:【点睛】本题考查了旋转的定义和性质勾股定理熟练掌握旋转的性质是解题关键【分析】先根据旋转的定义和性质可得111,60A AC C CAC ==∠=︒,从而可得190BAC ∠=︒,再利用勾股定理即可得.【详解】由旋转的定义和性质得:111,60A AC C CAC ==∠=︒,30BAC ∠=︒,1190AC BAC AC B C ∴∠=+=∠∠︒,在1Rt ABC 中,1BC ===,【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键. 17.24°【分析】根据旋转的性质得出边和角相等找到角之间的关系再根据三角形内角和定理进行求解即可求出答案【详解】解:设=x°根据旋转的性质得∠C=∠=x°=AC=AB ∴∠=∠B ∵∴∠C=∠CA=x°∴∠解析:24°【分析】根据旋转的性质得出边和角相等,找到角之间的关系,再根据三角形内角和定理进行求解,即可求出答案.【详解】解:设C '∠=x°.根据旋转的性质,得∠C=∠'C = x°,'AC =AC, 'AB =AB.∴∠'AB B =∠B.∵AB CB ''=,∴∠C=∠CA 'B =x°.∴∠'AB B =∠C+∠CA 'B =2x°.∴∠B=2x°.∵∠C+∠B+∠CAB=180°,108BAC ∠=︒,∴x+2x+108=180.解得x=24.∴C '∠的度数为24°.故答案为24°.【点睛】本题考查了三角形内角和定理,旋转的性质的应用及等腰三角形得性质.18.【分析】根据旋转对称图形的定义解答【详解】解:∵△ADE 绕着点A 旋转50°后能与△ABC 重合∴∠BAD=50°又∵∠EAD=32°∴∠BAE=∠BAD−∠EAD=50°−32°=18°故答案为18【解析:18【分析】根据旋转对称图形的定义解答.【详解】解:∵△ADE 绕着点A 旋转50°后能与△ABC 重合,∴∠BAD=50°,又∵∠EAD=32°,∴∠BAE=∠BAD−∠EAD=50°−32°=18°.故答案为18.【点睛】本题考查了旋转的性质,解题的关键是根据旋转对称图形的定义解答.19.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论【详解】∵在△ABC 中∠A =60°∠ABC =80°∴∠C =180°﹣60°﹣80°=40°∵将△ABC 绕点B 逆时针旋转得到△DB解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC 中,∠A =60°,∠ABC =80°,∴∠C =180°﹣60°﹣80°=40°,∵将△ABC 绕点B 逆时针旋转,得到△DBE ,∴∠E =∠C =40°,∵DE ∥BC ,∴∠CBE =∠E =40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.20.【分析】由点P 是AB 的中点∠A=60°AC=3cm 可得BP 的长再由逆时针旋转90°根据旋转的性质和30°直角三角形的三边比值就可求出BMMP 的长在Rt △B′MN 和Rt △BNG 中根据30°直角三角形的 解析:94【分析】由点P 是AB 的中点,∠A=60°,AC=3cm 可得BP 的长,再由逆时针旋转90°,根据旋转的性质和30°直角三角形的三边比值,就可求出BM ,MP 的长,在Rt △B ′MN 和Rt △BNG 中根据30°直角三角形的三边比值同样可以求出相应线段长,然后利用S 阴影部分=BNG BPM S S ∆∆-进行计算即可.【详解】如图,∵∠C =90°,∠A =60°,AC =6,∴AB =2AC =6,∠B =30°,∵点P 为AB 的中点,∴BP =3,∵△ABC 绕点P 按逆时针方向旋转90︒得到Rt △A′B′C′,∴B 'P =BP =3,在Rt △BPM 中,∠B =30°,∠BPM =90°,∴BM =2PM ,∴PM 3BM 3∴B ′M =B ′P -PM 3在Rt △B ′MN 中,∠B ′=30°,∴MN =12B ′M =332,∴BN =BM +MN =33322+ 在Rt △BNG 中,BG =2NG ,BG 2=NG 2+BN 2,∴NG =3322+, ∴S 阴影=S △BNG -S △BMP =1333319333222224⎛⎛⨯+⨯-= ⎝⎝⎭, 故答案为:94.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系和三角形面积公式.三、解答题21.(1)见解析,1B 的坐标为(-2,-2);(1)见解析,点2A 的坐标为(5,-1);(3)见解析.点P 的坐标为(223,0). 【分析】(1)分别作出A ,B ,C 三点关于x 轴对称的点A 1,B 1,C 1,顺次连接即可,从而可写出1B 的坐标;(2)分别作出A ,B ,C 三点原点O 对称的点A 2,B 2,C 2,顺次连接即可,写出点2A 的坐标;(3)作A 2点关于x 轴对称的点A 3,连接A 3B 1交x 轴于一点,这点即为所求.【详解】 解:(1)如图所示,1B 的坐标为(-2,-2);(2)如图所示,点2A 的坐标为(5,-1); (3)如图所示,点P 即为所求作.设B 1A 3的解析式为y=kx+b ,由对称性知A 3的坐标为(5,1),把A 3(5,1),B 1(-2,-2)代入B 1A 3的解析式,得5122k b k b +=⎧⎨-+=-⎩, 解得,3787k b ⎧=⎪⎪⎨⎪=-⎪⎩∴B 1A 3的解析式为3877y x =-,令y=0,则x=223, ∴点P 的坐标为(223,0). 【点睛】此题主要考查了复杂作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.22.(1)画图见解析;(2)画图见解析.【分析】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得; (2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得.【详解】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得到A B C ''',如图所示:(2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得到ABEF ,且ABE A C F B S S =,如图所示:【点睛】本题考查了画中心对称图形、画平行四边形等知识点,熟练掌握中心对称的定义是解题关键.23.(1)见解析;(2)见解析;(3)45,见解析【分析】(1)根据要求画出图形即可.(2)根据三角形内角和定理以及角的和差定义解决问题即可.(3)结论:当∠PDO=45°时,总有ON=EP.过点N作NC⊥OB于点C,过点P作PH⊥OA于点H,即可构造出△PHM≌△NCP,进而得PH=NC,HM=CP,设PH=DH=x,MH=PC=y,则OP=2x,OC=OP+PC=2x+y,由于点M关于点D的对称点为E,即点D 为ME中点,故ME=2MD,EH=ME−MH=2x+y,所以OC=EH,通过证明△OCN≌△EHP 证得ON=EP.【详解】解(1)如图所示(2)设OPM α∠=线段PM 绕点P 顺时针旋转150得到线段PN150MPN ∴∠=,PM PN =150OPN MPN OPM α∴∠=∠-∠=-30AOB ∠=30AOB ∴∠=180********OMP AOB OPM αα∴∠=-∠-∠=--=- OMP OPN ∴∠=∠(3)当45PDO ∠=时,总有ON EP =,证明如下: 过点P 作PC OD ⊥于点C过点N 作NF OB ⊥于点F ,如图90NFP PCM PCE ∴∠=∠=∠=OMP OPN ∠=∠180180OMP OPN ∴-∠=-∠即PMC NPF ∠=∠在PDM ∆与NCP ∆中PCM NFP PMC NPF PM NP ∠=∠⎧⎪∠=∠⎨⎪=⎩()PCM NFP AAS ∴∆≅∆PC NF ∴=,CM FP =30AOB ∠=,22OP PC CD ==点M 关于点D 的对称点为EDE DM CM CD ∴==+2CE CD DE CM CD ∴=+=+OF CE ∴=在OFN ∆与ECP ∆中OF CE OFN ECP NF PC =⎧⎪∠=∠⎨⎪=⎩()OFN ECP SAS ∴∆≅∆ON EP ∴=.【点睛】本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.24.(1)作图见解析; B 1(4,-2);(2)作图见解析;B 2(-4,-4)【分析】(1)利用网格特点和旋转的性质画出点B 、C 的对应点B 1、C 1,从而得到△AB 1C 1,再写出点B 1的坐标;(2)分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.【详解】(1)如图,B 1(4,-2);(2)如图,B 2(-4,-4).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.25.(1)B 1的坐标为(2,-3);(2)图见解析,A′的坐标为(0,6).【分析】(1)直接利用关于原点对称点的性质得出答案;(2)利用旋转的性质得出对应点位置进而得出图形,再写出A′的坐标即可.【详解】解:(1)点B 关于坐标原点O 对称的点B 1的坐标为:(2,-3);(2)如下图所示,△A′B′C′即为所求作的三角形,A′的坐标为(0,6).【点睛】本题考查了利用旋转变换作图,坐标与图形变化——旋转.熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.(1)见解析,()11,0A ;(2)()7,1a b +-;(3)见解析,()26,1A - 【分析】(1)把三角形顶点向右平移7个单位,再沿y 轴负方向平移1个单位长度,连接各点,画出Rt △A 1B 1C 1的图形,进而写出点A 1的坐标;(2)根据三角形向右平移7个单位,再沿y 轴负方向平移1个单位长度,三角形上每个点都向右平移7个单位,向下平移1个单位,进而得到点P 的对应点P 1的坐标; (3)直接画出关于原点对称的三角形,进而写出点A 2的坐标即可.【详解】(1)如图,111Rt A B C △即为所求作三角形.点1A 的坐标为:()11,0A ; (2)三角形向右平移7个单位,再沿y 轴负方向平移1个单位长度则平移后点P 的对应点P 1的坐标为:()7,1a b +-,故答案为:()7,1a b +-;(3)如图,222Rt A B C 即为所求作三角形.点2A 的坐标为:()26,1A -.【点睛】本题考查了利用平移变换作图以及旋转变换作图的知识,熟练掌握网格结构准确找出对应点的位置是解题的关键,此题难度不大.。
数学行知天下答案

数学行知天下答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合要求的,把正确答案的代号填在括号内.)1.若点P在的终边上,且|OP|=2,则点P的坐标()A.B.C.D.2.已知 =(5,-3),C(-1,3), =2 ,则点D的坐标为()A.(11,9)B.(4,0)C.(9,3)D.(9,-3)3.在则这个三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形4. ()A.a>b>c B.a<b<c5.如图所示,向量A、B、C在一条直线上,且,则()A. B.C. D. [来源:高考试题库]6.已知向量=(3, 4), =(sinα, cosα), 且∥,则tanα=()A. B. - C. D. -7.函数的部分图象是()A.B.C.D.8.若,则函数的值域是()A.B. C. D.9.定义在 R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为() A. B. C.D.10.函数的一个单调增区间是()A.B. C.D.二、填空题(本大题共5小题,每小题4分,共20分,把最简单结果填在题后的横线上)11.把函数的图象向右平移个单位得到的函数解析式____________;12.设与是不共线的非零向量,且k +与+k 共线,则k的值是___________;13.已知cos( +x)= ,( <x< ),则 = ;14.函数的部分图象如图所示,则此函数的解析式为;15.关于函数(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;②y=f(x)的表达式可改写为y=4cos(2x );③y=f(x)的图象关于点( ,0)对称;④y=f(x)的图象关于直线x= 对称。
其中正确的命题的序号是 (注:把正确的命题的序号都填上.)三:解答题(本大题共6小题,50 分,解答应写出必要的文字说明、证明过程或演算步骤.)] 16.(8分)已知A(-2,4)、B(3,1)、C(-3, 5) 且,,求的坐标.17(8分) 已知,,,,求18.(8分)已知函数 =sin(2x+ )+s in(2x- )+cos2x+1(xR),求的最小正周期、对称轴、对称中心、单调增区间;19.(8分)已知,(1)求的值;(2)求函数的最大值.20.(9分) 已知定义在区间上的函数的图象关于直线对称,当时,函数,其图象如图所示.(1) 求函数在的表达式;(2) 求方程的解.21.(9分)若,则.已知(1)若求的表达式;(2)若函数f (x)和函数g(x)的图象关于原点对称,求函数g(x)的解析式;(3)若在上是增函数,求实数的取值范围.</b。
初三上册数学书课后答案

初三上册数学书课后答案对有关问题所作的解答的结果;对提出的问题所做的`解答,练习的答案。
以下是店铺为大家收集的初三上册数学书课后答案,欢迎大家借鉴与参考,希望对大家有所帮助。
练习一:C C A C C BD B 30 ,3或 4 4和6 16:25:08 80 5 2号练习二:A C D C CB 4,等边三角形8 2 10 5 60° 110°练习三:C BD C C A B B ⑷⑹⑺ ⑴⑵⑶⑸ ±2/3 0.6 9.75×10^10 5或√7 直角 10练习四:B C D D D A D B -1/2 ±3 -√5 √3-√2 2.03 1003 5;8 15 (√就是根号。
)练习五:C B CD D C C C C 90 一、口、王、田经过□ABCD的对角线交点 AC=BD 且AC⊥BD 22cm与20cm 6 3 45° 8练习六:B C A B D A C D 线段、平行四边形、正方形、园线段、角、正方形、等腰梯形、圆、等边三角形线段、正方形、圆 90 AB=CD 80 2 28练习七:B C A A A A 有序实数对 13 3 (-3,-1) =3 ≠-2 (1,2)(1,-3) (-3,-7)练习八:B C A C B C (3,0) (0,1)(-6/7,9/7) y=x+3 s=264-24t -2 -1 y=x-3 y=1/3x-1/3 5 8 240练习九:C B BD C C -1 9/2 y=3x+5 14 3 3 三 y=-x-1 一、二、四减小x y 8 x=2,y=7(自己用大括号) 5 120 15练习十:A D DB 95 203 101 8 8.1 9 9 3m+7 3n+7练习十一:A DB BCD C B 2 -2 3 25/8 4 (4,-3) y=-5/2x x=-1,y=2(自己用大括号) 9 ±6 4【初三上册数学书课后答案】。
西安行知中学九年级数学上册第一单元《一元二次方程》检测题(答案解析)

一、选择题1.用配方法解方程x 2﹣6x ﹣3=0,此方程可变形为( )A .(x ﹣3)2=3B .(x ﹣3)2=6C .(x+3)2=12D .(x ﹣3)2=122.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5%3.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x+-= D .(1)(2)1x x x -+=- 4.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 5.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17 6.不解方程,判断方程23620x x --=的根的情况是( ) A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确7.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=0 8.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1B .-1C .1或-1D .0 9.一元二次方程x 2=4x 的解是( ) A .x=4 B .x=0 C .x=0或-4 D .x=0或4第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案10.如图,是一个简单的数值运算程序,则输入x 的值为( )A .31+B .31-+C .31+或31-+D .无法确定 11.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .212.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2二、填空题13.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.14.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.15.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______16.一元二次方程()422x x x +=+的解为__.17.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______. 18.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.19.一元二次方程x 2=2x 的解为__________20.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场三、解答题21.用配方法解方程:22510x x -+=22.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.23.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?24.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.25.已知:关于x 的一元二次方程()2223320x m x m m -++++=. (1)已知2x =是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为ABC 中AB 、AC (AB <AC )的边长,当BC =时,ABC 是等腰三角形,求此时m 的值.26.解方程:(1)2340x x --=;(2)()()2151140x x -+--=.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.2.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 3.D解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.4.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.6.C解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.7.A解析:A【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x )(50+2x )=5400,即4000+260x+4x 2=5400,化简为:4x 2+260x-1400=0,即x 2+65x-350=0.故选:A .【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.8.B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.9.D解析:D【分析】先移项,利用因式分解法解一元二次方程.【详解】解:x 2=4xx 2-4x=0x (x-4)=0x=0或x=4,故选:D.【点睛】此题考查解一元二次方程,直接开平方法,配方法,公式法,因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.10.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.11.A解析:A【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB 或AB (舍去),则BC ,然后计算m 的值. 【详解】 ∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根,∴x 1+x 2=4,x 1x 2=m ,即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E ,∴∠CBD =∠EBD ,∵AD ∥BC ,∴∠CBD =∠EDB ,∴∠EBD =∠EDB ,∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),∴BC =8−2AB =205+,∴m =12×105-×205+=165. 故选:A .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.也考查了矩形的性质和折叠的性质.12.D解析:D【分析】方程x(x﹣2)=x﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x(x﹣2)=x﹣2,移项,得x(x﹣2)﹣(x﹣2)=0,提公因式,得(x﹣2)(x﹣1)=0,∴x﹣2=0或x﹣1=0,解得x=2或x=1.故选:D.【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题13.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣7 2【分析】根据根与系数的关系得到x1+x2=﹣42=﹣2,x1x2=﹣32,然后利用整体代入的方法计算.【详解】根据题意得x1+x2=﹣42=﹣2,x1x2=﹣32,所以x1+x2+x1x2=﹣2﹣32=﹣72.故答案为:﹣72.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.14.120【分析】设平均年增长率为x列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=解析:120【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果.【详解】解:设平均年增长率为x ,根据题意得:()21001144x +=,整理得:()21 1.44x +=,开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去),则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元).故答案为:120.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法. 15.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的 解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.16.【分析】利用因式分解法解一元二次方程提取公因式【详解】解:故答案是:【点睛】本题考查解一元二次方程解题的关键是掌握一元二次方程的解法 解析:114x =,22x =- 【分析】利用因式分解法解一元二次方程,提取公因式()2x +.【详解】解:()422x x x +=+ ()()4220x x x +-+=()()4120x x -+=114x =,22x =-. 故答案是:114x =,22x =-. 【点睛】 本题考查解一元二次方程,解题的关键是掌握一元二次方程的解法.17.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两 解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.19.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.20.11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题21.1544x =+,2544x =- 【分析】依据配方法的基本步骤解方程即可.【详解】解:22510x x -+=,系数化为1得:251022x x -+=, 配方得:2255251()024162x x -+--+=, 即:2517()416x -=,两边同时开平方得:54x -=,即154x =254x =-. 【点睛】本题考查配方法解一元二次方程.配方法的关键步骤在于配完全平方公式,此步需熟练掌握完全平方公式及各部分之间的关系.22.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.23.(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 24.(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k-,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.25.(1)m=0或m=1;(2)或.【分析】(1)把x=2代入方程x 2-(2m+3)x+m 2+3m+2=0得到关于m 的一元二次方程,然后解关于m 的方程即可;(2)先计算出判别式,再利用求根公式得到x 1=m+2,x 2=m+1,则AC=m+2,AB=m+1.然后讨论:当AB=BC 时,有AC=BC 时,有m 的一次方程即可.【详解】解:(1)∵x=2是方程的一个根,∴4-2(2m+3)+m 2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2-4(m 2+3m+2)=1,∴x=2312m +± ∴x 1=m+2,x 2=m+1,∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵△ABC 是等腰三角形,∴当AB=BC 时,有∴;当AC=BC 时,有∴,综上所述,当-1或时,△ABC 是等腰三角形.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,公式法解一元二次方程,也考查了等腰三角形的判定.26.(1)14x =,21x =-;(2)16x =-,23x =.【分析】(1)用十字相乘法分解因式求解即可;(2)把x-1看作一个整体,用十字相乘法分解因式求解即可;【详解】解:(1)2340x x --=,()()410x x -+=,40x ∴-=或10x +=,14x ∴=,21x =-;(2)()()2151140x x -+--=, ()()17120x x -+-⎡⎤⎡⎤⎣⎦⎣⎦-=,60x ∴+=或30x -=,16x ∴=-,23x =.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.。
人教版九年级上册数学第二十一章 一元二次方程含答案【参考答案】

人教版九年级上册数学第二十一章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解一元二次方程x2-4x+3=0时可配方得()A.(x-2) 2=7B.(x-2) 2=1C.(x+2) 2=1D.(x+2) 2=22、关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43、一元二次方程x2-2x=0的根是()A.x=2;B.x=0;C.x1=-2 ,x2=0 D.x1=2 , x2=04、二次函数y=ax2+bx+c(a,b,c为常数,a<0)的图象经过点(﹣1,1),(4,﹣4).下列结论:① <0;②当x>1时,y的值随x值的增大而减小;③x=4是方程ax2+(b+1)x+c=0的一个根;④当﹣1<x<4时,ax2+(b+1)x+c>0.其中正确的是()A.①③B.①②④C.①③④D.②③④5、若x1, x2是一元二次方程x2-8x+15=0的两个根,则x1+x2的值是()A.7B.8C.-8D.156、下列说法中,正确命题有()①一个角的两边分别平行于另一个角的两边,则这两个角相等;②数据1,2,2,4,5,7的中位数是3,众数是2 ;③等腰梯形既是中心对称图形,又是轴对称图形;④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为A.0个B.1个C.2个D.3个7、下列方程中,是关于x的一元二次方程的是()A.x 2+3y=1B.x 2+3x=1C.ax 2+bx+c=0D.8、关于x的一元二次方程(a,b,c为实数,)有两个相等的实数根,若实数满足,则此一元二次方程的根是()A. B. C. D.9、已知关于x的方程x2﹣3x+2k=0有两个不相等的实数根,则k的取值范围是()A. k>B. k<C. k<﹣D. k<10、用配方法解下列方程,其中应在方程左右同时加上4的是()A. B. C. D.11、如果a是一元二次方程x2-3x+m=0的一个根,-a是方程x2+3x-m=0的一个根,那么a的值为()A.0B.3C.0或3D.无法确定12、已知m是方程的一个根,则代数式的值等于()A.1B.-1C.2D.-213、若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C. 且 D. 且14、方程 x2 = 3x的根是()A.x=3B.x= -3C.0或3D.无解15、已知一元二次方程x2﹣x=3,则下列说法中正确的是()A.方程有两个相等的实数根B.方程无实数根C.方程有两个不相等的实数根D.不能确定二、填空题(共10题,共计30分)16、已知(x2+y2)2+5(x2+y2)﹣6=0,则x2+y2的值为________ .17、若,则________.18、已知一元二次方程:x2﹣3x﹣1=0的两个根分别是x1, x2,则x 1x2=________.19、已知关于x的一元二次方程x2﹣x+2m=0有两个不相等的实数根,则实数m 的取值范围是________.20、若a是方程x2﹣2x﹣2=0的一个根,则2a2﹣4a=________.21、受益于国家支持新能源汽车发展,番禺区某汽车零部件生产企业的利润逐年提高,据统计利润为2亿元,利润为2.88亿元.则该企业近2年利润的年平均增长率为________.22、已知m,n是一元二次方程x2﹣x﹣3=0的两个实数根,则代数式m3+4n2﹣19的值为________.23、平行四边形的两条邻边的长分别是方程x2﹣7x+1=0的两根,则该平行四边形的周长是________.24、当m________时,关于的方程有两个相等实数根。
上海民办行知二中九年级数学上册第一单元《一元二次方程》检测卷(含答案解析)

一、选择题1.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=-2.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116 D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109 3.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050 4.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关 5.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+6.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=xD .2(31)1x -=7.下列方程中是关于x 的一元二次方程的是( )A .210x x +=B .ax 2+bx +c =0C .(x ﹣1)(x ﹣2)=0D .3x 2+2=x 2+2(x ﹣1)2 8.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( )A .x (40-x )=75B .x (20-x )=75C .x (x +40)=75D .x (x +20)=79.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 10.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或011.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 12.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1 二、填空题13.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.14.已知0x =是关于x 的一元二次方程()()22213340m x m x m m -+++-=的一个根,则m =__________.15.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.16.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 17.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.18.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.19.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.20.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.三、解答题21.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?22.关于x 的一元二次方程()2220x k x k -++=. (1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根.23.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.24.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.25.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).26.已知一次函数y kx b =+的图象经过点()0,1和点()1,1-(1)求一次函数的表达式;(2)若点()222,a a +在该一次函数图象上,求a 的值;(3)已知点()()1122,,,A x y B x y 在该一次函数图象上,设()()1212m x x y y =--,判断正比例函数y mx =的图象所在的象限,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C、不是整式方程,故此选项不合题意;D、是一元二次方程,故此选项符合题意;故选:D.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.B解析:B【分析】将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A、由x2﹣2x﹣99=0得x2﹣2x=99,则x2﹣2x+1=100,即(x﹣1)2=100,故本选项正确,不符合题意;B、由x2+8x+9=0得x2+8x=-9,则x2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C、由2x2﹣7x﹣4=0得2x2﹣7x=4,则x2﹣72x=2,∴x2﹣72x+4916=2+4916,即274x⎛⎫-⎪⎝⎭=8116,故本选项正确,不符合题意;D、由3x2﹣4x﹣2=0,得3x2﹣4x=2,则x2﹣43x=23,∴故x2﹣43x+49=23+49,即(x﹣23)2=109,故本选项正确,不符合题意;故选:B.【点睛】本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a2x+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.3.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.5.C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.6.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 7.C解析:C【分析】根据一元二次方程的定义解答:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、是分式方程.错误;B 、当a =0时不是一元二次方程,错误;C 、是,一元二次方程,正确;D 、3x 2+2=x 2+2(x ﹣1)2整理后为x=0,是一元一次方程,错误;故选:C .【点睛】考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.8.B解析:B【分析】根据长方形的周长可以用x 表示另一边,然后根据面积公式即可列出方程.【详解】解:设矩形的一边为x 米,则另一边为(20-x )米,∴x (20-x )=75,故选:B.【点睛】此题考查一元二次方程的实际应用,根据题意抽象出一元二次方程是解题的关键. 9.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.A解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键. 11.B解析:B【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0,∴方程有两个不相等的实数根,故选:B .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题13.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 14.-4【分析】根据方程根的定义把代入原方程求出m 的值【详解】解:将代入原方程得解得∵该方程是一元二次方程∴即∴故答案是:【点睛】本题考查一元二次方程根的定义和解一元二次方程需要注意一元二次方程的二次项 解析:-4【分析】根据方程根的定义,把0x =代入原方程,求出m 的值.【详解】解:将0x =代入原方程,得2340m m +-=,解得14m =-,21m =,∵该方程是一元二次方程,∴10m -≠,即1m ≠,∴4m =-.故答案是:4-.【点睛】本题考查一元二次方程根的定义和解一元二次方程,需要注意一元二次方程的二次项系数不能为0.15.且【分析】根据题意一元二次方程有两个不相等的实数根可知根的判别式据此解一元一次不等式即可解题注意二次项系数不为零【详解】关于x 的一元二次方程有两个不相等的实数根即且故答案为:且【点睛】本题考查一元二 解析:13a >-且0a ≠.【分析】根据题意,一元二次方程2230ax x +-=有两个不相等的实数根,可知根的判别式2=40b ac ∆->,据此解一元一次不等式即可解题,注意二次项系数不为零.【详解】关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,2=40b ac ∴∆->即224(3)0a -⨯-> 4120a +>13a ∴>-且0a ≠ 故答案为:13a >-且0a ≠.【点睛】本题考查一元二次方程根的判别式、一元一次不等式、一元二次方程的定义等知识,是重要考点,难度较易,掌握相关知识是解题关键. 16.-3【分析】设方程的另一个根为x2根据两根之积列出关于x2的方程解之可得答案【详解】解:设方程的另一个根为x2则2x2=﹣6解得x2=﹣3故答案为:﹣3【点睛】本题考查了一元二次方程ax2+bx+c解析:-3.【分析】设方程的另一个根为x 2,根据两根之积列出关于x 2的方程,解之可得答案.【详解】解:设方程的另一个根为x 2,则2x 2=﹣6,解得x 2=﹣3,故答案为:﹣3.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 17.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0解析:6【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值.【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6,即m 2﹣5m ﹣6=0.∴(m ﹣6)(m +1)=0,解得m 1=6,m 2=﹣1.∵m =x 2+y 2≥0,∴x 2+y 2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.18.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.19.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.20.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键三、解答题21.(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 22.(1)有两个实数根,证明见解析;(2)1k =,2x =【分析】(1)利用根的判别式进行判断根的情况,即可得到答案;(2)把1x =代入方程,即可求出k 的值,然后解一元二次方程,即可得到另一个根.【详解】解:(1)根据题意,在一元二次方程()2220x k x k -++=中, ∵2(2)42k k ∆=+-⨯,244k k =-+,2(2)0k =-,∴对于任意的实数k ,原方程总有两个实数根.(2)∵1x =是方程2(2)20x k x k -++=的一个根.∴1(2)120k k -+⨯+=,解得:1k =,∴原方程为2320x x -+=,解得:11x =,22x =,∴原方程的另一根为22x =. 【点睛】本题考查了解一元二次方程以及根的判别式,牢记当0∆≥时方程有两个实数根是解题的关键.23.(1)172x +=,272x -=;(2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=,解得:1x =2x =. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 24.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.25.(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案;(2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥,∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+ 24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键. 26.(1)21y x =-+;(2)a 的值是-1或-3;(3)在第二、四象限.【分析】(1)把点()0,1和点()1,1-两点坐标分别代入一次函数y kx b =+,进而求得k 、b 的值,即可求出一次函数的表达式;(2)将点()222,a a +代入一次函数21y x =-+,即可求得a 的值;(3)根据点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,由()()1212m x x y y =--可得()()()212121222112m x x x x x x =--+=--+-,据此可以判断m 的取值,结合正比例函数的性质解答即可.【详解】解:(1)∵一次函数y kx b =+的图象经过点()0,1和点()1,1-,根据题意得: 11b k b =⎧⎨-=+⎩, 解得21k b =-⎧⎨=⎩, ∴一次函数的表达式为21y x =-+;(2)∵点()222,a a +在一次函数21y x =-+的图象上,∴22(22)1a a =-++,解得1a =-或3a =-,即a 的值是-1或-3;(3)正比例函数y mx =的图象在第二、四象限.理由:∵点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,()()1212m x x y y =--,∴()()()212121222112m x x x x x x =--+=--+-, ∴m <0,∴正比例函数y mx =的图象在第二、四象限.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、正比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的中心对称
巩固训练 一! !! -!$, -!’, -!*, + 二! 答 案 不 唯 一% # 如" %! ") 1* $$ * "$ )或 # ") 1* $# . ) & #* 2 #$ 1! #" 2 #) 等 1! . ) & ! 三! 解" % "! "!$ 7$# ! ! ! 图略 # % "$$ $# ! ! " 图略 # 拓展提升
* $ 作垂线 ! 当四 边 形 . 7 $ ) 是等腰
梯 形 时# 4 5$. 78 % 4 5 则 8. 1$1 # 即" $# . 7 "8 1 * $7 $1) 由题意得9 % 解 得91 *1 ! 7$ $ "7’ 9 1$ "7$ *# (!
中位线定理
巩固训练 一! !, +!$, 3!’, +!*, 3!%, 3!", 二! (! ’ :2! ! !9$!0! *!! )! ( 6 .! $ 三! 证明 " 连接 % ! !! )! # )! 因为 )! #! % 分别是* $! " $! " * 边的中 点# 所以 ) #"" *# ) %"" $! 所以 四 边 形 " 所以 % ) # 是 平 行 四 边 形# ! 互相平分 ") # % ! 证明 " 取* 再连接 # ! $! $ 的中点 - # -! % -! 因为 # -! % - 分别是边 $ )! " * 上的中位线 # ! ! 所以 # -1 $ )# % -1 " *! $ $ 在 $# 因为 # % - 中# %.% -7# -# ! ! ! 所以 # %. " *7 $ )1 $ " *7$ )% ! $ $ $ 设上底为 5# 下底为 ;# 高为&! 由题意知 # ! ’! % 1 !$ # 即 ;751$ (# ;75% $
’ (1" (# 槡 ! 所以 梯 形 " * $ ) 的 面 积 为 6" (6槡 ’ (1 $ ’槡 ’ (! 拓展提升 !! /!$, +!’, $ . $ % 解" 平行四边形 *! ! $ % 证明 " 连接 " $ $! 因为 # 是 " * 的中点 # % 是* $ 中点 # ! 所以 # %"" $# # %1 " $! $ ! 同理 ,-"" $# ,-1 " $! $ 所以 # %",-# # %1,-# 所以四边形 # % -, 是平行四边形 !
% -# # %"" $" ,-! 直线 两 两 交 于 #! %! -!,# 则 四 边 形 # % -,即为所求 !
拓展提升 $ % 是! 此时 ") )* 一组对边平行且相等的 ! $# 四边形是平行四边形 ! $ % 是! 在平移过程中 # 始终保持 " 一 $ *)$!)!# 组对边平行且相等的四边形是平行四边形 !
* #1 (#
’#’
**********************************************
&1
’$ 槡 1槡 ’ (# ’ &1$槡 ’6 ;75% ;251$槡 $
证 #" + *10 ) & ! $ % 因为 #! ! "! ! % 分别是 " *! * $ 的中点 # 所以 # % 是 $" * $ 的中位线 # ! 所以 # %"" $# # %1 " $! $ ! 同理得 #, "* )# ,-1 " $# $ ! #, 1% -1 * )# $ 所以 #, 1% -1# %1,-# 所以四边形 # % -, 为菱形 ! 因为 # %"" $# #, "* )# " $+* )# 所以 ##,- 10 # 所以菱形 # ) & % -, 为 正 方形 ! $ 因为在梯形 " $% * $ ) 中# #! - 分别是 ! 的中点 # " *$ ) 所以 # - 为梯形 " * $ ) 的中位线 # ! 所以 # -1 $ ")2* $% 1’# $ ! $ 四边形 # % -, 的面积 1 # - 1*! %! $ 解" $ 设 .! 四边形 ! (! !% 7 两 点 出 发9 秒 时 # $ . * $ 7 的面积为 ’ " < #! 由矩 形 " # * $ ) 得 #* 1 #$ 10 ) & " *" # 所以四边形 为直角梯形 # $ ) . * $ 7 故 <.*$7 1 ! $ ’* $ 72. *% $! $ 又 <.*$7 1’ 解得9 "# 1*! $ 不 存 在! 要使四边形 . $% * $ 7 为 正 方 形# 则. *1* $1$ 71"# "7" ! ) 所以 . 点运动的时间为! 1 秒# 7点 ’ ’ 运动的 时 间 是 " 1’ 秒 # .! 7 的时间不一 $ 样# 所以不存在该时刻 ! 证明 " 连接 ! .! #! )! 因为 * )! $ # 为 $" * $ 的高 # 所以 $* # $! ) $ 均为直角三角形 ! $* 又因为点 - 是 * $ 的中点 # ! ! 所以 # -1 * $# ) -1 * $# $ $ 所以 # -1) -#
梯!形
巩固训练 一! !! 6 !$! 6 ,!’! ,!*! 二! !! 3!$, +!’, +!*, +!%, 3!", 3 (, +!., -! 三! !! " ) & 0!’! !-4-( !$! 四! 过点 " 作 " !! -") $! 因为 " )"* $# 所以 四 边 形 " $ ) 是平行四边形# 所以 $1")# 所以 * -1* $7") 1*7!1’# ! ’槡 $ 所以 # %1 " -1 ! $ $ 证明 " 因为 $ $! #1$ )# 所以 #$ ) #1 ##! 因为 ")"* $# 所以 #$ ) #1 #) $ *! 所以 ##1 #) 因为 " $ *! *1) $#
!"#$%&’()*+,-.
参考答案
*************************************** 特殊四边形
平行四边形及其性质
巩固训练 !! " # ! ! ! $! ! ! % & " % & ! ! % & " % & ’! ( ) & $槡 ’!%! " !*! "! +!(, -!., /!0, + 证明略 ! )! " #1$ %! 拓展提升 作直 线 #, "* )"
" $+* )! 提 示" 作 辅 助 线# 如 *!
图! 面积为 $ %! $ % 设" %! ! *1! ) 58 ## 则 ") 1% 58 ## $ ) 1$ 58 #! 因为四边形 " * $ ) 是等腰梯形 # ) $"" *# 所以 * 所 以 ") 2) $1") 1% 5# $2* $1 ! $ 5# 所以公 路 总 长 和 市 区 公 路 长 的 比 为 ! $ 59 ! ) 51"9%! $ % 由$ % 可 知# 外环公路总长为! 市 $ ! $ 58 ## 区公路长为 ! ) 58 #! ) 5 ! $ 5 !# 由题意得! 1 2 * ) . ) ! ) 解这个方程得 51!# 所以 ! ) 51! )! 答" 市区公路的长为 ! )8 #! ! "! $ 连结 ) 因为 ) #! #1 # 设 * #" * 1*! ) #1
特殊的平行四边形
巩固训练
& & ’ ! $ & &! 2 $
平行四边形的判定
巩固训练 !! /!$, +!’, -!*, -!%, +!
矩形部分
一! 平行四边形 ! 两 组 对 边 分 别 相 等 的 四 边 !! 形是平行四边形 ! 矩 形 ! 有 一 个 角 是 直 角 的平行四边形是矩形 ! $ $! % 答案不唯一 # 如 #"10 ’! ) & *! 0 ) & % & !* 二! %, 3!", +!(, "$ 三! 是! 连接 " 连接 + .! $! * ) 交于点 + # #! 因为 " 所以 + * $ ) 是平行四边形 # "1+ $# 在4 + *1+ )! 5 $ # 中# + #1+ " 1+ $& $" 在4 5 # ) 中# + #1+ *1+ )! $* 所以 + "1+ *1+ $1+ )! 所以四边形 " * $ ) 是矩形 !
$ $ $ 所以 * % 即* 2$ 67$ 1 6# 61%# $1%#
% * # $ ! 5 : ;#* $ #1 1 1 ! * $ % $ 拓展提升 解" 分别从 7! . 向 ") 和
$# "" 所以 $ #1")# " $1) ##
所以 * 因为 " #1! )! $1* )# 所以 * )1) #! 因为 ) 所以 * %+* ## %1% #1%! 所以 ) %1%# 所以 ) 可证 * 所以 % 1* % 1# %# ) +) ##