链表的C语言实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
链表的C语言实现
分类:计算机学习
2006.12.29 09:06 作者:ybxycy | 评论:0 | 阅读:652
数组作为存放同类数据的集合,给我们在程序设计时带来很多的方便,增加了灵活性。
但数组也同样存在一些弊病。
如数组的大小在定义时要事先规定,不能在程序中进行调整,这样一来,在程序设计中针对不同问题有时需要3 0个大小的数组,有时需要5 0个数组的大小,难于统一。
我们只能够根据可能的最大需求来定义数组,常常会造成一定存储空间的浪费。
我们希望构造动态的数组,随时可以调整数组的大小,以满足不同问题的需要。
链表就是我们需要的动态数组。
它是在程序的执行过程中根据需要有数据存储就向系统要求申请存储空间,决不构成对存储区的浪费。
链表是一种复杂的数据结构,其数据之间的相互关系使链表分成三种:单链表、循环链表、双向链表,下面将逐一介绍。
7.4.1 单链表
图7 - 3是单链表的结构。
单链表有一个头节点h e a d,指向链表在内存的首地址。
链表中的每一个节点的数据类型为结构体类型,节点有两个成员:整型成员(实际需要保存的数据)和指向下一个结构体类型节点的指针即下一个节点的地址(事实上,此单链表是用于存放整型数据的动态数组)。
链表按此结构对各节点的访问需从链表的头找起,后续节点的地址由当前节点给出。
无论在表中访问那一个节点,都需要从链表的头开始,顺序向后查找。
链表的尾节点由于无后续节点,其指针域为空,写作为N U L L。
图7 - 3还给出这样一层含义,链表中的各节点在内存的存储地址不是连续的,其各节点的地址是在需要时向系统申请分配的,系统根据内存的当前情况,既可以连续分配地址,也可以跳跃式分配地址。
看一下链表节点的数据结构定义:
struct node
{
int num;
struct node *p;
} ;
在链表节点的定义中,除一个整型的成员外,成员p是指向与节点类型完全相同的指针。
在链表节点的数据结构中,非常特殊的一点就是结构体内的指针域的数据类型使用了未定义成功的数据类型。
这是在C中唯一规定可以先使用后定义的数据结构。
? 单链表的创建过程有以下几步:
1 ) 定义链表的数据结构。
2 ) 创建一个空表。
3 ) 利用m a l l o c ( )函数向系统申请分配一个节点。
4 ) 将新节点的指针成员赋值为空。
若是空表,将新节点连接到表头;若是非空表,将新节点接到表尾。
5 ) 判断一下是否有后续节点要接入链表,若有转到3 ),否则结束。
? 单链表的输出过程有以下几步
1) 找到表头。
2) 若是非空表,输出节点的值成员,是空表则退出。
3 ) 跟踪链表的增长,即找到下一个节点的地址。
4) 转到2 )。
[例7-5] 创建一个存放正整数(输入- 9 9 9做结束标志)的单链表,并打印输出。
#include <stdlib.h> /包*含ma l l o c ( ) 的头文件*/
#include <stdio.h>
struct node /*链表节点的结构* /
{
int num;
struct node *next;
} ;
m a i n ( )
{
struct node *creat(); / *函数声明* /
void print();/ *函数声明* /
struct node *head; / * 定义头指针* /
head=NULL;/*建一个空表*/
head=creat(head);/*函数调用,创建单链表*/
print(head);/*打印单链表*/
}
/******************************************/
struct node*creat(struct node*head)函/数*返回的是与节点相同类型的指针*/ {
struct node*p1,*p2;
p1=p2=(struct node*)malloc(sizeof(struct node));申请/*新节点*/
scanf("%d",&p1->num);/*输入节点的值*/
p1->next=NULL;/*将新节点的指针置为空*/
while(p1->num>0)/*输入节点的数值大于0*/
{
if(head==NULL)head=p1;/*空表,接入表头*/
else p2->next=p1;/*非空表,接到表尾*/
p2=p1;
p1=(struct node*)malloc(sizeof(struct node));申/请*下一个新节点*/
scanf("%d",&p1->num);/*输入节点的值*/
}
return head;/*返回链表的头指针*/
}
/*******************************************/
void print(struct node*head)输/*出以head为头的链表各节点的值*/
{
struct node *temp;
temp=head;/*取得链表的头指针*/
while(temp!=NULL)/*只要是非空表*/
{
printf("%6d",temp->num);/*输出链表节点的值*/
temp=temp->next;/*跟踪链表增长*/
}
}
在链表的创建过程中,链表的头指针是非常重要的参数。
因为对链表的输出和查找都要从链表的头开始,所以链表创建成功后,要返回一个链表头节点的地址,即头指针。
一、单链表的建立
有了动态内存分配的基础,要实现链表就不难了。
所谓链表,就是用一组任意的存储单元存储线性表元素的一种数据结构。
链表又分为单链表、双向链表和循环链表等。
我们先讲讲单链表。
所谓单链表,是指数据接点是单向排列的。
一个单链表结点,其结构类型分为两部分:
1、数据域:用来存储本身数据
2、链域或称为指针域:用来存储下一个结点地址或者说指向其直接后继的指针。
例:
typedef struct node
{
char name[20];
struct node *link;
}stud;
这样就定义了一个单链表的结构,其中char name[20]是一个用来存储姓名的字符型数组,指针*link是一个用来存储其直接后继的指针。
定义好了链表的结构之后,只要在程序运行的时候爱数据域中存储适当的数据,如有后继结点,则把链域指向其直接后继,若没有,则置为NULL。
下面就来看一个建立带表头(若未说明,以下所指链表均带表头)的单链表的完整程序。
#include <stdio.h>
#include <malloc.h> /*包含动态内存分配函数的头文件*/
#define N 10 /*N为人数*/
typedef struct node
{
char name[20];
struct node *link;
}stud;
stud * creat(int n) /*建立单链表的函数,形参n为人数*/
{
stud *p,*h,*s; /* *h保存表头结点的指针,*p指向当前结点的前一个结点,*s指向当前结点*/
int i; /*计数器*/
if((h=(stud *)malloc(sizeof(stud)))==NULL) /*分配空间并检测*/
{
printf("不能分配内存空间!");
exit(0);
}
h->name[0]='\0'; /*把表头结点的数据域置空*/
h->link=NULL; /*把表头结点的链域置空*/
p=h; /*p指向表头结点*/
for(i=0;i<n;i++)
{
if((s= (stud *) malloc(sizeof(stud)))==NULL) /*分配新存储空间并检测*/
{
printf("不能分配内存空间!");
exit(0);
}
p->link=s; /*把s的地址赋给p所指向的结点的链域,这样就把p和s所指向的结点连接起来了*/ printf("请输入第%d个人的姓名",i+1);
scanf("%s",s->name); /*在当前结点s的数据域中存储姓名*/
s->link=NULL;
p=s;
}
return(h);
}
main()
{
int number; /*保存人数的变量*/
stud *head; /*head是保存单链表的表头结点地址的指针*/
number=N;
head=creat(number); /*把所新建的单链表表头地址赋给head*/
}
这样就写好了一个可以建立包含N个人姓名的单链表了。
写动态内存分配的程序应注意,请尽量对分配是否成功进行检测。
二、单链表的基本运算
建立了一个单链表之后,如果要进行一些如插入、删除等操作该怎么办?所以还须掌握一些单链表的基本算法,来实现这些操作。
单链表的基本运算包括:查找、插入和删除。
下面我们就一一介绍这三种基本运算的算法,并结合我们建立单链表的例子写出相应的程序。
1、查找
对单链表进行查找的思路为:对单链表的结点依次扫描,检测其数据域是否是我们所要查好的值,若是返回该结点的指针,否则返回NULL。
因为在单链表的链域中包含了后继结点的存储地址,所以当我们实现的时候,只要知道该单链表的头指针,即可依次对每个结点的数据域进行检测。
以下是应用查找算法的一个例子:
#include <stdio.h>
#include <malloc.h>
#include <string.h> /*包含一些字符串处理函数的头文件*/
#define N 10
typedef struct node
{
char name[20];
struct node *link;
}stud;
stud * creat(int n) /*建立链表的函数*/
{
stud *p,*h,*s;
int i;
if((h=(stud *)malloc(sizeof(stud)))==NULL)
{
printf("不能分配内存空间!");
exit(0);
}
h->name[0]='\0';
h->link=NULL;
p=h;
for(i=0;i<n;i++)
{
if((s= (stud *) malloc(sizeof(stud)))==NULL)
{
printf("不能分配内存空间!");
exit(0);
}
p->link=s;
printf("请输入第%d个人的姓名",i+1);
scanf("%s",s->name);
s->link=NULL;
p=s;
}
return(h);
}
stud * search(stud *h,char *x) /*查找链表的函数,其中h指针是链表的表头指针,x指针是要查找的人的姓名*/
{
stud *p; /*当前指针,指向要与所查找的姓名比较的结点*/
char *y; /*保存结点数据域内姓名的指针*/
p=h->link;
while(p!=NULL)
{
y=p->name;
if(strcmp(y,x)==0) /*把数据域里的姓名与所要查找的姓名比较,若相同则返回0,即条件成立*/
return(p); /*返回与所要查找结点的地址*/
else p=p->link;
}
if(p==NULL)
printf("没有查找到该数据!");
}
main()
{
int number;
char fullname[20];
stud *head,*searchpoint; /*head是表头指针,searchpoint是保存符合条件的结点地址的指针*/ number=N;
head=creat(number);
printf("请输入你要查找的人的姓名:");
scanf("%s",fullname);
searchpoint=search(head,fullname); /*调用查找函数,并把结果赋给searchpoint指针*/
}。