地震振幅属性
Landmark主要地震属性及其地质意义
Landmark主要地震属性及其地质意义利用地震进行储层预测时主要从振幅属性及其延伸属性出发,分析属性的变化特征,然后与钻井和地质进行标定,赋予属性地质意义。
为了将已知井上的岩性信息,在整个工区进行有效的外推,需要优选出在该区对岩性参数和含油气性反映敏感的属性,我们通过两个层次来完成这一个工作。
振幅信息与地层的反射系数相关,均方根振幅用于显示孤立或极值振幅异常,用来追踪岩性变化。
瞬时频率与地层频率特征相关,并与沉积物颗粒粗细及密度有关。
从共振角度分析,沉积物颗粒较粗时共振频率相对较低,沉积物颗粒细时共振频率高。
此外,瞬时频率也与薄层厚度的调谐作用相关,利用这一特性进行薄层研究的成功实例比较多。
第一个层次是选择对岩性变化相对敏感的地震属性,这部分工作在属性提取时已完成,其最基本的理论基础是:时间派生的属性有利于对构造的细节进行解释;振幅和频率派生的属性用于解决地层和储层特征;一般认为振幅是最稳健和有价值的属性;频率属性更有利于揭示地层的细节;混合属性包含振幅和频率的因素,因此更有利于地震特征的测量;同时在对所提取的地震属性的物理意义的理解也有助于对地震属性的提取;第二个层次是使用数学和信息学的方法优选属性。
“地震属性和井数据采样伪相关在独立的井数据较少或者参加考虑的独立的地震属性过多时产生的概率较大”(CYNTHIA T. KALKOMEY),由于对于该区已知的独立井信息多数情况下较少,勉强满足统计分析的样本要求,单纯使用相关分析方法产生伪相关的概率较大,因此我们在经过第一个层次的筛选之后,采用数据相关和信息优化组合方法进行属性优选。
目前属性种类很多,属性软件也非常多,这里转列landmark软件中的PAL属性,供大家参考选择使用:Average Reflection Strength 平均反射强度:识别振幅异常,追踪三角洲、河道、含气砂岩等引起的地震振幅异常;指示主要的岩性变化、不整合、天然气或流体的聚集;该属性为预测砂岩厚度的常用属性;Slope Half Time 能量半衰时的斜率:突出砂岩/泥岩分布的突变点;预测砂岩厚度的常用属性;Number of Thoughs 波谷数:可以有效的识别薄层,为预测砂岩厚度的常用属性;Average Trough Amplitude 平均波谷振幅:用于识别岩性变化、含气砂岩或地层。
地震属性含义及其应用
地震属性含义及其应用地震属性含义及其应用一、瞬时属性 19假定复数道表示为:)t (iy )t (x )t (u +=,则1. 瞬时实振幅 IReAmp ( Instantaneous Amplitude )是在选定的采样点上地震道时域振动振幅。
是振幅属性的基本参数。
广泛用于构造和地层学解释。
用来圈定高或低振幅异常,即亮点、暗点。
反映不同储集层、含气、油、水情况及厚度预测。
2. 瞬时虚振幅 IQuadAmp (Inst. Quadrature Amplitude)是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。
即正交道,为虚振幅。
因它只能在特定的相位观测到,多用来识别与薄储层中的AVO 异常。
3. 瞬时相位IPhase ( Instantaneous Phase)))t (x )t (y tan(A )t (=γ, 定义为正切,输出相位已转换为角度,数值范围是[-180o ,180o ]。
为q(t)/f(t)的一个角,是采样点处地震道的相位。
有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。
由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。
4. 瞬时相位余弦 CIP ( Cosine of Inst. Phase )是瞬时相位导出的属性。
其计算式为))t ((Cos γ常用来改进瞬时相位的变异显示。
并用于相位追踪和检查地震剖面对比、解释的质量。
多与瞬时相位联用。
5. 瞬时频率 IFreq (Inst. Frequeney)定义为瞬时相位对时间的函数dt )t (d γ(以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。
用来计算、估算地震波的衰减。
油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。
地震属性精讲
地震属性精讲什么是地震属性?地震属性指的是那些由叠前或叠后地震数据,经过数学变换而导出的有关地震波的几何形态、运动学特征和统计特征,其中没有任何其它类型数据的介入。
长时间以来,我们使用地震属性进行地震解释。
自60年代起,利用薄层调谐厚度的概念,进行薄层解释。
70年代以来,使用了反射波振幅变化特征——亮点、暗点、平点,对含气砂岩储集体进行预测。
80年代,出现了AVO分析技术,改进了含气砂岩和岩石孔隙中的饱和液成分的预测;给出了岩石柏松比对比度增大的标志,以鉴别岩性和岩石孔隙度。
在这个期间,地震属性多半是基于振幅测量的瞬时属性。
70年代后期到80年代,地震地层学解释迅速发展,广泛应用。
通过分析地震反射特征,确定地震相类型并作岩相转换,这是地震地层学分析的基本方法。
瞬时振幅和瞬时频率被用于岩性解释,瞬时相位被用于检测地层的接触关系。
90年代以来,由于储层描述和3D数据体解释的需要,地震属性技术急剧发展。
利用地震属性技术进行储层不均匀性描述。
一般是利用测井资料解释储层物性参数与井旁地震道地震属性之间的相关性,将地震属性转换成储层物性,并推算到井间或无井区。
这项工作被称为地震引导测井储层物性估计,用以制作岩石物性剖面。
因此,地震属性技术在储层预测、储层特征参数描述、储层动态监视等方面的应用,已成为石油工业注意的焦点。
3D地震数据能形成3D的地震属性体,如倾角、方位、相干体和方差体等,所解决的问题是地下空间范围的问题;高速发展的计算机技术(硬件)和计算技术(软件),大大地提高了测量地震波的几何学、运动学、动力学和统计学的能力,使得地震属性的提取简便、快捷;人机交互工作站的使用和强大的功能,使得解释人员能正确选用地震属性,合理地解释地质现象;物探、地质和油藏技术人员的结合,赋予地震属性更加有效的地质意义,尤其是对储层的研究开辟了一个新的途径。
这些都是地震属性技术能够快速发展的重要因素。
地震属性技术在我国的发展,起步于80年代中后期。
地震属性及其提取方法
地震属性及其提取方法地震属性及其提取方法1绪论1.1 选题的必要性及重要性地震属性分析技术作为油气藏勘探的核心技术之一,其作用主要为:岩性及岩相、储层参数和油气的预测。
地震数据体中含有丰富的地下地质信息,不同的地震属性组合可能与某些地质参数具有很大的相关性,因此利用地震属性参数可以有效地进行储层预测。
常用的地震属性主要有瞬时类参数、振幅统计类参数、频能谱统计类、相关统计类、层序统计类。
在层序界而内追踪闭合基础上,将地震属性分析技术、储集层反演技术、相干体切片技术等许多新技术综合应用于分析论证,可以预测有利的区带,进行油气藏勘探。
1.2 重要研究内容地震属性包括剖面属性、层位属性及体属性,目前层属性最为常用和具有实际意义。
剖面属性提取就是在地震剖面沿目的层拾取各种地震信息,主要通过特殊处理来完成;层位属性就是沿目的层的层面并根据界面开一定长度的时窗提取各种地震信息。
提取的方式有:瞬时提取、单道时窗提取和多道时窗提;体属性提取方法与层位属性相同,只是用时间切片代替层位。
地震属性提取选择合理的时窗很重要,时窗过大,包含了不必要的信息;时窗过小,会丢失有效成分。
时窗选取应该遵循以下原则:(1) 当目的层厚度较大时,准确追出顶底界面,并以顶底界面限定时窗,提取层间各种属性,也可以内插层位进行属性提取;(2) 当目的层为薄层时,应该以目的层顶界面为时窗上限,时窗长度尽可能的小,因为目的层各种地质信息基本集中反映在目的层顶界面的地震响应中。
1.3地震属性分析的难点问题(1)地震属性分析的间接性。
地震数据中所含的储层信息往往是十分间接的,至今无法建立明确的物理或数学模型,这种关系通常是定性的、模糊的、不唯一的,1绪论带有一定的经验性,因此我们无法用某种确定性的方法从地震数据中进行分析。
(2)地震属性相关性的错综复杂。
各种地震属性之间的相关性错综复杂,主次关系变化不定,数量关系难于提取,因此应用常规的分析方法做出定量的分析也比较困难。
地震属性文字部分
4.地震属性分类
• 地震属性内容十分丰富,多达百种。 • 从计算角度可以分为两类:
一类是单道计算的地震属性;如频率、 相位和振幅类属性。 另一类是多道计算的地震属性。如相干 体(差异性)和波形聚类(相似 性)。 • 从地震属性的拾取方式可分为: 沿层和层间地震属性
5.沿层和层间地震属性提取方法
PAL 画一个使这三个采样点适合曲线并且 沿这一曲线确定出最大值。 Maximum Peak Amplitude = 125
(4)、平均波峰振幅 (Average Peak Amplitude) 平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时 窗里的正振幅值采样数得到的。
(5)、最大波谷振幅 (Maximum Trough Amplitude) 最大波谷振幅的求取方法是,对于每一道,PAL 在分析时窗里做一抛物线, 恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷 振幅值。
专题4:地震属性分析技术
一、地震属性的基本概念 二、地震属性的分类 三、地震属性的计算方法 四、常用地震属性的意义和应用 五、地震属性与储层参数数值关系分析 六、应用实例
1.地震属性(Seismic attribute)的定义
• 地震属性是指从地震数据中导出的,与地震波 几何学、运动学、动力学及统计特征有关的具 体参数值。
Байду номын сангаас
6.地震属性的计算方法
单道计算地震属性理论
复数地震道公式:
x(t) xr (t) ixi (t)
瞬时相位计算公式:
(t) arctan(xr (t) xi (t))
瞬时频率计算公式:
f (t) d (t)
dt
瞬时振幅计算公式:
地震属性
一、地 震 属 性
一、Amplitude Statistics(振幅统计)
15、振幅峰态
用途: 识别振幅异常或刻画地层层序特征 识别岩性或含气砂岩变化 区分连续沉积和杂乱反射
二、复数道概念
复数道,包括实分量(传统的地震道)和虚分量(正交道) F(t)=f(t)+ih(t) f(t) 实地震道 h(t) 正交道 i -1开方 利用希尔伯特变换, 实地震道f(t)可以转换成正交道h(t)
用途: 识别岩性或含气砂岩变化, 适用于刻画层序地层内或沿特定反射 异常的平面展布
振幅
一、地 震 属 性
一、Amplitude Statistics(振幅统计)
4、平均峰值振幅
时窗内所有的峰值(正值)加起来;然后用总数除以窗口内的正样点数
用途:识别岩性、含气砂岩和地层变化等沉积造成的地震异; 区分连续沉积和杂乱反射
用途:识别岩性或含气砂岩变化 区分连续沉积和杂乱反射 适用于刻画层序地层内的振幅变化
一、地 震 属 性
一、Amplitude Statistics(振幅统计) 11、总 能 量
对每一道,计算指定时窗内振幅的平方之和
12、平均振幅
对每一道,在时窗内把所有振幅的相加,除以时窗内的非零样 点值的样点数。如时窗太大,建议时窗小一点(20到100ms)
4、反射强度的斜率
• PAL把每道转换成反射强度,然后在时窗内,做一个与反射强度匹配的 最小平方回归曲线。曲线的斜率即为反射强度的斜率。如反射强度向下 增加,斜率为正;如反射强度向下减小,斜率为负。 • 应用 反射强度斜率对画出主要垂直地层的趋势很有用。如,海进和海退序列 可以产生高振幅砂岩相和低振幅页岩相之间的垂直梯度。这些垂直变化 在反射强度斜率中非常明显,反射强度斜率属性,可以提供砂岩和页岩 的横向位置。同样,反射强度斜率对储层流体的变化也有反应。通过平 面图可以确定气和油的横向位置。
地震振幅的调谐效应
地震振幅的调谐效应地震振幅在地震工区中,地震振幅用于指示地层属性的差异。
如果地震数据被转换成相对阻抗,那么就可以观察到层与层之间的阻抗相对差异,而且只是相对差异。
砂岩和泥岩的属性差异受到多种因素影响,如埋藏深度、压实作用、孔隙空间和岩石矿物成分等。
反射振幅响应特征可能是正值、负值或基本没变化,这要取决于砂岩与周围的泥岩之间的相对属性差异大小如果砂岩体成席状分布,上覆厚层泥岩,振幅响应肯定是存在的,而且横向上会发生变化,这与砂岩体内部孔隙存在差异有关。
而当砂岩中含有油气时,其阻抗属性肯定会降低,使得与上覆泥岩阻抗属性差异增大,振幅响应上也会增强,甚至出现亮点特征。
因此如果将反射振幅转换成阻抗差异属性剖面,就可以直接在该剖面上进行有关岩性或含流体的解释。
当然在解释时还需要考虑砂岩与泥岩的阻抗相对差异关系,如果砂岩速度比泥岩快,在含油气后有可能速度会与泥岩重叠或者稍慢,在阻抗差异上就显得较为难以识别;如果砂岩速度比泥岩慢,那含油气后速度会更慢,在阻抗差异上也会更明显。
在地震剖面上追踪层位后,沿着层位提取振幅属性,这种振幅平面上的变化特征就具有地质意义。
振幅幅度值的变化,如从强到弱,或从弱到强,均指示着平面上地层物理属性的差异,如岩性、孑L隙性或含流体性质。
如果将振幅属性与构造叠合起来分析,就有利于寻找有利 区域,即构造位置优越同时振幅属性有明显特征,当然这要根据区域 圈闭性质结合起来考虑。
地震振幅属性同时还隐含着地层流体压力 (时移效应)和饱和度信息, 当然这种直接观察难度是很大的,需要对比多次采集后的振幅响应属 性,从中找出差异,从而指导油气田幵发。
调谐效应了有限频带范围内的信息,一般是 10HZ 到60HZ 。
地震振幅数据里隐if 地下地层是由多个地质层段相互叠加起来形成的。
地震数据仅仅记录£ 迪林反演II 底于橫型反浚含了地层岩性、孔隙、流体等的地质信息,而其中有些振幅则是与调谐效应相关的,也就是说振幅的变化比如增强是与地层厚度变薄有关。
地震振幅解释的基本原理
30 70
30 75
30 80 25 30 30 85 25 40 1 1bo* 30 90 25 50 30 95 25 60 31 00 25 70 31 05 25 80 1 2bo* 1 2top c oal * 1 1top
31 10 25 90 31 15
26 00
2 1top
31 20 26 10
质到底是什么?
地层对比的依据----岩性 反射地震的褶积理论 实际资料正演模型 几点认识
地质分层是岩性界面,等时的。 岩性划分的主要依据是SP、GR
物性主要反映在声波、密度、中子
岩性和物性并不是完全一一对应的地层对比的依据----岩性 反射地震的褶积理论 实际资料正演模型 几点认识
中国贸易网
从褶积模型看地震记录的本质
汇报人:张玺科
在实际工作中,经常发现即使有本井的时深资料,分层资
料也正确,但在多井标定时同一地质分层却不能标定在一
个地震同相轴上,有时不仅差别大,而且波形特征也会发
生较大的变化,特别是在地质分层上下的速度差别不大时
地震振幅现在广泛应用于储层预测中,那么地震振幅的本
5、要注意的是:在波阻抗差异不 大的地层组合中储层预测一定要小心。 实际地震资料解释中如何获得薄储层的 准确位置和薄储层的等时地质界面(连 续反射)是一个复杂的解释问题,如果 不能正确识别薄储层的等时地质界面, 也就无从谈起分辨薄储层。
储层岩石物理分析
对储层进行岩石物理分析,了解储层的岩性、物性
一次反射地震记录的振幅可看作有限带宽的反
射系数(这也正是地震反演的物理基础,Zi+1=Zi
(1+Ri)/(1-Ri)),地震振幅的大小取决于反射 系数的大小和反射系数的组合,因此常规地震剖面 可看作反射系数剖面,显示地层物性分界面的几何 形态,反射同相轴产状反映地层的物性界面,并不
地震属性计算公式
1.层序类层属性1) 大于门槛值的百分比(Percent Greater than Threshold)该类属性用于分析储层内的同相轴,如由很高的值集中于数据引起的振幅异常。
计算公式为:该属性主要用于分析地层的延伸,海进和海退垂直序列层序会在高振幅砂岩面和低振幅页岩面之间产生。
通过该属性,可以确定这些垂直变化和绘出横向变化的范围图。
同样,它可以帮助区分出整合基底(高振幅)、丘状起伏基底(较低振幅)和杂乱反射基底(低振幅)之间的不同。
2) 小于门槛值的百分比(Percent Less than Threshold)该类属性用于分析储层内的同相轴,如由很低的值集中于数据引起的振幅异常。
计算公式为:该属性主要用于地层走向方面的研究。
在特定的第三纪盆地内,三角洲层序是从富含砂,高均方根振幅,到富含页岩前三角洲或深海平原里面的低振幅来划分的。
这些油页岩比率的变化通过看图中的小于门槛值的百分比就可以很容易确定。
同样,它可以帮助区分出整合基底(高振幅)、丘状起伏基底(较低振幅)和杂乱反射基底(低振幅)之间的不同。
3) 吸收系数(Absorption Coefficient)吸收系数α是用来表示地震波振幅A 沿传播距离的衰减系数,即:0x A A e α-=其中,x 为波的传播距离,0A 为起始振幅。
吸收系数与地震波速度之间存在明显的对比关系,高速的岩石,吸收系数低;低速的岩石,吸收系数高。
吸收系数如同速度一样,频数异常现象较弱。
2.地震纹理属性(1)地震数据灰度化设三维地震数据中的一个地震体素点为X(x,y,z,a),其中x ,y ,z 代表了线号、道号和时间;a 代表振幅值。
设定某个灰度阶数G ,用100%PGT =⨯大于门槛值的样点数总的样点数100%PLT =⨯小于门槛值的样点数总的样点数min max mina A g G A A -=⨯- 将地震数据a 转化为灰度数据g ,式中A min 和A max 所有地震数据中的最小值和最大值;灰度阶数G 决定了地震数据的粗化程度。
利用地震振幅属性预测砂岩分布
利用地震振幅属性预测砂岩分布【摘要】随着地震勘探技术的进步,地震属性在石油勘探的各个环节中发挥的作用逐渐彰显,其与地球物理和地质特征之间的关系越来越为人们所重视。
本文利用地震属性分析技术,对松辽盆地南部xl地区的黑帝庙油层进行了综合研究,通过地震属性分析,得到了比较清晰和合理的储层解释结果,证实了地震属性分析技术在砂岩储集层预测中的有效性和实用性。
【关键词】黑帝庙油层地震属性分析砂岩储集层预测研究区位于松辽盆地南部扶新隆起带的北端,北邻三肇凹陷,西接古龙—大安凹陷,南为长岭凹陷,临近生油凹陷,油源充足。
嫩一段、嫩二段地层、青一段地层发育了巨厚的暗色泥岩夹油页岩,有机质含量高,为区域上的生油岩,油源丰富。
发育扶余、黑帝庙二套储层,以往针对扶余油层开展工作比较多,目前扶余油层已经投入开发,而对于黑帝庙油层做的工作比较少。
嫩三段黑帝庙油层埋深350m~600m,嫩三段沉积时期,随着湖平面的不断萎缩,三角洲由北向南逐渐进积。
储层类型以三角洲前缘水下分支河道砂岩为主,砂岩较为发育,单层砂岩厚度一般为2m~8m,个别多期河道叠置可出现10m以上连续厚层砂岩,储层物性好,孔隙度:25%~35%,渗透率:100md~500md,单砂体横向变化快,纵向上叠加连片。
储层具有泥包砂的特点,与该区鼻状构造匹配有利于形成岩性构造油藏,展示了该区具有良好的油气勘探前景。
为了搞清该区嫩三段河道砂岩储集层的分布情况,在准确确定油层、精细落实构造的基础上,利用地震属性预测砂体发育区,预测结果与实钻结果十分吻合,这项工作为研究区黑帝庙油层的勘探奠定了基础。
1 油层确定及构造精细解释1.1 油层确定嫩三段黑帝庙油层自上而下分为hⅱ1、hⅱ2、hⅱ3三个油层组。
应用三维连片处理后的地震资料,用声波测井资料制作合成地震记录。
制作了区内20余口井的合成地震记录,确定过井地震剖面地质层位,准确确了油层顶面反射层位。
1.2 构造精细解释在层位确定的基础上,利用landmark解释系统,从多视角研究分析油层顶面反射层特征,进行层位追踪解释。
地震属性含义
1、属性名称:反射强度(Reflection Strength),振幅包络(Amplitude Envelope),瞬时振幅(Instaneous Amplitude)REFLSTAN (缩写)定义:在解释中的应用:用于振幅异常的品质分析;用于检测断层、河道、地下矿床、薄层调谐效应;从复合波中分辨出厚层反射。
属性特征:提供声阻抗差的信息。
横向变化常与岩性及油气聚集有关。
值总是正的。
2、属性名称:瞬时相位(Instaneous Phase)INSTPHAS(缩写)定义:在解释中的应用:进行地震地层层序和特征的识别;加强同相轴的连续性,因此使得断层、尖灭、河道更易被发现。
可对相位反转成图,有可能指示含气与否。
属性特征:描述了复相位图中实部和虚部之间的角度。
它的值总在±180°之间。
瞬时相位是不连续的,从+180°到-180°的反转可引起锯齿状波形3、属性名称:瞬时频率(Instaneous Frequency)INSTFREQ(缩写)定义:在解释中的应用:用于气体聚集带和低频带的识别;确定沉积厚度;显示尖灭、烃水界面边界等突变现象属性特征:瞬时相位对时间的变化率。
值域为(-fw, + fw)。
然而,大多数瞬时相位都为正。
可提供同相轴的有效频率吸收效应及裂缝影响和储层厚度的信息4、属性名称:正交道(Quadrature Trace),希尔伯特变换(Hilbert Transform)QUADRATR(缩写)定义:h(t)是f(t)的希尔伯特变换,也是f(t)的90°相移在解释中的应用:用于复数道分析的品质控制属性特征:当实地震道代表地震响应中质点位移的动能时,正交道相当于质点位移的势能5、属性名称:视极性(Apparent Polarity)APPAPOLA(缩写)定义:在振幅包络峰值处实地震道的极性在解释中的应用:用于振幅异常的品质分析属性特征:为实地震道的符号位,假设零相位子波、视极性与反射系数的极性相同6、属性名称:响应相位(Response Phase)RESPPHAS(缩写)定义:在振幅包络峰值处的瞬时相位值在解释中的应用:地震地层层序的识别、检测。
地震解释7地震属性分析技术及其应用
瞬时相位
瞬时相位的余 弦
基于分贝的反 射强度
反射强度的中 值滤波能量
反射强度基于 分贝的能量
平均振动路径 长度
特定能量与有 限能量之比
第一个谱峰值 频率
第二个谱峰值 频率
第三个谱峰值 频率
二.地震属性的分类
针对地震属性技术研究隐蔽型油气藏中岩性的纵横 向变化、砂体的纵横向分布、流体及油气水界面的 变化特征,针对隐蔽型油气藏储层的层位属性提取 分析,针对地震属性与隐蔽型油藏特征参数之间的 表征关系研究,TS2A的地震属性分类:
与
油气地质解释或油藏数值模拟
解 释
主要内容
一.地震属性的概述 二.地震属性的分类 三.地震属性的提取 四.地震属性的优化分析 五.地震属性的模式识别 六.地震属性的时移分析 七.应用实例
二.地震属性的分类
Taner的两分法(1994):
几何属性-反射结构
物理属性-反射特征
同相轴的中断 同相轴的连续性 同相轴的协调性
特定能量与有限 能量之比
相邻峰值振幅之 比
自相关峰值振幅 之比
目标区顶-底振幅 比
目标区顶-底频谱 比
正负振动之比
相关KLPC之比
二.地震属性的分类
Quincy Chen的分类(基于储层特征,1997):
亮不 含 薄 地 灰 构 岩
点整 油 储 层 岩 造 性
与合 气 层 不 与 不 尖
暗圈 异
连 碎连 灭
相关极大值
相似系数
瞬时真振幅乘以瞬时 相位的余弦 反射强度 基于分贝的反射强度
反射强度的中值滤波 能量
反射强度基于分贝的 能量 反射强度的斜率
滤波反射强度乘以瞬 时相位的余弦 平均振动能量 复合包络差值 主功率谱 主功率谱的中心 有限频率带宽能量 特定频率带宽能量
地震属性的含义
*说明:谱属性(Spectral Attribute)谱分解(Spectral Decompose)轨迹属性类(Local Attribute)*瞬时频率(Inst Frequency ):定义为瞬时相位对时间的导数,用Hz 表示。
经常用来估计地震振幅的衰减,往往油气的存在引起高频成分的衰减,可用这一属性检测油气。
瞬时相位(Inst Phase ):表示在所选样点上各道的相位值,以度或弧度表示。
主要用于增强油藏内弱同相轴,对噪音也有放大作用,最终成图的彩色色标应考虑到反射强度(Reflection Magnitudes ):反映了岩性差异、地层连续、地层空间、孔隙度的变化。
反(负)二阶微商变换(Negative of Second Derivative ) :显著地提升了连续性,有助于更快、更准确的层位解释。
道积分(Integrated Seismic Trace ):能起到伪波阻抗剖面的作用. 并不是说用它替代反演, 它可以起到快速指示孔隙度变化的作用.谱分解技术(Spectral Decomposition )—— 分频:用于揭示薄层岩性横向的变化,指示可能的含烃地层圈闭。
最后分频属性和井砂岩厚度结合作出目标层段的砂岩厚度图。
由于不同频率段所看到的东西是有区别的,所以分频还可以观察到河道的形状更清晰,河道内的岩性细节变化。
砂岩厚度图流程图:Find the Power Spectrum usingSYNTHETICS Extract Tuning FrequencySATK Run Spectral DecompositionSATK Net Thickness DeterminationCorrelate using LPM等频体(Iso Frequency):结果是一个某一特定频率的相关数据体。
一旦确定了某一关键频率,可以处理一个该频率的时间或深度数据体。
均方根振幅(RMS)的沿层切片:反映了特定时窗内的地震波振幅的平均变化水平,其数值的大小与储层性质、岩石成分和流体性质等有关,还可以反映地层的平均吸收性质。
地震多属性分析及其在储层预测中的应用研究
地震多属性分析及其在储层预测中的应用研究一、概述地震多属性分析及其在储层预测中的应用研究,是近年来地球物理勘探领域的一个重要研究方向。
随着油气勘探开发的不断深入,对储层的精细刻画和准确预测已成为提高勘探成功率、降低开发成本的关键所在。
地震多属性分析作为一种有效的技术手段,能够从地震数据中提取出多种与储层特征相关的信息,进而实现对储层的定量评价和预测。
地震属性是指从地震数据中提取的能够反映地下介质某种物理特性的量度。
这些属性可以包括振幅、频率、相位、波形等多种类型,它们与储层的岩性、物性、含油气性等因素密切相关。
通过对地震属性的分析,可以揭示出储层的空间展布规律、物性变化特征以及含油气性等信息,为储层预测提供重要的依据。
地震多属性分析也面临着诸多挑战。
地震数据本身受到多种因素的影响,如噪声干扰、地层非均质性等,这可能导致提取出的地震属性存在误差或不确定性。
不同地震属性之间可能存在一定的相关性或冗余性,如何选择合适的属性组合以最大化预测效果是一个需要解决的问题。
如何将地震属性分析与其他地质、工程信息相结合,形成综合的储层预测模型,也是当前研究的热点和难点。
本文旨在通过对地震多属性分析及其在储层预测中的应用研究进行综述和探讨,分析现有方法的优缺点及适用条件,提出改进和优化策略,以期为提高储层预测的准确性和可靠性提供有益的参考和借鉴。
同时,本文还将结合具体实例,展示地震多属性分析在储层预测中的实际应用效果,为相关领域的科研人员和实践工作者提供有益的参考和启示。
1. 研究背景:介绍地震勘探在石油勘探中的重要性,以及储层预测对于油气开发的关键作用。
地震勘探作为石油勘探领域的一种重要技术手段,其在揭示地下构造、地层岩性以及油气藏分布等方面发挥着不可替代的作用。
随着石油勘探难度的不断增加,对地震勘探技术的精度和可靠性也提出了更高的要求。
深入研究地震勘探的多属性特征,并将其应用于储层预测中,对于提高油气开发的成功率具有重要意义。
地震属性及其提取方法
地震属性及其提取方法地震属性及其提取方法1绪论1.1 选题的必要性及重要性地震属性分析技术作为油气藏勘探的核心技术之一,其作用主要为:岩性及岩相、储层参数和油气的预测。
地震数据体中含有丰富的地下地质信息,不同的地震属性组合可能与某些地质参数具有很大的相关性,因此利用地震属性参数可以有效地进行储层预测。
常用的地震属性主要有瞬时类参数、振幅统计类参数、频能谱统计类、相关统计类、层序统计类。
在层序界而内追踪闭合基础上,将地震属性分析技术、储集层反演技术、相干体切片技术等许多新技术综合应用于分析论证,可以预测有利的区带,进行油气藏勘探。
1.2 重要研究内容地震属性包括剖面属性、层位属性及体属性,目前层属性最为常用和具有实际意义。
剖面属性提取就是在地震剖面沿目的层拾取各种地震信息,主要通过特殊处理来完成;层位属性就是沿目的层的层面并根据界面开一定长度的时窗提取各种地震信息。
提取的方式有:瞬时提取、单道时窗提取和多道时窗提;体属性提取方法与层位属性相同,只是用时间切片代替层位。
地震属性提取选择合理的时窗很重要,时窗过大,包含了不必要的信息;时窗过小,会丢失有效成分。
时窗选取应该遵循以下原则:(1) 当目的层厚度较大时,准确追出顶底界面,并以顶底界面限定时窗,提取层间各种属性,也可以内插层位进行属性提取;(2) 当目的层为薄层时,应该以目的层顶界面为时窗上限,时窗长度尽可能的小,因为目的层各种地质信息基本集中反映在目的层顶界面的地震响应中。
1.3地震属性分析的难点问题(1)地震属性分析的间接性。
地震数据中所含的储层信息往往是十分间接的,至今无法建立明确的物理或数学模型,这种关系通常是定性的、模糊的、不唯一的,1绪论带有一定的经验性,因此我们无法用某种确定性的方法从地震数据中进行分析。
(2)地震属性相关性的错综复杂。
各种地震属性之间的相关性错综复杂,主次关系变化不定,数量关系难于提取,因此应用常规的分析方法做出定量的分析也比较困难。
地震属性参数的特征意义
地震属性参数的特征意义地震属性参数的特征意义,其中如下所述:目前可以从地震数据体中提取近百种属性,大致可分为瞬时类参数(如瞬时相位、瞬时频率、瞬时振幅等)、相关统计类参数、频(能)谱类参数、层序统计类参数、混沌参数、突变参数等,常用的地震属性主要有瞬时类参数、振幅统计类参数、频能谱统计类、相关统计类、层序统计类。
用于帮助识别岩性、地层层序变化、不整合、断层、流体的变化、储层的孔隙率变化、河流、三角洲砂体、某种类型的礁体、地层调谐效应。
第1,振幅统计类。
主要属性为均方根振幅、平均绝对振幅、最大峰值振幅、平均峰值振幅、最大谷值峰值、绝对振幅能量、振幅总量、平均能量、能量总体、平均振幅、平均反射强度、平均瞬时频率、平均瞬时相位等,主要地质意义是反映岩性、地层层序变化、不整合、断层、流体的变化、储层的孔隙率变化、河流、三角洲砂体、某种类性的礁体、地层调谐效应、气体、流体的特征、地层序列、裂缝等第2 ,瞬时类参数。
主要属性为瞬时相位、瞬时频率、瞬时振幅等。
主要地质意义反映岩性、地层层序变化、不整合、断层、流体的变化、储层的孔隙率变化、河流、三角洲砂体等第3 ,(频、能)谱统计类。
主要属性为有效带宽、弧线长度、平均零交叉点频率、主频序列、主频峰值等。
主要地质意义反映裂缝发育带、含气吸收区、调协效应、岩性或吸收引起的子波变化等第4 ,层序统计类。
主要属性为能量半衰时、正负样点比例、波峰数、波谷数。
主要地质意义可识别岩性地层变化、含油气性、刻划地层层序特征、突出某种振幅异常等。
第5 ,相关统计类。
主要属性为平均信噪比、相关长度、相关分量等。
它的主要地质意义是可帮助识别断层、尖灭、数据品质、杂乱反射等。
地震属性
通常集中于目的层序
Percent Less than
Threshold
表征海侵/海退层序;描述主要地层趋势;鉴别均一、丘状、不规则地层。了解沉积环境,分析水动力条件。
50-200 ms typical
通常集中于目的层序
Thickness of Amplitude
识别指定层段包含高频高振幅的区域
Strength
Average Instantaneous
Frequency
AveragePeakAmplitude
Average Absolute Amplitude
Slope of Reflection
Strength
Slope of Instantaneous
Frequency
Maximum Trough Amplitude
40-100 ms advised
通常集中于目的层上或下
Peak Spectral
Frequency
检测上伏地层的吸收效应,这是一个比较稳定的属性,因此常用于信噪比的地区
40-100 ms advised
通常集中于目的层上或下
Spectral Slope from
Peak to Maximum
Frequency
Amplitude
表征层序,特别是临近道相位偏移;识别岩性变化、含气砂岩和层序地层;
鉴别均一地层,丘状起伏或不规则河道。
50-200 ms typical
通常集中于几个反射面到整个层序
Maximum Absolute
Amplitude
识别层位附近的振幅异常;识别岩性变化或含气砂岩;特别适用于描述层段或指定反射面的振幅异常。
地震振幅属性
1. 均方根振幅(RMS Amplitude均方根振幅是将振幅平方的平均值再开平方。
由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。
适合于地层的砂泥岩百分比含量分析,也用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
2. 平均绝对值振幅(Average Absolute Amplitude )平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。
适于地层的岩性变化趋势分析,地震相分析,也可用于地层岩性相变分析,3. 最大波峰振幅(Maximum Peak Amplitude )最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。
计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
-22 -57-(-3g-86-<.948276 -B7S3RMS =二75246.56=72.43沿这一曲线确定出最大值。
最大波峰振幅=125最大波峰振幅是分析时窗内的最大正振幅, 最适合绘制层序内或沿着特定的 反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集, 不整合,或是 调谐效应而引起的。
适于沿某一层面进行储层分析,也可用于地层岩性相变分析,计算薄砂层厚 度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
4. 平均波峰振幅(Average Peak Amplitude)平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的适合研究某一层的岩性变化,也可用于地层岩性相变分析,计算薄砂层厚度, 识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
5. 最大波谷振幅 (Maximum Trough Amplitude)最大波谷振幅的求取方法是,对于每一道,PAL 在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波 谷振幅值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.均方根振幅(RMS Amplitude)
均方根振幅是将振幅平方的平均值再开平方。
由于振幅值在平均前平方了,因此,它对特别大的振幅非常敏感。
适合于地层的砂泥岩百分比含量分析,也用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
√
2.平均绝对值振幅(Average Absolute Amplitude)
平均绝对值振幅没有均方根振幅那样,对特别大的振幅敏感。
适于地层的岩性变化趋势分析,地震相分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
3.最大波峰振幅(Maximum Peak Amplitude)
最大波峰振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大正的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波峰值振幅值。
PAL画一个使这三个采样点适合曲线并且
沿这一曲线确定出最大值。
最大波峰振幅= 125
最大波峰振幅是分析时窗内的最大正振幅,最适合绘制层序内或沿着特定的反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集,不整合,或是调谐效应而引起的。
适于沿某一层面进行储层分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
4.平均波峰振幅 (Average Peak Amplitude)
平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时窗里的正振幅值采样数得到的。
适合研究某一层的岩性变化,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
5.最大波谷振幅 (Maximum Trough Amplitude)
最大波谷振幅的求取方法是,对于每一道,PAL在分析时窗里做一抛物线,恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷振幅值。
PAL 画一个适合这三个采样点的曲线
并且沿着这一曲线确定出最大值。
最大波谷振幅= |-90| = 90
最大波谷振幅是指定分析时窗内的最大负振幅,所以最适合绘制层序内或沿着特定的反射体上的振幅异常图;这些异常可能是由于气体和流体的聚集,不整合,或是调谐效应而引起的。
它与最大峰值振幅极性相反,应用相同。
6.平均波谷振幅(Average Trough Amplitude)
平均波谷振幅是对每一道在分析时窗里的所有负振幅值相加,得到总数除以时窗里的负振幅值采样数得到的。
与平均波峰振幅极性相反,应用相同。
7.最大绝对值振幅 (Maximum Absolute Amplitude)
计算每道的最大绝对值振幅的求取方法是,首先在分析时窗内计算出波峰和波谷的值,得出最大的波峰或波谷值,然后,PAL画一抛物线,恰好通过最大波峰或波谷振幅值和它两边的两个采样点,沿着这曲线内插可得到最大绝对值振幅值。
适合岩性分析,砂岩百分比研究,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
PAL 画一个适合这三个采样点的曲线
并且沿着这一曲线确定出最大值。
最大绝对值振幅= 123.6
8.总绝对值振幅 (Total Absolute Amplitude)
总绝对值振幅是计算确定时窗内的所有道的绝对值振幅值。
总绝对值振幅 = 振幅绝对值之和
= 1045
适合大套地层变化趋势分析和某一岩性的含量分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
9.总振幅 (Total Amplitude)
每一道的总振幅是,在层内对采样点求取总的振幅值。
适合大套地层变化趋势分析,也可用于地层岩性相变分析,计算薄砂层厚度,识别亮点、暗点,指示烃类显示,识别火成岩等特殊岩性。
总振幅= 振幅之和
= 559。