等厚干涉(干涉法测微小量)
干涉法测微小量
实验八干涉法测微小量【实验目的】1. 理解牛顿环和尖劈干涉条纹的成因与等厚干涉的含义。
2. 学习用等厚干涉法测量曲率半径和薄膜厚度。
3. 学会使用读数显微镜。
【实验仪器】牛顿环仪、劈尖【仪器介绍】1、目镜接筒2、目镜3、锁紧螺钉4、调焦手轮5、标 尺6、测微鼓轮7、锁紧手轮I &接头轴9、方轴10、 锁紧手轮II 11、底座12、反光镜旋轮 13、压片 14、 半反镜组 15、物镜组 16、镜筒17、刻尺 18、锁 紧螺钉 19、棱镜室 读数显微镜是测微螺旋和带十字叉丝的显微镜的组 合体,它是一种既可作长度测量又可作观察之用的光学仪 器。
本实验用来测量牛顿环的直径和劈尖厚度。
中包括读数显微镜的主要结构。
目镜( 2) (3 )固定于任一位置,棱镜室(19)可在转,物镜(15)用丝扣拧入镜筒内,镜筒(轮(4)完成调焦。
转动测微鼓轮(6),显微镜沿燕尾导轨作纵向移动,利用锁紧手轮I (7),将方轴(9)固定于接头轴十字孔中。
接头轴( 8)可在底座(11)中旋转、升降,用锁紧手轮II (10)紧固。
根据使用要求不同方轴可插入接头轴另一个十字孔 中,使镜筒处水平位置。
压片(13)用来固定被测件。
旋转反光镜旋轮( 12)调节反光镜方位。
为便于做等厚干涉实验,本仪器还配备了半反镜(14)附件。
旋转测微鼓轮可以使显微镜筒横向水平移动,通过标尺和测微鼓轮的读数可以准确确定显微镜筒 的水平横向位置。
标尺读数准线和测微鼓轮组成一个螺旋测微装置,当测微鼓轮旋转 一周时,标尺读数准线沿标尺移动1mm ,而测微鼓轮的圆周上刻有 100个分度,故每分度便相当于0.01mm 。
如图16-2所示读书显微镜的读数应为 29.723mm 。
(注意要估读一位)1 —标尺;2-标尺读数准线 ;3 -测微鼓轮;4 -测微鼓轮读数准线。
读数显微镜、钠光灯。
如图 16-1 可用锁紧螺钉 3600方向上旋16)用调焦手2I 19 10 11图 16-1H 9 L8 171615 n J3 124【实验原理】图16-21、牛顿环们设任意两级暗环的直径为D K 1和D K 2,由(16-2)式可得出:牛顿环是牛顿1675年在制作天文望远镜时偶然将一个望远镜的物镜放在平玻璃 上发现的。
(实验报告)干涉法测微小量(已批阅).
(实验报告)干涉法测微小量(已批阅).
干涉法测微小量是物理、化学等多种领域常用的测量技术,可广泛应用于检测微小量的物理、化学物质的构成成分及大小等特性。
本实验以物理学仪器—干涉仪,以了解其相关原理及测量方法,详细研究并妥善操作干涉仪,实现对微小量的准确测量。
实验现场,我们装备了多种仪器设备,其中有半导体激光、光纤、波导、干涉物镜、计算机等,?表示所测实验样品的长度,?表示该物体的物理实验现象及测量结果。
所测样品经过精确调整,激光整体成像稳定、清晰。
依据干涉仪的原理,在激光学范畴,当灰度图像准确拍摄完毕,即可无缝连接计算机,把模拟航班仪及其相关接口的输入端全部接受,真实表示所测实验样品的物理偏移量。
在量测的过程中,根据实验要求,逐渐变化激光的数量,由而伴随波数的变化,随时记录模拟仪和相关输入端的变化,把变化偏移量输入计算机,由计算机将接受的数据按照原理预定义好的算法进行分析,由此根据分析结果,乘以放大系数,便可计算出微小物体的长度?。
本实验让我清楚地认识了干涉仪的基本原理,熟悉了具体的操作过程,详细了解了对微小量的测量原理,以及量测实验样品物理偏移量的处理过程,进而求出实验物体的长度?。
另外,本实验也锻炼了我们熟练操作干涉仪及相关仪器设备、形成有效数据、熟练处理数据的实际能力,积累了大量经验,掌握了实用的实验技术。
干涉法测微小量
小结与讨论:
此实验中采取了那些措施,来避免或减少误差?
1. 弦长取代牛顿环直径
2. 消除空程误差:测量时只往同一方向转动螺尺
3. 取较高级次的环进行测量
4. 记录暗纹,不记录亮纹,使观察更加精确
R =
2
+
− 2
4(n + i − i)
=
2
+
− 2
4n
结果如下
2
25
− 52
37.474 2
R5 =
=
= 794.890mm
4n
80 × 5.893 × 10−4
2
2
30
− 10
42.6432
R10 =
=
= 904.520mm
4n
80 × 5.893 × 10−4
《大学物理实验》实验报告
实验名称:
干涉法测微小量
实验时间:
2020 年 12 月 13 日星期日
实验目的:
一、研究光的干涉现象,
二、测定透镜的曲率半径;
三、学习测量微小长度
四、学习读数显微镜的使用等
实验仪器
牛顿环仪、钠灯、读数显微镜
实验原理:
两相干波光程差可表示为δ = 2nhcos i′
R、r、h 三者的关系h
只要测得 Dm 和 Dn 并数出环纹序数之差,可以利用上式求出曲率半径 R
实验内容:
本实验的主要内容为利用干涉法测平凸透镜的曲率半径
(1)使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微
镜移动方向平行)
(2)转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝移过的暗环数,
干涉法测微小量(已批阅)
干涉法测微小量(已批阅)随着科技的进步,人们的观测能力也变得越来越强大。
凭借单位时间内观测到的频繁信息量提高,以及测量仪器的普及,我们正在探索小规模功能的信息,以及精细而完整的模型。
然而,当测量物理量的规模极小时,由于量的偏差、技术的局限或其他原因,测量准确度是我们不得不面对的挑战。
为了应对这种情况,干涉法实验测微小量发挥着重要作用。
干涉测量,也称为干涉仪器,是利用干涉实验结果来确定物理量,实现测量的一种技术。
其基本原理是利用一个物理量与它的规模连续变化时,另一个量(如光线,声波等)以某种特定方式实现其递变的原理。
换句话说,就是当一个定量变化时,另一个量的变化率会因此而变化,然后依据干涉定律来分析,以确定一个物理量的数值大小。
简而言之,干涉测量是一种利用变量两个量关系推断得到物理量的一种方法,是在原有量测精度上有所提升的方法。
干涉仪原理是基于物理原理的,以光为例:两片薄透镜或镜片之间,将激发的两个并行光束相交,通过太阳能出射量的变化,产生微小的振动,最后用收发件传输并检测光束的变化量。
在量测中,激发的光线束可以分解为两个平行的小强度的光线束向一个大的距离内传播,然后相互干涉,产生一个模拟或数字信号。
通过这种方式,经过测量者控制,最后经过数字信号处理之后,可以获得各种物理量在精度及计量上较高精度的测量结果。
干涉测量技术,它能够更准确、精细地测量物理量,可以获得诸如长度、变形、速率及光谱等物理量,比与之相比的传统测量技术能够提供更准确的测量结果,而且其成本更低。
干涉仪器的精度取决于其结构中细小元件的精度以及相关的测量参数的准确性,包括仪器本身的偏差以及元件的消耗量。
因此其准确性受多种因素的影响,由此获得的测量结果更接近实际值,而且能够满足特殊环境的需求,使实验室环境上获得更加准确、精确的测量结果,为我们提供更好的工具用以精确地观察内部活动,整个过程从数据变形到结论的发现都是一致的。
干涉法实验测微小量技术在我国的应用已经发展了许多年,特别是在机械、金属加工的行业,其应用更加广泛。
等厚干涉实验报告记录
等厚干涉实验报告记录————————————————————————————————作者:————————————————————————————————日期:大学物理实验报告(等厚干涉)一、实验目的:1.、观察牛顿环和劈尖的干涉现象。
2、了解形成等厚干涉现象的条件极其特点。
3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验原理:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:设射入单色光的波长为λ,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=kknd式中,n为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=kkdkkK=1,2,3,…K=0,1,2,…由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系222)(kkrdRR+-=。
由于dk远小于R,故可以将其平方项忽略而得到22kkrRd=。
结合以上的两种情况公式,得到:λkRRdrkk==22,暗环...,2,1,0=k由以上公式课件,r k与d k成二次幂的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰,一般选取暗环作为观测对象。
干涉法测微小量.
实验题目:干预法测细小量实验目的:学习、掌握利用光的干预原理查验光学元件表面会合特点的方法,用劈尖的等厚干预丈量细丝直径的方法,同时加深对光的颠簸性的认识。
实验原理: 1、用牛顿环测平凸面镜的曲率半径当曲率很大的平凸面镜的凸面放在一平面玻璃上时,会产生一组以O 为中心的明暗相间的齐心圆环,称为牛顿环。
如图, 1、2 两束光的光程差为2,式中λ为入射光2的波长,δ是空气层厚度,空气折射率n1。
假如第m个暗环处空气厚度为δm,则有2m(2m1),m0,1,2,3...22故获得:m m。
2利用几何关系有 R2r m2( R m ) 2,并依据m R ,得到m rm2,联系以上两式,有2 Rr m2mR换成直径,并考虑第m+n 个环和第m个环,有 D m2n4(m n )R ,D m24mR ,故D m2n D m2R4n那么丈量出 D m+n和 D m就能够依据这个表达式获得R。
2、劈尖的等厚干预测细丝直径两片叠在一同的玻璃片,在它们的一端夹向来径待测的细丝,于是两玻璃片之间形成一空气劈尖。
当用单色光垂直照耀时,会产生干预现象。
因为程差相等的地方是平行于两玻璃片交线的直线,因此等厚干预条纹是一组明暗相间、平行于交线的直线。
设入射光波为λ,则得第 m 级暗纹处空气劈尖的厚度d m。
2由此可知, m=0 时, d=0 ,即在两玻璃片交线处,为零级暗条纹。
假如在细丝处体现 m=N 级条纹,则待测细丝直径d N。
23、利用干预条纹查验光学表面面形实验内容:1.测平凸面镜的曲率半径( 1)察牛1)将牛按 7.2.1-5 所示搁置在数微筒和入射光木架的玻璃片的下方,木架上的透要正着光灯窗口,玻璃片角度,使通微目察最亮。
2)目,看清目的十字叉后,使微筒降落到靠近玻璃片,而后慢上涨,直到察到干预条,再微玻璃片角度及微,使条更清楚。
( 2)牛直径1)使微的十字叉交点与牛中心重合,并使水平方向的叉与尺平行(与微筒移方向平行)。
干涉法测微小量实验报告
干涉法测微小量创建人:系统管理员总分:100实验目的学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。
实验仪器低频信号发生器、示波器、超声声速测定仪、频率计等实验原理1、用牛顿环测平凸透镜的曲率半径图1、牛顿环干涉条纹的形成当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同心圆环,称为牛顿环。
如图,1、2两束光的光成差22λδ+=∆,式中λ为入射光的波长,δ就是空气层厚度,空气折射率1n ≈。
如果第m 个暗环处空气厚度为m δ,则有故得到:2m m λδ⋅=2、 劈尖的等厚干涉测细丝直径图2、劈尖干涉条纹的形成两片叠在一起的玻璃片,在它们的一端口夹一直径待测的细丝,于就是两片玻璃之间便形成一空气劈尖。
当用单色光垂直照射时,会产生干涉现象。
因为光程差相等的地方就是平行两玻璃片交线的直线,所以等厚干涉条纹就是一组明暗相间的、平行于交线的直线。
设入射光波长为λ,则得到第m 级暗纹处空气劈尖的的厚度2m λ⋅=d 。
由此可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。
如果在细丝处呈现m=N 级条纹,则待测细丝直径2λ⋅=N d 。
实验内容1、测平凸透镜的曲率半径(1)观察牛顿环1) 将牛顿环仪按图3所示放置在读数显微镜镜筒与入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。
图3、观测牛顿环实验装置图2) 调节目镜,瞧清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。
(2)测牛顿环直径1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。
2) 转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。
等厚干涉劈尖实验报告数据
等厚干涉劈尖实验报告数据一、实验目的1、观察等厚干涉现象,加深对光的波动性的理解。
2、掌握用劈尖干涉法测量微小长度的原理和方法。
3、学会使用读数显微镜测量长度。
二、实验原理当一束平行光垂直入射到劈尖上时,在劈尖的上、下表面反射的两束光将发生干涉。
由于劈尖的厚度是不均匀的,所以在劈尖上不同位置处两束反射光的光程差不同,从而形成明暗相间的干涉条纹。
设入射光的波长为λ,劈尖的折射率为 n,在劈尖上某一点处劈尖的厚度为 d,则两束反射光的光程差为:δ = 2nd +λ/2当光程差为半波长的偶数倍时,出现亮条纹;当光程差为半波长的奇数倍时,出现暗条纹。
相邻两条亮条纹(或暗条纹)之间的劈尖厚度差为λ/2n。
如果我们测出相邻两条亮条纹(或暗条纹)之间的距离 L,以及劈尖的夹角θ,则劈尖的厚度 d 可以表示为:d =Lλ/2nθ三、实验仪器读数显微镜、劈尖装置、钠光灯四、实验步骤1、将劈尖装置放置在显微镜的载物台上,调节显微镜的目镜和物镜,使能够清晰地看到劈尖的干涉条纹。
2、转动显微镜的鼓轮,使显微镜的十字叉丝与干涉条纹平行,并将十字叉丝移到条纹的一端。
3、缓慢转动鼓轮,使十字叉丝沿着条纹移动,同时记录十字叉丝经过的条纹数 N 和对应的鼓轮读数 x1、x2。
4、重复步骤 3 多次,测量不同位置处相邻条纹的间距,并计算平均值。
5、用游标卡尺测量劈尖的长度 L,并测量劈尖的夹角θ。
五、实验数据记录与处理1、测量相邻条纹的间距|测量次数|鼓轮读数 x1|鼓轮读数 x2|条纹数 N|间距Δx =(x2 x1)/N||||||||1|_____|_____|_____|_____||2|_____|_____|_____|_____||3|_____|_____|_____|_____||4|_____|_____|_____|_____||5|_____|_____|_____|_____|平均值:Δx =(Δx1 +Δx2 +Δx3 +Δx4 +Δx5)/ 52、测量劈尖的长度 L 和夹角θ|测量次数|长度 L(mm)|夹角θ(°)||||||1|_____|_____||2|_____|_____||3|_____|_____|平均值:L =(L1 + L2 + L3)/ 3 ,θ =(θ1 +θ2 +θ3)/ 33、计算劈尖的厚度 d已知钠光灯的波长λ = 5893nm,劈尖的折射率 n = 15d =Lλ/2nθ六、实验误差分析1、测量误差在测量相邻条纹的间距和劈尖的长度、夹角时,由于读数显微镜的精度限制和人为读数的误差,可能导致测量结果存在一定的偏差。
干涉法测微小量
干涉法测微小量实验一、实验简介:光的干涉现象表明了光的波动的性质,干涉现象在科学研究与计量技术中有着广泛的应用。
在干涉现象中,不论何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目是可以计量的。
因此,通过对干涉条纹数目或条纹移动数目的计量,可以得到以光的波长为单位的光程差。
利用光的等厚干涉可以测量光的波长,检验表面的平面度,球面度,光洁度,以及精确测量长度,角度和微小形变等。
二、实验原理:实验内容一:牛顿环法测曲率半径图1如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。
分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差△’等于膜厚度e的两倍,即△’ =2e此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ /2 ,所以相干的两条光线还具有λ /2的附加光程差,总的光程差为:(1) 当△满足条件:,()(2) 时,发生相长干涉,出现第K级亮纹。
而当:,()(3) 时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为r k,对应的膜厚度为e k,则:(4)在实验中,R的大小为几米到十几米,而e k的数量级为毫米,所以R >>e k,e k2相对于2R k是一个小量,可以忽略,所以上式可以简化为(5)如果r k是第k级暗条纹的半径,由式(1)和(3)可得:(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
干涉法测微小量-实验报告
干涉法测微小量创建人:系统管理员总分:100实验目的学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。
实验仪器低频信号发生器、示波器、超声声速测定仪、频率计等实验原理1、用牛顿环测平凸透镜的曲率半径图1.牛顿环干涉条纹的形成当曲率很大的平凸透镜的凸面放在一平面玻璃上时,会产生一组以O为中心的明暗相接的同心圆环,称为牛顿环。
如图,1、2两束光的光成差22λδ+=∆,式中λ为入射光的波长,δ是空气层厚度,空气折射率1n ≈。
如果第m 个暗环处空气厚度为m δ,则有故得到:2m m λδ⋅=2、 劈尖的等厚干涉测细丝直径图2.劈尖干涉条纹的形成两片叠在一起的玻璃片,在它们的一端口夹一直径待测的细丝,于是两片玻璃之间便形成一空气劈尖。
当用单色光垂直照射时,会产生干涉现象。
因为光程差相等的地方是平行两玻璃片交线的直线,所以等厚干涉条纹是一组明暗相间的、平行于交线的直线。
设入射光波长为λ,则得到第m 级暗纹处空气劈尖的的厚度2m λ⋅=d 。
由此可知,m=0时,d=0,即在两玻璃片交线处,为零级暗条纹。
如果在细丝处呈现m=N 级条纹,则待测细丝直径2λ⋅=N d 。
实验内容1、 测平凸透镜的曲率半径 (1)观察牛顿环1) 将牛顿环仪按图3所示放置在读数显微镜镜筒和入射光调节木架的玻璃片的下方,木架上的透镜要正对着钠光灯窗口,调节玻璃片角度,使通过显微镜目镜观察时视场最亮。
图3.观测牛顿环实验装置图2) 调节目镜,看清目镜视场内的十字叉丝后,使显微镜筒下降到接近玻璃片,然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度及显微镜,使条纹更清楚。
(2)测牛顿环直径1) 使显微镜的十字叉丝交点与牛顿环中心重合,并使水平方向的叉丝与标尺平行(与显微镜筒移动方向平行)。
2) 转动显微镜测微鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第35环相切为止。
干涉法测量微小量
☺ 干涉法测量微小量 5实验目的● 掌握用牛顿环干涉条纹测平凸透镜的曲率半径的方法; ● 掌握用劈尖的等厚干涉测量细丝直径的方法。
实验原理1. 利用牛顿环干涉条纹测平凸透镜的曲率半径半径很大的平凸透镜的凸面置于平面玻璃上时,凸面与平面间形成一个由中心向外逐渐增厚的空气薄层。
若单色光垂直照射,从空气层上下两个表面反射的两束光在上表面相遇时发生干涉,形成一组以O 点为中心的明暗相间的同心圆,即为牛顿环。
因从下表面反射的光多走了空气层厚度二倍的距离,从下表面反射时,是由光疏介质进入光密介质而存在半波损失,故光程差为(λ为入射光的波长,δ为空气层厚度)22λδ+=∆ (1)当光程差Δ为半波长的奇数倍时为暗环,记第m 个暗环处的空气层厚度为m δ,则有...3,2,1,0,2)12(22=+=+=∆m m m λλδ2λδ⋅=m m (2)由几何关系222)(m mR r R δ-+=, R m <<δ近似得 Rr mm 22=δ(3)λmR r m =2 (4)但是,接触处的形变使圆心位置难以确定,半径r m 也就不易测准,同时因玻璃表面的不洁净,实验中看到的干涉级数并不代表真正的干涉级数m 。
为减小误差,将式中半径r m 换成直径D m ,则λmR D m 42= (5)对第m+n 个暗环有λR n m D n m )(42+=+ (6)故(7)所以,我们只需测D m 和D m+n ,就可利用上式计算曲率半径R 。
2. 劈尖的等厚干涉测细丝直径两玻璃片和细丝叠在一起如图所示,形成空气劈尖。
当用单色光垂直照射时,会产生一组明暗相间、平行于细丝的干涉条纹。
根据前面讨论知,在两玻璃片交线处,为零级暗条纹,第m 级暗纹处空气劈尖的厚度2λmd = (8)如果在细丝处呈现N 级条纹,则待测细丝直径实验室常用劈尖盒。
使用时切勿倒置木盒或将玻璃片倒出,以免细丝位置变动。
实验仪器单色光源,显微镜,牛顿环仪,待测细丝,平凸透镜。
大物实验报告-光的等厚干涉
大学物理实验报告实验名称:光的等厚干涉学院:机电工程学院班级:车辆151班姓名:吴倩萍学号:5902415034时间:第8周周三下午3:45开始地点:基础实验大楼313一、实验目的:1.观察牛顿环和劈尖的干涉现象。
2.了解形成等厚干涉现象的条件及特点。
3.用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验仪器:牛顿环装置、钠光灯、读数显微镜、劈尖等。
三、实验原理:在平面玻璃板BB上放置一曲率半径为R的平凸透镜AOA,两者之间便形成一层空气薄层。
当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。
1.用牛顿环测量平凸透镜表面的曲率半径(1)安放实验仪器。
(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干涉环。
将牛顿环仪放在显微镜的平台上,调节45°玻璃板,以便获得最大的照度。
(3)调节读数显微镜调焦手轮,直至在显微镜内能看到清晰的干涉条纹的像。
适当移动牛顿环位置,使干涉条纹的中央暗区在显微镜叉丝的正下方,观察干涉条纹是否在显微镜的读数范围内,以便测量。
(4)转动测微鼓轮,先使镜筒由牛顿环中心向左移动,顺序数到第24暗环,再反向至第22暗环并使竖直叉丝对准暗环中间,开始记录。
在整个测量过程中,鼓轮只能沿同一个方向依次测完全部数据。
将数据填入表中,显然,某环左右位置读数之差即为该环的直径。
用逐差法求出R,并计算误差。
2.用劈尖干涉法则细丝直径(1)将被测细丝夹在两块平板玻璃的一端,另一端直接接触,形成劈尖,然后置于读数显微镜载物台上。
(2)调节叉丝方位和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确测出条纹间距。
(3)用读数显微镜测出20条暗条纹间的垂直距离l,再测出棱边到细丝所在处的总长度L,求出细丝直径d。
(4)重复步骤3,各测三次,将数据填入自拟表格中。
等厚干涉实验报告
同一级暗环的左右位置两次读数之差为暗环的直径。
2.用劈尖测量薄片的厚度(或细丝直径)
(1)将牛顿环器件换成劈尖器件, 重新进行方位与角度调整, 直至可见清晰的平行干涉条纹, 且条纹与搭接线平行; 干涉条纹与竖直叉丝平行。
实际操作中由于N值较大且干涉条纹细密, 不利于N值的准确测量。 可先测出n条干涉条纹的距离l, 在测得劈尖交线到薄片处的距离为L, 则干涉条纹的总数为:
代入厚度计算式, 可得厚度/直径为:
3、实验仪器:
牛顿环装置,钠光灯,读数显微镜,劈尖,游标卡尺
四、实验内容和步骤:
1.牛顿环直径的测量
(1)准备工作: 点亮并预热纳光灯; 调整光路, 使纳光灯均匀照射到读数显微镜的反光镜上, 并调节反光镜片使得光束垂直射入牛顿环器件。 恰当调整牛顿环器件, 直至肉眼课件细小的正常完整的牛顿环干涉条纹后, 把牛顿环器件放至显微镜的中央并对准。 完成显微镜的调焦, 使牛顿环的中央与十字交叉的中心对准后, 固定牛顿环器件。
2.牛顿环器件由外侧的三个紧固螺丝来保证凸透镜和平板玻璃的紧密接触, 经测试可以发现, 如果接触点不是凸透镜球面的几何中心, 形成的牛顿环图样将不是对称的同心圆, 这样将会影响测量而导致结果不准确。 因此在调节牛顿环器件时, 应同时旋动三个紧固螺丝, 保证凸透镜和平板玻璃压紧时, 接触点是其几何中心。 另外, 对焦时牛顿环器件一旦位置确定后, 就不要再移动, 实验中发现, 轻微移动牛顿环器件, 都将导致干涉图样剧烈晃动和变形。
87.3918
-1.2557
2.9022
2.2160
0.6862
等厚干涉及其应用实验报告
等厚干涉及其应用实验报告一、实验目的1、观察等厚干涉现象,加深对光的波动性的理解。
2、掌握用牛顿环测量平凸透镜曲率半径的方法。
3、掌握用劈尖干涉测量微小厚度的方法。
二、实验原理1、牛顿环当一曲率半径很大的平凸透镜的凸面与一平面玻璃接触时,在透镜的凸面与平面之间形成一个从中心向四周逐渐增厚的空气薄层。
若以单色平行光垂直照射到该装置上,则在空气薄层的上、下表面反射的两束光线将发生干涉。
在透镜的凸面与平面的接触点处,空气层厚度为零,两反射光的光程差为零,出现暗纹。
而在离接触点较远的地方,空气层厚度逐渐增加,两反射光的光程差逐渐增大。
当光程差为半波长的奇数倍时,出现暗纹;当光程差为半波长的偶数倍时,出现亮纹。
这样,在反射光中就会形成以接触点为中心的一系列明暗相间的同心圆环,即牛顿环。
设透镜的曲率半径为 R,第 k 级暗环的半径为 rk,对应的空气层厚度为 ek,则有:\\begin{align}r_k^2&=kR\lambda\\R&=\frac{r_k^2}{k\lambda}\end{align}\其中,λ 为入射光的波长。
2、劈尖干涉将两块平板玻璃叠放在一起,一端插入薄片,在两玻璃板间形成一楔形空气薄层。
当单色平行光垂直照射时,在空气薄层的上、下表面反射的两束光线将发生干涉。
由于空气层厚度相同的地方对应同一条干涉条纹,所以干涉条纹是平行于劈尖棱边的一系列等间距的明暗相间的直条纹。
若劈尖的夹角为θ,相邻两条暗纹(或亮纹)间的距离为 l,入射光的波长为λ,则劈尖的厚度变化为:\d=\frac{\lambda}{2\theta}l\三、实验仪器牛顿环装置、劈尖装置、钠光灯、读数显微镜等。
四、实验内容及步骤1、观察牛顿环(1)将牛顿环装置放置在显微镜的载物台上,调节显微镜的目镜,使十字叉丝清晰。
(2)调节显微镜的物镜,使物镜接近牛顿环装置,然后缓慢向上调节,直到看清牛顿环的干涉条纹。
(3)观察牛顿环的形状、特点,注意明暗条纹的分布规律。
干涉法测微小量
《干涉法测微小量》实验报告姓名学号学院专业班级一.实验目的学习掌握利用光的干涉原理检验光学元件表面集合特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识二.实验仪器读数显微镜、钠光灯及电源、牛顿环仪、劈尖等三、实验原理1、用牛顿环测平凸透镜的曲率半径详见实验指导书2、劈尖的等厚干涉测细丝直径详见实验指导书四、实验步骤1. 观察牛顿环。
(1) 将牛顿环仪放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
(2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2. 测牛顿环半径。
(1) 使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。
(2) 转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第 45 环相切为止。
记录标尺读数。
(3) 反向转动鼓轮,当竖丝与第 40 环相切时,记录读数显微镜上的位置读数,然后继续转动鼓轮,使竖丝依次与第 35、30、25、20、15、10、5 环相切,顺次记下读数。
(4) 继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的 5、10、15、20、25、30、35、40 环相切时的读数。
3.利用逐差法处理得到的数据,得到牛顿环半径 R。
4. 观察劈尖干涉条纹。
(1) 将劈尖放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
(2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近劈尖然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
5. 测量。
(1) 使显微镜的十字叉丝交点与劈尖中心重合,并使其与显微镜镜筒移动方向平行。
(2) 在劈尖玻璃面的三个不同部分,测出 20 条暗纹的总长度,测 3 个求平均值。
等厚干涉测量
【实验原理 】
一列单色光波垂直入射到透明的空气薄膜上时,薄膜上、下两表面反射产生的两束相干光, 在相遇时具有下式所示的光程差 Δ=2nd+λ/2 (1)
式中 d 为光线入射处薄膜的厚度,其中λ/2 是考虑到入射光在下表面反射有半波损失而在上表 面反射没有半波损失。 如果入射光束为平行光, 那么相干光束间的光程差仅取决于薄膜的厚度, 同一级干涉条纹对 应的薄膜厚度相同,这就是所谓等厚干涉。本实验应用等厚干涉的圆形条纹和直线条纹,分别测 量透镜表面的曲率半径和微小长度。 1. 牛顿环 牛顿环是牛顿于 1675 年在制作天文望远镜时, 偶然将一望远镜的物镜放在平玻璃上发现的。 设单色平行光的波长为λ,第 K 级暗条纹对应的薄 膜厚度为 dk,考虑到在下界面反射时有半波损失 , 当光线垂直入射时,总光程差由薄膜干涉公式求得: Δ=2ndk+λ/2= 2dk+λ/2 (2) 式中 n 为空气的折射率,n=1。根据干涉条件: kλ Δ= (2k+1)λ/2 k= 0,1,2,…暗 和几何关系(见图 1)有 r2k= R2-(R-dk) 2= 2Rdk-d2k 2 因为 R > > dk,上式中 d k 可略去不计,有 dk= r2k/2R 由式(2)、(3)、(4)得 r2k=(2k-1)Rλ/2,k= 1,2,3,…明环 r k= kRλ ,k= 1,2,3,…暗环
2 mR rn2 nR , rm
两式相减
2 rm rn2 (m n) R
或 R=
rm rn d dn = m m n 4m n
2
2
2
2
(d=2r,为环的直径)
(7)
利用式(7),从测得第 m 个及第 n 个暗环的直径数值,就可求得 R。 2. 劈尖干涉 劈尖与牛顿环一样同属等厚干涉,只是引起光的干涉的空气层的结构不同而已。 将待测细丝或薄膜放在两块平板玻璃之间的一端,由此形成劈尖形空隙,如图 2 所示。以单 色光垂直照射在玻璃板上, 则在空气隙的上表面形成干涉条纹, 条纹是平行于劈棱的一组等距离 直线, 且相邻两条纹所对应的空气隙厚度之差为半波长λ/2。 若距离劈棱 L 处劈尖的厚度为 d(即 细丝薄膜的厚度),单位长度中所含的条纹数为 n,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:;学号;班级;教师________;信箱号:______ 预约时间:第_____周、星期_____、第_____~ _____节;座位号:_______
预习操作实验报告总分教师签字
一、实验名称等厚干涉
二、实验目的
(1) 观察和研究等厚干涉的现象及其特点 .
(2) 练习用干涉法测量透镜的曲率半径、微小厚度 ( 或直径 ).
三、实验原理(基本原理概述、重要公式、简要推导过程、重要图形等;要求
用自己的语言概括与总结,不可照抄教材)
利用透明薄膜上、下两表面对入射光的依次反射,入射光的振幅
将分解成有一定光程差的几个部分.这是一种获得相干光的重要途
径,被多种干涉仪所采用若两束反射光在相遇时的光程差取决于产
生反射光的薄膜厚度,则同一干涉条纹所对应的薄膜厚度相同.这就
是所谓的等厚干涉。
(见右图)
总的光程差为:
(1)
当△满足条件:
(2)
时,发生相长干涉,出现第K级亮纹。
而当:
(3)
时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为rk,对应的膜厚度为ek ,则:
(4)
在实验中,R的大小为几米到十几米,而ek的数量级为毫米,所以R >>ek ,ek2相对于2Rk 是一个小量,可以忽略,所以上式可以简化为
(5)
如果rk是第k级暗条纹的半径,由式(1)和(3)可得:
(6)
代入式(5)得透镜曲率半径的计算公式
(7)
对给定的装置,R为常数,暗纹半径
(8)
和级数k的平方根成正比,即随着k的增大,条纹越来越细。
由于从劈尖的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在劈尖的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程
差等于劈尖厚度的两倍,即
n = 0时,,即在两玻璃片交线处为零级暗条纹。
如果在细丝处呈现n = N级条纹,则待测细丝直径为
(9)
四、实验内容和步骤(要求用自己的语言概括与总结,不可照抄教材)
1. 观察牛顿环。
(1) 将牛顿环按图3所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
(2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2. 测牛顿环半径。
(1) 使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移
动方向平行)。
(2) 转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,
直到竖丝与第45环相切为止。
记录标尺读数。
(3) 反向转动鼓轮,当竖丝与第40环相切时,记录读数显微镜上的位置读数,然后继续转动
鼓轮,使竖丝依次与第35、30、25、20、15、10、5环相切,顺次记下读数。
(4) 继续转动鼓轮,越过干涉圆环中心,记下竖丝依次与另一边的5、10、15、20、25、30、
35、40环相切时的读数。
3.利用逐差法处理得到的数据,得到牛顿环半径R。
1. 观察干涉条纹。
(1) 将劈尖按图4所示放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通
过显微镜目镜观察时视场最亮。
(2) 调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近劈尖然后缓慢上升,直
到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2. 测量。
(1) 使显微镜的十字叉丝交点与劈尖中心重合,并使其与显微镜镜筒移动方向平行。
(2) 在劈尖玻璃面的三个不同部分,测出20条暗纹的总长度,测3个求平均值。
(3) 按公式求细丝直径。
五、数据记录
1.实验仪器(记录实验中所用仪器的名称、型号、精度等级等参数)
牛顿环法测曲率半径实验的主要仪器有:
读数显微镜、Na光源、牛顿环仪
用劈尖测细丝直径实验的主要仪器有:
读数显微镜、Na光源、劈尖
2.原始数据记录(原始数据表格只需要画出与数据记录有关的部分,禁止用铅笔
记录数据,伪造、抄袭数据按作弊处理,该实验计零分)
30 29 28 27 26 10 9 8 7 6
左60.213 60.134 60.045 59.963 59.873 58.182 58.045 57.894 57.723 57.545 右50.855 50.935 51.012 51.093 51.174 52.865 53.013 53.164 53.322 53.502 A0 i i+10 i+20 I+30 Amax
54.978 55.986 56.615 57.248 57.881 59.393
六、实验数据整理及数据处理(★需画表格,重新将原始数据整理、誊写一遍,
在原始数据记录项中直接进行数据处理的视为无效。
要求表格清晰完整,有效数字位数正确,符号、单位清楚,写出必要的过程,运算过程规范,结果表达式正确)
(钠 λ=5.893×10 4
mm ,单位:mm)级次
m
n
30
29
28
27
26
10
9
8
7
6
D 2
- D 2 的平均值 m n
取m-n=20
干涉环坐标 左 x 1 60.213 60.134 60.045 59.963 59.873 58.182 58.045 57.894 57.723 57.545 右 x 2
50.855 50.935 51.012 51.093 51.174 52.865 53.013 53.164 53.322 53.502 直径 D =| x 1 - x 2|
9.358 9.199 9.033 8.87
8.699 5.317 5.032 4.73
4.401
4.043
D 2
87.572 84.622 81.595 78.677 75.673 28.270 25.321 22.373 19.369 16.346
( D 2 - D 2 )
m
n i
59.302 59.301 59.222 59.308 59.327
D 2 - D 2 =59.292 m n
1×10
-04
8×10
-5
5×10
-3
3×10
-4
1×10
-3
6.48×10-3
项目 A 0
i
i +10
i +20
i +30
A max
坐标读数 A i /mm 54.978 55.986
56.615
57.248
57.881
59.393
x = (i + m ) - i / 条 — 10
20
30
平均值
L x = A i +m - A i / mm — 0.629 1.262 1.895
n = x / L x /(条/mm) —
15.898
15.848
15.831 15.859
L =| A max - A 0 | /mm 40 e = (nL λ /2)/mm
0.187
1.2577m 0.018mm 2
5.78×10-3
0.0189mm 2
七、分析讨论:①回答教材课后思考题②实验中遇到的问题(故障、差错)及处理办法,结果如何?③实验后对实验原理和方法的新认识④对实验误差和标准不确定度来源的探讨及减小的办法⑤实验的独特见解;是否可通过其他途径达到同样的实验目的和结果⑥需要商榷的问题及对本实验的建议等。
思考题:(1) 实验中如何避免读数显微镜存在的空回误差?
(2) 试比较牛顿环和劈尖的干涉条纹的异同点.
答(1)读数显微镜的测微鼓轮在每次测量中始终沿着同一方向旋转,中途不可倒退
(2)相同点:都是薄膜干涉,且这个薄膜一般都是空气。
不同点:劈尖干涉,形成的是等厚的直条纹,且劈尖夹角θ越大,条纹越密。
牛顿环,形成的同心干涉环,中心必是暗点,且曲率半径R越大,环越稀疏。