一次函数在生活中的应用

合集下载

初中数学 一次函数在音乐中的应用有哪些

初中数学 一次函数在音乐中的应用有哪些

初中数学一次函数在音乐中的应用有哪些一次函数在音乐中有许多应用,它们可以帮助我们分析和解决与音乐相关的问题。

以下是一次函数在音乐中的一些应用:1. 音高与弦长关系:一次函数可以用来描述音高与弦长之间的关系。

在乐器演奏中,弦乐器如吉他、小提琴等,音高是指乐器弦的振动频率。

我们可以使用一次函数来计算不同弦长对应的音高,并预测不同音高下的弦长要求。

这有助于我们理解乐器演奏、音高调整和音乐创作。

2. 节奏与速度关系:一次函数可以用来描述节奏与速度之间的关系。

在音乐中,节奏是指音符之间的时间关系,速度是指音符的演奏速度。

我们可以使用一次函数来计算不同速度下的节奏要求,并预测不同节奏下的演奏时间。

这有助于我们理解音乐演奏、节奏控制和曲目选择。

3. 音乐形态的变化:一次函数可以用来描述音乐形态的变化。

在音乐创作中,形态是指音乐作品的结构和发展。

我们可以使用一次函数来描述不同音乐区段之间的过渡关系,并预测未来形态的变化。

这有助于我们理解音乐创作、曲式分析和艺术表达。

4. 音乐声音的衰减:一次函数可以用来描述音乐声音的衰减。

在音乐演奏中,声音的衰减是指音量随时间的减弱。

我们可以使用一次函数来计算不同时间段内的音量变化,并预测未来声音的衰减趋势。

这有助于我们理解音乐演奏、声学特性和音响设计。

5. 和弦音的变化:一次函数可以用来描述和弦音的变化。

在和弦进行中,和弦音是指多个音符同时演奏所形成的和声。

我们可以使用一次函数来计算不同和弦音之间的音程关系,并预测未来和弦音的变化。

这有助于我们理解和声学、和弦进行和编曲技巧。

以上是一次函数在音乐中的一些应用。

一次函数的线性关系使得它在音乐分析中具有广泛的应用,帮助我们理解和解决与音乐相关的问题。

希望以上内容能够帮助你了解一次函数在音乐中的应用。

一次函数在实际生活中的应用

一次函数在实际生活中的应用

一次函数在实际生活中的应用例1某房地产开发公司计划建A B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:分析:设AA型住房的总成本是__________ 万元;B型住房的总成本是______________ 万元;80套住房的总成本是 ______________万丿元。

A型住房的总售价是___________ 万元;B型住房的总售价是___________ 万元;80套住房的总售价是_______________ 万元。

A型住房的总利润是___________ 万元;B型住房的总利润是___________ 万元;80套住房的总利润是_______________ 万元。

依据所筹资金情况可列不等式组彳-----------不等式组的解集是____________ ,故有_________ 种建房方案。

依据总利润的解析式,当x= _________ 套时总利润最大,最大利润为__________ 万元•终上所述,共有 _____ 种建房方案;当建A型房________ 套,B型住房____ 套时,总利润最大,最大利润是_________ 万元。

例2塑料厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y i元和y2元,分别求y i和屮关于x的函数解析式(注: 利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?例3某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。

设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.⑴求y关于x的函数关系式?⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润。

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目

一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。

一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。

当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。

例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。

2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。

当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。

例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。

3. 存款利率:一次函数可以用来描述存款利率的变化情况。

当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。

例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。

4. 股票价格:一次函数可以用来描述股票价格的变化情况。

当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。

例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。

5. 植物生长:一次函数可以用来描述植物的生长情况。

当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。

例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。

a和b是常数,且a不等于0。

一次函数也被称为一次多项式函数,因为它的最高次数为1。

在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。

一次函数的特点是其图像是一条直线,具有线性的特性。

这种简单的函数形式在数学建模和实际问题求解中具有重要意义。

一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。

在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。

通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。

了解一次函数的基本概念和应用是非常重要的。

1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。

一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。

通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。

一次函数在生活中的重要意义还体现在其广泛应用的范围。

一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。

掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。

一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。

通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。

深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。

2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。

函数在日常生活中的应用

函数在日常生活中的应用

函数在日常生活中的应用函数不仅在我们的学习中应用广泛,日常生活中也有充分的应用。

在此举出一些例子并作适当分析。

当人们在社会生活中从事买卖活动或其他生产时,其中常涉及到变量的线性依存关系,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。

总之,函数渗透在我们生活中的各个方面,我们也经常遇到此类函数问题,这时我们应三思而后行,深入发掘自己头脑中的数学知识,用函数解决。

如:1.一次函数的应用:购物时总价与数量间的关系,是最基本的一次函数的应用,由函数解析式可以清楚地了解到其中的正比例关系,在单价一定的条件下,数量越大,总价越大。

此类问题非常基本,却也运用最为广泛。

2.二次函数的应用:当某一变量在因变量变化均匀时变化越来越快,常考虑用二次函数解决。

如细胞的分裂数量随时间的变化而变化、利润随销售时间的增加而增多、自由落体时速度随时间的推移而增大、计算弹道轨迹等。

二次函数的解析式及其图像可简明扼要地阐述出我们需要的一系列信息。

如增加的速度、增加的起点等。

3.反比例函数的应用:反比例函数在生活中应用广泛,其核心为一个恒定不变的量。

如木料的使用,当木料一定时长与宽的分别设置即满足相应关系。

还有总量一定的分配问题,可应用在公司、学校等地方。

所分配的数量及分配的单位即形成了这样的关系。

4.三角函数的应用:实际生活中,我们常常可以遇到三角形,而三角函数又蕴含其中。

如建筑施工时某物体高度的测量,确定航海行程问题,确定光照及房屋建造合理性以及河宽的测量都可以利用三角函数方便地测出。

在日常生活中,我们往往需要将各种函数结合起来灵活运用,以解决复杂的问题。

要时刻将函数的解析式与其图形联系起来,以得到最简单的解决办法。

初中数学一次函数的应用

初中数学一次函数的应用

初中数学一次函数的应用一、引言初中数学中,一次函数是一个重要的内容,也是数学思维的基础。

掌握一次函数的应用可以帮助学生更好地理解实际问题,并且培养其解决实际问题的能力。

本教案将以一次函数的应用为主题,通过具体的案例分析,让学生深入了解一次函数在现实生活中的应用。

二、案例分析1. 飞机票价问题假设一架飞机从A城市到B城市,飞行距离为800公里,飞行时间为2小时。

已知该航线的燃油成本为每公里4元,且其他开销为固定费用5000元。

每张机票定价为p元。

假设有x人订购机票,请问如何确定机票的价格才能使航空公司利润最大化?解析:这是一个典型的一次函数应用问题。

设定x为订购机票的人数,p为机票价格。

首先,我们可以列出航空公司的收入函数和成本函数:收入函数:R(x) = px成本函数:C(x) = 800 * 4 + 5000 = 3800利润函数:P(x) = R(x) - C(x) = px - 3800为了使航空公司的利润最大化,我们需要求出利润函数的最大值点。

通过求导可知,利润函数的最大值点即为极值点。

令利润函数的导数为零,得到:P'(x) = p = 0因此,当机票价格为0时,航空公司可以获得最大利润。

但这是不现实的,所以我们需要考虑在满足航空公司成本的情况下,选择一个合理的价格。

2. 高楼坠物问题某座高楼上有一块距离地面h米的平台,设一个物体从此平台自由下落。

已知物体每经过一个时间单位,下落的距离与时间的关系是:每个时间单位下落h/10米。

请问,当物体下落到平台下方10米处时,经过了多少个时间单位?解析:这是一个典型的一次函数应用问题。

根据题意,我们可以列出物体下落的距离与时间的关系为一次函数:距离函数:d(t) = h - (h/10)t为了求解物体下落到平台下方10米处所需的时间单位,我们需要找到方程d(t) = 10的解。

代入距离函数,得到:h - (h/10)t = 10解方程可得:t = (h/10) / (h/10 - 1)这个式子就是物体下落到平台下方10米处所需的时间单位。

一次函数的应用练习题及答案

一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。

在现实生活中,我们经常会遇到一次函数的应用场景。

本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。

练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。

已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。

求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。

根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。

因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。

a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。

b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。

练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。

已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。

求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。

根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。

一次函数在生活中的应用

一次函数在生活中的应用

一次函数在生活中的应用咱们聊聊啊,这数学里头的一次函数,听起来挺高深莫测的,其实啊,它就在咱们日常生活里头溜达呢,跟咱们老百姓的日子那是息息相关,紧密得跟亲兄弟似的。

你想啊,早上起床,得琢磨着吃点啥吧?比如说,你去楼下包子铺,那价格表上写着呢,肉包子两块五一个,素包子两块一个。

这不就是一次函数嘛!你买的包子数量是X,总价是Y,Y就是X乘以单价。

肉包子的话,Y=2.5X;素包子,Y=2X。

简单吧,一口一个,吃出学问来了。

吃完早饭,该上班了。

开车去?那油费也得算算。

油价一升多少钱,咱们心里得有个数。

车子油耗多少,也得心里有谱。

这一路上,油门一踩,那就是钱在烧啊。

不过别担心,这也是一次函数在作祟。

油耗是X,油费是Y,Y=油价乘以油耗X。

省油就是省钱,这个道理大家都懂。

到了公司,得干活了。

老板说了,这个月业绩得上去,不然奖金泡汤。

这业绩和奖金的关系,嘿,又是一次函数。

业绩是X,奖金是Y,Y=奖金系数乘以业绩X。

当然啦,这个系数老板说了算,咱们只能努力提升X值,争取多拿点Y。

下了班,回家路上经过超市,得买点菜。

蔬菜水果,价格都不一样。

你挑挑拣拣,放进购物车,心里还得盘算着这得花多少钱。

挑的东西越多,钱花得越多,这也是一次函数在默默工作。

购物车里的东西重量是X,总价是Y,Y=单价乘以重量X。

勤俭持家,就得这么精打细算。

晚上,一家人围坐在一起看电视。

孩子说:“爸爸,我想学钢琴。

”你一听,心里那个激动啊,得支持孩子啊!不过,学钢琴得花钱啊。

学费按课时算,这也是一次函数。

课时是X,学费是Y,Y=课时费乘以课时X。

为了孩子的未来,这钱花得值!你看啊,这一天到晚的,咱们的生活里到处都是一次函数。

它就像个隐形的朋友,默默地陪伴着我们,帮助我们更好地规划生活、管理财务。

所以啊,别觉得数学枯燥无味、高不可攀了。

其实啊,它就在我们身边,跟咱们的生活紧密相连、息息相关。

学好数学吧朋友们!让我们的生活因数学而更加精彩、更加有序!。

初中数学 一次函数在医学中的应用有哪些

初中数学 一次函数在医学中的应用有哪些

初中数学一次函数在医学中的应用有哪些一次函数在医学中有许多应用,它们可以帮助我们分析和解决与医学相关的问题。

以下是一次函数在医学中的一些应用:1. 药物浓度与时间关系:一次函数可以用来描述药物在体内的浓度与时间之间的关系。

在药物治疗中,药物浓度是指药物在血液中的浓度。

我们可以使用一次函数来计算不同时间点的药物浓度,并预测未来药物浓度的变化。

这有助于我们理解药物代谢、药物剂量和治疗效果的评估。

2. 疾病发展与时间关系:一次函数可以用来描述疾病在人体中的发展与时间之间的关系。

在疾病研究中,疾病发展是指疾病在人体中的进展和扩散。

我们可以使用一次函数来计算不同时间点的疾病发展程度,并预测未来疾病的发展趋势。

这有助于我们理解疾病机理、病情评估和治疗规划。

3. 生长发育与年龄关系:一次函数可以用来描述生物体的生长发育与年龄之间的关系。

在儿童医学中,生长发育是指儿童身体和智力的成长。

我们可以使用一次函数来计算不同年龄段的生长发育指标,并预测未来的生长发育水平。

这有助于我们理解儿童发育、生长曲线和营养评估。

4. 血糖与胰岛素关系:一次函数可以用来描述血糖与胰岛素之间的关系。

在糖尿病管理中,血糖是指血液中的葡萄糖浓度,胰岛素是一种调节血糖的激素。

我们可以使用一次函数来计算不同血糖水平下的胰岛素需求,并预测不同胰岛素剂量对血糖的影响。

这有助于我们理解糖尿病管理、胰岛素治疗和血糖控制。

5. 心脏功能与运动关系:一次函数可以用来描述心脏功能与运动强度之间的关系。

在心血管疾病预防中,心脏功能是指心脏的泵血能力,运动强度是指身体在运动中所需的能量消耗。

我们可以使用一次函数来计算不同运动强度下的心脏功能需求,并预测不同运动水平对心脏功能的影响。

这有助于我们理解心血管健康、运动处方和心脏康复。

以上是一次函数在医学中的一些应用。

一次函数的线性关系使得它在医学分析中具有广泛的应用,帮助我们理解和解决与医学相关的问题。

希望以上内容能够帮助你了解一次函数在医学中的应用。

一次函数的内部原理及应用

一次函数的内部原理及应用

一次函数的内部原理及应用1. 什么是一次函数一次函数,也称为线性函数,是数学中的一种基本函数。

它的特点是函数表达式中只包含一个自变量,并且自变量的最高次数为1。

一次函数的一般形式为:y = kx + b其中,x为自变量,k为斜率,表示函数的变化速率,b为截距,表示函数与y轴的交点。

2. 一次函数的原理2.1 斜率斜率是一次函数的重要参数。

斜率k表示了函数图像在横轴方向上的变化速率。

斜率的计算公式为:k = Δy / Δx其中,Δy表示y轴上的变化量,Δx表示x轴上的变化量。

斜率可以表示函数图像的倾斜情况,如果斜率为正,则表示函数图像向上倾斜;如果斜率为负,则表示函数图像向下倾斜;如果斜率为零,则表示函数图像是水平的。

斜率还可以用来判断两点之间的关系,如果一个点的x坐标增加1,而对应的y坐标增加k,那么这两点就在同一条直线上。

2.2 截距截距b表示一次函数与y轴的交点。

截距的计算公式为:b = y - kx其中,x和y表示一次函数上的一个点的坐标。

截距可以用来确定函数图像在y轴上的位置。

3. 一次函数的应用一次函数在现实生活中有许多应用,下面列举几个常见的应用场景:3.1 距离与速度的关系在物理学中,一次函数可以用来描述物体的位移与时间的关系。

如果物体的速度是匀速的,那么位移和时间之间的关系可以用一次函数表示。

假设物体在时刻t=0的位置为x0,在时刻t=1的位置为x1,则位移Δx等于两个位置之间的距离差。

假设物体的速度是v,则有Δx = v * Δt。

因此,位移和时间之间的关系可以表示为:Δx = vt其中,Δx表示位移,v表示速度,t表示时间。

这个一次函数可以用来计算物体在某个时间点的位置。

3.2 成本与产量的关系在经济学中,一次函数可以用来描述成本与产量的关系。

假设某个公司的总成本是固定成本加上可变成本的和。

固定成本是不随产量的变化而变化的,而可变成本是随着产量变化的。

设固定成本为b,可变成本的单位产量成本为k,则总成本C与产量x的关系可以表示为:C = kx + b其中,C表示总成本,x表示产量。

利用一次函数解决问题

利用一次函数解决问题

利用一次函数解决问题一次函数(也称为线性函数)是数学中常见且重要的函数类型之一。

它的表达式为 y = ax + b,其中 a 和 b 是常数,且a ≠ 0。

一次函数的图像是一条直线,具有许多应用领域。

本文将介绍如何利用一次函数解决问题。

一、利用一次函数解决实际问题一次函数在实际问题中的应用非常广泛。

它可以描述物体的直线运动、收入与支出的关系、成本与产量的关系等。

下面举例说明:例1:小明每天骑自行车上学,他发现骑行的时间与距离之间存在一定的关系。

他测量了两天的数据,如下所示:时间(分钟):10 20 30 40距离(千米):1 2 3 4小明想要知道骑行 50 分钟可以骑多远,他可以利用一次函数解决这个问题。

解:我们可以先通过已知数据构建一个一次函数。

选择时间作为自变量 x,距离作为因变量 y。

现在我们来求解 a 和 b 的值。

已知点 A (10, 1) 和点 B (20, 2),可以利用两点间的斜率公式计算 a的值:a = (yB - yA) / (xB - xA) = (2 - 1) / (20 - 10) = 1 / 10 = 0.1接下来,我们可以代入其中一点的坐标和已知的 a 值,求解 b 的值:1 = 0.1 * 10 + bb = 1 - 1 = 0所以,一次函数为 y = 0.1x + 0。

现在可以利用求得的一次函数来解决问题。

当 x = 50 时,我们可以通过函数表达式求得对应的 y 值:y = 0.1 * 50 + 0 = 5因此,小明骑行 50 分钟可以骑行 5 千米。

二、利用一次函数解决图像问题一次函数的图像是一条直线,通过直线的性质,我们可以解决一些与图像相关的问题。

下面举例说明:例2:某公司生产零件,每天生产数量与花费的时间之间呈一次函数的关系。

已知当生产数量为 1000 时,需要 4 小时。

而当生产数量为2000 时,需要 8 小时。

现在需要求解该函数的表达式并计算生产 3000 个零件所需的时间。

一次函数的应用

一次函数的应用

一次函数的应用一次函数在数学中有着广泛的应用。

在平面直角坐标系中,一次函数的图像是一条直线,其解析式为y=kx+b。

其中,k表示斜率,b表示截距。

斜率k的正负决定了直线的方向,截距b则决定了直线与y轴的交点。

正比例函数是一种特殊的一次函数,其解析式为y=kx,其中k为比例系数。

正比例函数的图像是一条经过原点的直线,斜率k决定了直线的斜率和方向。

当k>0时,随着x的增大,y也随之增大;当k<0时,随着x的增大,y则会减小。

一次函数在实际生活中也有着广泛的应用。

例如,某航空公司规定旅客携带行李的质量与运费之间的关系为一次函数。

旅客可携带的免费行李的最大质量可以通过函数图像得出。

另外,XXX从家门口骑车去单位上班,他的上班时间与路程的关系也可以用一次函数表示。

通过求解函数,我们可以得到他从单位到家门口需要的时间。

在解决实际问题时,我们还需要注意一次函数的性质。

例如,一次函数y=2x-3的图像不经过第二象限。

因此,在应用中需要注意这些性质,避免出现错误的结果。

总之,一次函数是数学中重要的概念之一,其应用也十分广泛。

在备考中,我们需要掌握其定义、性质和图像,以及应用解题的方法。

直线y=kx+b表示一次函数,其中k和b决定了直线的位置和增减性质。

当k>0时,随着x的增大,y也增大。

如果b>0,则直线会经过第一、二、三象限;如果b0,则直线会经过第一、二、四象限;如果b<0,则直线会经过第二、三、四象限。

一次函数y=kx+b可以进行平移操作,分为沿着y轴平移和沿着x轴平移。

沿着y轴平移m个单位,得到函数y=kx+b±m;沿着x轴平移n个单位,得到函数y=k(x±n)+b。

这两种平移往往是同时进行的。

直线y=kx+b与x轴的交点为(-b,0),与y轴的交点为(0,b),这两个交点与坐标原点构成的三角形面积为S=1/2*│-b│*│b│/k。

对于一次函数y=kx+b,当k>0时,直线上升,y随着x的增大而增加;当k-b。

一次函数的应用举例-

一次函数的应用举例-

一次函数的应用举例一次函数是最简单,最基本的函数之一,它有着极为广泛的应用.现以近几年的一些中考题为例说明一次函数的应用.一、用于解决现实生活中的问题例1 “五一黄金周”的某一天,小明全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩.该小汽车离家的距离s (千米)与时间t (时)的关系可用图中的曲线来表示.根据图象提供的有关信息,解答下列问题:(1)小明全家在旅游景点游玩了多少小时? (2)求出返程途中,s (千米)与时间t (时)的函数关系式并回答小明全家到家是什么时间?(3)若出发时汽车油箱中存油15升,该汽车的油箱总量为35升,汽车每行驶1千米耗油 升.请你就“何时加油和加油量”给小明全家提出一个合理化的建议(加油所用时间忽略不计).分析:(1)可直接从图象上看出来;(2)设函数关系式为=s b kt +,再用代点入式法求解即可; (3)是个开放性问题,答案不唯一,只要所提建议合理即可. 解:(1)由图象可看出,小明全家在旅游景点游玩了4小时.(2)设=s b kt +,代入点(14,180)和(15,120),得1418015120k d k d +=⎧⎨+=⎩解得60-=k ,1020=b ,故=s 102060+-t . 令=s 0,得17=t ,即小明全家到家是当天下午5时.(3)合理化建议:①9时30分前必须加一次油;②若8时30分前加满油箱,则当天在油用完前的适当时间必须第二次加油;③全程可多次加油,但加油总量不得少于25升.点评:这是一道贴近生活实际的函数图象的“审读—理解—应用”问题,将行程问题91与一次函数的图象有机结合起来,构思巧妙,设计新颖.由于本题的信息由图象结出,故应仔细审视图象并在此基础上建立数学模型,进而运用相关的数学基础知识和数学基本思想进行解决.二、用于解决“方案设计型”问题例2 东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了两种优惠方法.甲:买一支毛笔赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法小组购买这种毛笔10支,书法练习本x (x ≥10)本.(1)写出每种优惠方法实际付款金额y 甲(元)、y 乙(元)与x (本)之间的函数关系式.(2)若商场允许可任选一种优惠方法购买,也可同时用两种优惠方法购买,请你就购买这种毛笔10支和书法练习本60本设计一种最省钱的购买方案.分析:读懂题意是解决本题的基础,在此基础上建立数学模型——一次函数模型是解决本题的关键.解:(1)由题意,得y 甲=2005+x ,y 乙=2255.4+x .(2)当x =60时,y甲=500,y 乙=495,故任选一种优惠方法购买时,乙方法省钱.当同时选用两种方法购买时,设用甲方法购买m 支毛笔,获赠m 本练习本;用乙方法购买(10-m )支毛笔,(60-m )本练习本,则付款金额4952%90)]60(5)10(25[25+-=⨯-+-+=m m m m y . 由题意知m ≤10,故当=10时,y 有最小值,y最小495475495102<=+⨯-=,故用甲方法购买10支毛笔,用乙方法购买50本练习本最省钱.点评:这是一道实际应用题,首先要进行数学抽象,把它转化为一次函数问题,然后利用一次函数的性质及自变量的取值范围来解决.一次函数b kx y +=本没有最大值或最小值,但当自变量x 的取值受某种条件制约(如本例中m 只能取不超过10的整数)时,一次函数就有最大值或最小值了.三、用于解决“决策型”问题例3 某果品公司急需将一批不易存放的水果从A 市运到B 市销售,现有三家运输公司可供选择,它们提供的信息见下表.解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A 、B 两市的距离(精确到个位);(2)若A 、B 两市的距离为s 千米,且这批水果在包装与装卸及运输过程中的损耗为300元/小时,则要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?分析:(1)包装与装卸及运输费用与A 、B 的距离有关.设距离为x 千米,分别写出三家公司的费用,利用所给等量关系列方程可求出x .(2)由题意知总费用是距离s 的函数,故应分别求出选各公司所需总费用与s 的函数关系式,然后通过比较来判断应选哪家公司.解:(1)设A 、B 两市的距离为x 千米,则各公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司(10x +700)元, 由题意,得(8x +1000)+(10x +700)=2(6x +1500), 故x ≈217,即A 、B 两市的距离约为217千米. (2)设选择各公司所需总费用分别为y 甲、y 乙、y 丙, 由表格信息可知各公司包装与装卸及运输所需时间分别为: 甲公司(60s +4)小时,乙公司(50s+2)小时,丙公司(100s +3)小时, 故y 甲=6s +1500+(60s+4)×300=11s +2700,y 乙=8s +1000+(50s+2)×300=14s +1600, y 丙=10s +700+(100s+3)×300=13s +1600. 因s >0,故y 乙>y 丙恒成立,故只需比较y 甲与y 丙的大小. 因y 甲-y丙= -2s +1100=0时,s =550,故:①当s <550千米时,y 甲>y 丙,又y 乙>y 丙,故此时可选丙公司较好; ②当s =550千米时,y 甲=y 丙,又y 乙>y 丙,故此时可选甲公司或丙公司; ③当s >550千米时,y 乙>y 丙>y 甲,故此时选甲公司较好.点评:这又是一道利用一次函数解决实际问题的应用题.其中根据题意和表格信息建立一次函数模型是解题关键.从以上几题可看出,一次函数是解决实际问题的重要数学模型之一,善于读懂图象、表格并从图象的形状、位置、发展变化趋势等信息中获取相关的数据、性质、规律,再将其转化为数学问题加以解决是解决此类问题的关键.。

函数在生活中的应用

函数在生活中的应用

函数在生活中的应用吴雨桐一、一次函数:(1)基本概念:一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

(2)生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

设水池中原有水量S。

g=S-ft。

3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y 是重物重量x的一次函数,即y=kx+b(k为任意正数)二、二次函数:(1)基本概念:二次函数(quadratic function)是指未知数的最高次数为二次的多项式函数。

二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。

其图像是一条主轴平行于y 轴的抛物线。

(2)生活中的应用:抛物线。

三、反比例函数:(1)基本概念:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

(2)生活中的应用:A、在电学中的运用在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。

例1 在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(a)求I与R之间的函数关系式;(b)当电流I=0.5时,求电阻R的值.(a)解:设I=∵R=5,I=2,于是=2×5=10,所以U=10,∴I=.(b)当I=0.5时,R===20(欧姆).B、在光学中运用例2 近视眼镜的度数y(度)与焦距x(m)成反比例,已知400•度近视眼镜镜片的焦距为0.25m.(a)试求眼镜度数y与镜片焦距x之间的函数关系式;(b)求1 000度近视眼镜镜片的焦距.分析:把实际问题转化为求反比例函数的解析式的问题.解:(a)设y=,把x=0.25,y=400代入,得400=,所以,k=400×0.25=100,即所求的函数关系式为y=.(b)当y=1000时,1000=,解得=0.1m.C、在排水方面的运用例3 如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(a)请你根据图象提供的信息求出此蓄水池的蓄水量;(b)写出此函数的解析式;(c)若要6h排完水池中的水,那么每小时的排水量应该是多少?(d)如果每小时排水量是5 000m3,那么水池中的水将要多少小时排完?分析:当蓄水总量一定时,每小时的排水量与排水所用时间成反比例.解:(a)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例3 •所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m3).(b)因为此函数为反比例函数,所以解析式为:V=;(c)若要6h排完水池中的水,那么每小时的排水量为:V==8000(m3);(d)如果每小时排水量是5 000m3,那么要排完水池中的水所需时间为:t==8000(m3)。

初中数学 一次函数在生物学中的应用有哪些

初中数学 一次函数在生物学中的应用有哪些

初中数学一次函数在生物学中的应用有哪些一次函数在生物学中有许多应用,它们可以帮助我们分析和解决与生物相关的问题。

以下是一次函数在生物学中的一些应用:1. 生物体大小与时间的关系:一次函数可以用来描述生物体大小与时间之间的关系。

在生物体的生长过程中,大小通常呈线性增长。

我们可以使用一次函数来计算不同时间点的生物体大小,并预测未来的生长趋势。

这有助于我们理解生物发育、生命周期和种群动态。

2. 物种数量与环境变化的关系:一次函数可以用来描述物种数量与环境变化之间的关系。

在生态系统中,物种数量通常与环境因素(如温度、湿度和光照等)呈线性变化。

我们可以使用一次函数来计算不同环境条件下的物种数量,并预测不同数量下的环境变化。

这有助于我们理解生物多样性、生态平衡和生态保护。

3. 遗传性状与基因型的关系:一次函数可以用来描述遗传性状与基因型之间的关系。

在遗传学中,某些性状的表现受到基因型的影响,呈现出线性的关系。

我们可以使用一次函数来计算不同基因型下的性状表现,并预测不同表现下的基因型组合。

这有助于我们理解遗传规律、基因变异和遗传疾病。

4. 生物体质量与食物摄入的关系:一次函数可以用来描述生物体质量与食物摄入之间的关系。

在营养学中,生物体的质量通常与其摄入的食物量呈线性关系。

我们可以使用一次函数来计算不同食物摄入量下的生物体质量,并预测不同质量下的食物需求。

这有助于我们理解营养需求、能量平衡和生物生理学。

5. 反应速率与底物浓度的关系:一次函数可以用来描述化学反应中反应速率与底物浓度之间的关系。

在酶催化的生化反应中,反应速率通常与底物浓度呈线性关系。

我们可以使用一次函数来计算不同底物浓度下的反应速率,并预测不同速率下的浓度变化。

这有助于我们理解酶的活性、代谢过程和药物动力学。

以上是一次函数在生物学中的一些应用。

一次函数的线性关系使得它在生物分析中具有广泛的应用,帮助我们理解和解决与生物相关的问题。

希望以上内容能够帮助你了解一次函数在生物学中的应用。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用
一次函数,在数学上也叫线性函数,其表示形式为 f(x) = ax + b,其中 a 和 b 是实数,且a ≠ 0。

一次函数在生活中有很多具体应用,下面将介绍一些常见的应用场景。

1. 速度与时间的关系:一次函数可以用来描述速度与时间的关系。

假设某辆汽车匀速行驶,其速度为 v,经过时间 t 后,汽车行驶的距离可以表示为 d = vt,其中 d 是距离。

这个关系可以用一次函数来表示。

2. 成本与产量的关系:在生产过程中,通常会涉及到成本与产量之间的关系。

假设某工厂生产一种商品,其生产成本为 c,产量为 x,成本与产量之间的关系可以用一次函数来表示。

7. 重量与身高的关系:一次函数可以用来描述人的重量与身高的关系。

假设某人的身高为 h,体重为 w,则体重与身高之间的关系可以用一次函数来表示。

一次函数在生活中有很多具体应用,可以描述各种物理量的关系,帮助我们理解和分析一些实际问题。

一次函数的实际应用(经典)

一次函数的实际应用(经典)

一次函数的应用用一次函数解决实际生活问题:常见类型:(1)求一次函数的解析式;(2)利用一次函数的图象与性质解决某些问题,如最大(小)值问题等.一次函数解决实际问题的步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题探究类型之一利用一个一次函数的方案选择例1:某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,购进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6 710元且不超过6 810元购进这两种商品共100件.(1)求这两种商品的进价;(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?类似性问题1.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳的总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的23,求该校本次购买A型和B 型课桌凳共有几种方案?哪种方案的总费用最低?2.建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如下表:设购买A种树苗x棵,绿化村道的总费用为y元.解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?探究类型之二利用两个一次函数的方案选择例3 川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式.(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.探究类型之三利用一次函数与不等式的关系进行方案选择例4 某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.(1)填空:甲种收费的函数关系式是___________________,乙种收费的函数关系式是___________________.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?类似性问题1、某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价均为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A和y B与x之间的关系式.(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.2、某工厂有甲种原料130 kg,乙种原料144 kg. 现用这两种原料生产出A,B 两种产品共30件. 已知生产每件A产品需甲种原料5 kg,乙种原料4 kg,且每件A产品可获利700元;生产每件B产品需甲种原料3 kg,乙种原料6 kg,且每件B产品可获利900元. 设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.探究类型之四利用一次函数与图像解决问题。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用【摘要】一次函数是数学中的基本概念,其在生活中有着广泛的应用。

在经济学中,一次函数被用来分析市场供求关系,帮助决策者制定价格策略。

在物理学中,一次函数可以描述物体的运动状态,如速度与时间的关系。

在工程学中,一次函数被用来设计桥梁和建筑物的结构,保证其稳定性。

在社会学中,一次函数可以分析人口增长和社会趋势,帮助政府调整政策。

在医学中,一次函数被用来研究药物的代谢过程,优化治疗方案。

结合以上应用领域,可以看出一次函数在生活中扮演着重要的角色,拥有广泛的应用价值。

通过深入理解和应用一次函数,我们可以更好地解决实际问题,提高生活质量和工作效率。

【关键词】一次函数,生活应用,经济学,物理学,工程学,社会学,医学,广泛应用1. 引言1.1 一次函数的定义一次函数,也称为线性函数,是数学中最简单的一种函数类型之一。

一次函数的一般形式可以表示为f(x) = ax + b,其中a和b为常数,且a不等于0。

在这个函数中,变量x的最高次数为1,因此称为一次函数。

一次函数的特点包括斜率和截距。

斜率a表示函数图像的倾斜程度,正斜率表示函数图像向上倾斜,负斜率表示函数图像向下倾斜,斜率的绝对值表示倾斜的程度。

截距b表示函数图像与y轴的交点,即当x 等于0时,函数值为b。

一次函数在生活中有着广泛的应用,可以用来描述各种实际情况和问题。

在经济学中,一次函数常常用来描述成本、收入、利润等与数量的关系。

在物理学中,一次函数可以用来描述速度、加速度等物理量随时间的变化。

在工程学中,一次函数可以用来建立模型、优化设计等。

在社会学中,一次函数可以用来分析人口增长、社会变化等。

在医学中,一次函数可以用来研究疾病传播、药物代谢等。

一次函数在生活中具有非常重要的作用,深刻影响着我们的生活和工作。

1.2 一次函数的特点一次函数是一种最简单的线性函数,其特点主要有以下几点:1. 一次函数的图像是一条直线。

这是因为一次函数的图像是以常数速率变化的,因此在坐标系中表现为一条倾斜的直线。

初中数学 一次函数在体育运动中的应用有哪些

初中数学 一次函数在体育运动中的应用有哪些

初中数学一次函数在体育运动中的应用有哪些一次函数在体育运动中有许多应用,它们可以帮助我们分析和解决与体育运动相关的问题。

以下是一次函数在体育运动中的一些应用:1. 运动速度与时间关系:一次函数可以用来描述运动速度与时间之间的关系。

在体育运动中,速度是指单位时间内运动的距离。

我们可以使用一次函数来计算不同时间段内的运动速度,并预测未来的速度变化。

这有助于我们理解运动能力、训练计划和竞技成绩。

2. 跳远与跳高的弹跳关系:一次函数可以用来描述跳远和跳高中的弹跳关系。

在这些项目中,弹跳是指运动员利用腿部力量将身体从地面上推起的动作。

我们可以使用一次函数来计算不同弹跳力度下的距离或高度,并预测不同力度下的成绩。

这有助于我们理解运动力量、技术要求和竞技表现。

3. 投掷项目的抛射轨迹:一次函数可以用来描述投掷项目中的抛射轨迹。

在投掷项目中,抛射轨迹是指运动员将物体通过一定力量和角度抛出后所形成的轨迹。

我们可以使用一次函数来计算不同发力角度下的抛射距离,并预测不同距离下的发力要求。

这有助于我们理解投掷技术、角度选择和竞技策略。

4. 游泳中的速度与距离关系:一次函数可以用来描述游泳中的速度与距离之间的关系。

在游泳中,速度是指单位时间内游泳的距离。

我们可以使用一次函数来计算不同时间段内的游泳速度,并预测不同速度下的完成时间。

这有助于我们理解游泳技术、节奏控制和训练计划。

5. 跑步项目的配速与时间关系:一次函数可以用来描述跑步项目中的配速与时间之间的关系。

在跑步中,配速是指单位时间内跑步的距离。

我们可以使用一次函数来计算不同时间段内的配速,并预测不同配速下的完成时间。

这有助于我们理解跑步技术、耐力训练和比赛策略。

以上是一次函数在体育运动中的一些应用。

一次函数的线性关系使得它在体育运动分析中具有广泛的应用,帮助我们理解和解决与体育运动相关的问题。

希望以上内容能够帮助你了解一次函数在体育运动中的应用。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 一次函数的定义一次函数,又称为线性函数,是指形式为y=ax+b的函数,其中a 和b为常数,且a不为零。

在一次函数中,x的最高次数为1,因此表现为直线的图像。

一次函数具有简单的特征:斜率为a,截距为b。

一次函数在数学中的地位十分重要,它是初等数学中最基本的函数之一。

通过一次函数,我们可以描述简单的线性关系,例如时间和距离之间的关系、价格和数量之间的关系等。

一次函数在解决实际问题中具有广泛的应用。

除了在数学中应用广泛之外,一次函数在生活中也有着重要的作用。

它被广泛运用在经济学、物理学、工程学等领域中,帮助人们分析问题、预测趋势、优化方案等。

通过一次函数的建模方法,人们可以更好地理解现实世界中的复杂现象,并做出科学的决策。

一次函数在生活中扮演着重要的角色,是现代社会中不可或缺的数学工具之一。

通过深入研究一次函数的应用,我们可以更好地理解世界,解决问题,推动社会的发展和进步。

1.2 一次函数在生活中的重要性一次函数在生活中的重要性体现在许多方面。

一次函数在生活中的具体应用非常广泛,涉及到经济学、物理学、工程学等多个领域。

通过一次函数的应用,可以更好地解决实际问题,提高生活质量和工作效率。

一次函数能够帮助我们更好地理解和分析各种现象,为决策和规划提供重要参考。

一次函数在生活中的重要性不可忽视,它为我们提供了丰富的思维工具和解决问题的方法。

在日常生活中,无论是计算开支、预测销量,还是设计建筑、分析运动,都离不开一次函数的运用。

了解和掌握一次函数的知识,对我们发展个人能力和解决各种实际问题都有着重要的意义。

通过对一次函数的深入研究和应用,我们可以更好地理解世界的运行规律,提高自身的分析能力和解决问题的能力,从而更好地适应社会的发展需求。

2. 正文2.1 经济学中的应用在经济学中,一次函数也被广泛运用于各种实际问题的建模和分析中。

经济学家常常使用一次函数来描述市场需求、供给和成本等关键概念,从而帮助他们预测市场走势、制定政策和做出决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数在生活中的应用
所谓一次函数在生活中的应用,就是指运用一次函数的有关概念、性质去解决实际问题。

它的基本思路是通过对题目的阅读理解,抽象出实际问题中的函数关系,将文字语言转化为数学语言,再运用函数的思想方法来建立实际问题中的变量间的函数关系。

下面,以中考题为例说明,希望能够对大家有所帮助。

例1 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。

按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。

根据下表提供的信息,解答以下问题:
(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。

分析:利用题中数量关系,先确定y 与x 之间的函数关系式,再分类讨论。

(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:
()10020456=--++y x y x 整理得:202+-=x y
(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,
由题意得:⎩
⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种。

方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;
方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;
方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;
方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;
方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车;
(3)设利润为W (百元)则:
()160048104162025126+-=⨯+⨯+-+⨯=x x x x W
∵048<-=k ∴W 的值随x 的增大而减小
要使利润W 最大,则4=x ,故选方案一
1600448+⨯-=最大W =1408(百元)=14.08(万元)
答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元。

点评:认真审题,根据图表中的数量关系代入所设的函数解析式求解,图表信息问题是近几年中考的热点问题。

一次函数结合不等式在实际生活中有着广泛的应用。

例2 某水产品市场管理部门规划建造面积为2400m 2的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为28m 2,月租费为400元;每间B 种类型的店面的平均面积为20m 2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.
(1)试确定A 种类型店面的数量;
(2)该大棚管理部门通过了解业主的租赁意向得知, A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间?
解:(1)设A 种类型店面的数量为x 间,则B 种类型店面的数量为(80-x )间,根据题意,得:

⎨⎧⨯≤-+⨯≥-+%.852400)80(2028%,802400)80(2028x x x x 解之,得⎩⎨⎧≤≥.
55,40x x ∴A 种类型店面的数量为40≤x ≤55,且x 为整数.
(2)设应建造A种类型的店面x间,则店面的月租费为:
W=400×75%·x+360×90%·(80-x)
=-24x+25920,
∵-24<0,40≤x≤55,
∴为使店面的月租费最高,应建造A种类型的店面40间.
点评:解本题的关键是要读懂图象的含义,
例3 我市一水果销售公司,需将一批孝感杨店产鲜桃运往某地,有汽车、火车运输工具可供选择,两种运输工具的主要参考数据如下:
若这批水果在运输过程中(含装卸时间)的损耗为150元/时,那么你认为采用哪种运输工具比较好(即运输所需费用与损耗之和较少)?
解:设运输路程为x(x>0)千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2元.
x+2) ×150+8x+1000
y1=(
75
y1=10x+1300
x+4) ×150+6x+2000
y2=(
100
∴y2=7.5x+2600
(1)当y1> y2时,即10x+1300>7.5x+2600 ∴x>520;
(2)当y1= y2时,即10x+1300=7.5x+2600 ∴x=520;
(3)当y1< y2时,即10x+1300<7.5x+2600 ∴x<520.
∴当两地路程大于520千米时,采用火车运输较好;当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.。

相关文档
最新文档