高中数学最全双曲线二级结论大全

合集下载

高中数学双曲线常用二级结论

高中数学双曲线常用二级结论

高中数学双曲线常用二级结论什么是双曲线?双曲线是一种函数图形,它是代数曲线中的一种,由经验公式y=a/x所定义,其中x和y均为实数,a为正常数,x不等于0。

双曲线有两条渐近线,它们与横轴的夹角为+/-45度,与纵轴的夹角为0度。

双曲线的形状呈现两条分离的曲线,这些曲线在图形中心相交,从而分离成两个分支。

双曲线的基本图形如下所示。

在数学中,双曲线具有广泛的应用。

它们可以用于估计斜率和角度,催化反应,评估化学反应和蒸汽轮机热力学等方面。

因此,高中数学教育中,双曲线是一个重要的主题。

下面将介绍一些关于双曲线常用二级结论的知识点。

1. 集中组成单胞双曲线常用二级结论的第一个知识点是:单胞可以由两个集中组成。

在双曲线上,我们可以定义一个“单胞”,它是双曲线上的一个面积单位。

一般地,单胞可以由两个集中组成。

单胞可被定义为椭圆和双曲线的交集所构成的图形。

如果我们仔细研究双曲线的图形,我们会发现它由两个分支组成。

这两个分支之间的夹角是一个重要的几何量,可以用来计算单胞的面积。

2. 平行轴切线相等双曲线的第二个常用二级结论是:双曲线上任意两个平行于其中一条渐近线的切线长度相等。

这个结论非常有用,因为它可以用来解决许多和双曲线有关的问题。

例如,如果我们知道了两条平行于渐近线的切线,那么我们就可以计算出这些切线的长度。

这个结论是由于双曲线的形状导致的。

3. 线段的长度与双曲线的距离比例这一结论的具体形式如下:如果我们从一个点x到双曲线上的两条分支的距离为h(x),线段的长度为l(x),那么h(x)/l(x)是一个常数,即与x无关。

这个关系可以被用来证明角度的迹线。

例如,如果我们想要找到从双曲线上一个点观察到的最小角度,我们可以在该点处画一条切线,然后将切线向上和向下平移,直到它们与双曲线的两个分支相交。

然后,我们可以应用上述比例关系来计算角度的迹线,从而找到角度的最小值。

4. 焦点、顶点和焦率的关系双曲线上很重要的一个概念是焦点、顶点和焦率。

双曲线的二级结论常用考点

双曲线的二级结论常用考点

双曲线的二级结论常用考点
双曲线是数学中的一个重要概念,它在数学的多个领域中都有广泛的应用,因此其二级结论常常成为考试的重点。

以下是一些常见的双曲线二级结论的考点:
1. 双曲线的标准方程,双曲线的标准方程是一个重要的基础知识点,它可以帮助我们理解双曲线的性质和特点。

2. 双曲线的焦点和准线,了解双曲线焦点和准线的性质对于解题非常重要,包括焦点与准线的距离、焦点的坐标等。

3. 双曲线的渐近线,渐近线是双曲线的重要性质之一,它与双曲线的图像和性质密切相关。

4. 双曲线的对称性,双曲线的对称性包括关于x轴、y轴和原点的对称性,理解这些对称性对于解题和理解双曲线的性质都非常重要。

5. 双曲线的参数方程,了解双曲线的参数方程可以帮助我们更好地理解双曲线的图像和性质,也是考试中的常见考点。

6. 双曲线的性质,双曲线的离心率、焦距、直径等性质也是常见的考点,理解这些性质对于解题和分析双曲线都非常重要。

总之,双曲线的二级结论常用考点涵盖了双曲线的基本性质、方程、参数方程以及与其他几何图形的关系等内容。

对这些知识点的深入理解和掌握将有助于在考试中取得较好的成绩。

双曲线必备二级结论

双曲线必备二级结论

双曲线必备二级结论摘要:1.双曲线简介2.双曲线二级结论的重要性3.双曲线必备二级结论详解4.结论应用实例正文:在数学领域,双曲线是一种重要的曲线类型。

它不仅具有优美的几何形状,而且在实际问题中具有广泛的应用。

双曲线的研究不仅仅局限于一级结论,二级结论同样具有重要的理论价值和实用意义。

本文将详细阐述双曲线必备的二级结论,并通过对实例的分析,展现这些结论在实际问题中的重要作用。

首先,我们来简要了解一下双曲线。

双曲线是一种平面曲线,它的方程一般形式为:(x^2/a^2) - (y^2/b^2) = 1。

其中,a和b分别表示双曲线的横轴半轴长度和纵轴半轴长度。

双曲线具有两个分支,分别是左支和右支,它们分别位于横轴的负半轴和正半轴。

接下来,我们来探讨双曲线二级结论的重要性。

在双曲线的性质研究中,一级结论主要关注曲线的几何形状、基本性质和坐标方程。

而二级结论则进一步揭示了双曲线与直线、圆等曲线之间的内在联系,以及双曲线在更复杂数学问题中的应用。

这些二级结论不仅丰富了双曲线理论,还为实际问题的求解提供了更多的工具和方法。

那么,双曲线必备的二级结论有哪些呢?1.双曲线与直线的位置关系:当直线的斜率存在且不为零时,双曲线与直线有且仅有两个交点。

这两个交点分别位于双曲线的左支和右支上。

2.双曲线与圆的位置关系:双曲线与圆相交当且仅当圆的半径与双曲线焦距之比满足一定条件。

此外,双曲线与圆的交点个数还与圆心到双曲线焦点的距离有关。

3.双曲线焦点的性质:双曲线的焦点到曲线上的任意一点的距离之差为一个定值,这个定值即为双曲线的离心率。

4.双曲线的渐近线:当双曲线的参数a和b趋于无穷大时,双曲线趋于两条直线,这两条直线即为双曲线的渐近线。

5.双曲线的对称性:双曲线具有关于横轴和纵轴的对称性,即曲线上的任意一点关于横轴和纵轴的对称点仍在曲线上。

了解了这些二级结论后,我们来看一个实际应用实例。

已知双曲线方程为:(x^2/4) - (y^2/3) = 1,现有一直线方程为:y = kx + 1。

双曲线二级结论大全

双曲线二级结论大全

双曲线1.2.标准方程3.122PF PF a -=22221x y a b-=111PF e d =>4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相交.7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点.9.双曲线(a >0,b >0)的两个顶点为,,与y 轴平行的直线22221x y a b-=1(,0)A a -2(,0)A a 交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是.22221x y a b+=10.若在双曲线(a >0,b >0)上,则过的双曲线的切线方程是000(,)P x y 22221x y a b-=0P . 00221x x y ya b-=11.若在双曲线(a >0,b >0)外 ,则过Po 作双曲线的两条切线切000(,)P x y 22221x y a b-=点为P 1、P 2,则切点弦P 1P 2的直线方程是.00221x x y ya b-=12.AB 是双曲线(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的22221x y a b -=中点,则.22OM AB b k k a⋅=13.若在双曲线(a >0,b >0)内,则被Po 所平分的中点弦的方程是000(,)P x y 22221x y a b-=. 2200002222x x y y x y a b a b-=-14.若在双曲线(a >0,b >0)内,则过Po 的弦中点的轨迹方程是000(,)P x y 22221x y a b-=. 22002222x x y y x y a b a b-=-15.若PQ 是双曲线(b >a >0)上对中心张直角的弦,则22221x y a b-=. 122222121111(||,||)r OP r OQ r r a b +=-==16.若双曲线(b >a >0)上中心张直角的弦L 所在直线方程为22221x y a b-=1Ax By+=,则(1) ;(2) . (0)AB ≠222211A B a b -=+L =17.给定双曲线:(a >b >0), :,1C 222222b x a y a b -=2C 222222222()a b b x a y ab a b+-=-则(i)对上任意给定的点,它的任一直角弦必须经过上一定点M1C 00(,)P x y 2C . 2222002222(,)a b a b x y a b a b++---(ii)对上任一点在上存在唯一的点,使得的任一直角弦都经过点. 2C '''00(,)P x y 1C 'M 'M 'P 18.设为双曲线(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦00(,)P x y 22221x y a b-=PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点的充要条件是00(,)M mx my -(1)m ≠.212211m b k k m a+⋅=⋅-19.过双曲线(a >0,b >o )上任一点任意作两条倾斜角互补的直线交22221x y a b-=00(,)A x y 双曲线于B,C 两点,则直线BC 有定向且(常数).2020BC b x k a y =-20.双曲线(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点22221x y a b-=,则双曲线的焦点角形的面积为,12F PF γ∠=122cot2F PF S b γ∆=. 2(cot 2b Pc γ±21.若P 为双曲线(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦22221x y a b-=点, , ,则(或). 12PF F α∠=21PF F β∠=tan t 22c a co c a αβ-=+tan t 22c a co c a βα-=+22.双曲线(a >0,b >o )的焦半径公式: ,22221x y a b-=1(,0)F c -2(,0)F c 当在右支上时,,.00(,)M x y 10||MF ex a =+20||MF ex a =-当在左支上时,,.00(,)M x y 10||MF ex a =--20||MF ex a =-+23.若双曲线(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<22221x y a b-=时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 1与PF 2的比例中项.124.P 为双曲线(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线左支内一定22221x y a b-=点,则,当且仅当三点共线且在左支时,等号成立. 21||2||||AF a PA PF -≤+2,,A F P P 25.双曲线(a >0,b >0)上存在两点关于直线:对称的充要条22221x y a b -=l 0()y k x x =-件是.22220222()0a b a x k k a b k b +⎛⎫>≠≠± ⎪-⎝⎭且26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是双曲线(a >0,b >0)上一点,则点P 对双曲线两焦点张直角的充要sec tan x a y b ϕϕ=⎧⎨=⎩条件是. 2211tan e ϕ=-29.设A,B 为双曲线(a >0,b >0,)上两点,其直线AB 与双曲2222x y k a b-=0,1k k >≠线相交于,则. 22221x y a b-=,P Q AP BQ =30.在双曲线中,定长为2m ()的弦中点轨迹方程为22221x y a b-=0m >()()222222222222222221cosh sinh ,coth ,001sinh cosh coth ,00x y ay a t b t t x t a b bx m x y bx a t b t t y t a b ay ⎧⎡⎤⎛⎫--+=-==⎪⎢⎥ ⎪⎝⎭⎪⎣⎦=⎨⎡⎤⎛⎫⎪--+=-==⎢⎥ ⎪⎪⎝⎭⎣⎦⎩时,弦两端点在两支上,时,弦两端点在同支上31.设S 为双曲线(a >0,b >0)的通径,定长线段L 的两端点A,B 在双曲线右22221x y a b-=支上移动,记|AB|=,是AB 中点,则当时,有l 00(,)M x y l S ≥Φ20min ()2a l x c e=+,);当时,有. 222(c a b =+c e a =l S <Φ0min ()x =32.双曲线(a >0,b >0)与直线有公共点的充要条件是22221x y a b-=0Ax By C ++=.22222A a B b C -≤33.双曲线(a >0,b >0)与直线有公共点的充220022()()1x x y y a b ---=0Ax By C ++=要条件是.2222200()A a B b Ax By C -≤++34.设双曲线(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线22221x y a b-=上任意一点,在△PF 1F 2中,记, ,,则有12F PF α∠=12PF F β∠=12F F P γ∠=.sin (sin sin )ce aαγβ==±-35.经过双曲线(a >0,b >0)的实轴的两端点A 1和A 2的切线,与双曲线上任22221x y a b-=一点的切线相交于P 1和P 2,则. 21122||||P A P A b ⋅=36.已知双曲线(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且22221x y a b-=.(1);(2)|OP|2+|OQ|2的最小值为;(3)OP OQ ⊥22221111||||OP OQ a b +=-22224a b b a -的最小值是. OPQ S ∆2222a b b a-37.MN 是经过双曲线(a >0,b >0)过焦点的任一弦(交于两支),若AB 是经过22221x y a b-=双曲线中心O 且平行于MN 的弦,则.2||2||AB a MN =38.MN 是经过双曲线(a >b >0)焦点的任一弦(交于同支),若过双曲线中心O22221x y a b-=的半弦,则. OP MN ⊥2222111||||a MN OP b a -=-39.设双曲线(a >0,b >0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,22221x y a b-=过M 引一条直线与双曲线相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为两顶点)的交点N在直线:上.l 2a x m=40.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 41.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设双曲线方程,则斜率为k(k≠0)的平行弦的中点必在直线:的共轭22221x y a b-=l y kx =直线上,而且.'y k x =2'2b kk a=43.设A 、B 、C 、D 为双曲线(a >0,b >o )上四点,AB 、CD 所在直线的倾斜22221x y a b-=角分别为,直线AB 与CD 相交于P,且P 不在双曲线上,则,αβ. 22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅-=⋅-44.已知双曲线(a >0,b >0),点P 为其上一点F 1, F 2为双曲线的焦点,22221x y a b-=12F PF ∠的内(外)角平分线为,作F 1、F 2分别垂直于R 、S ,当P 跑遍整个双曲线时,R 、S 形l l 成的轨迹方程是(). 222x y a +=()()2222222222a y b x x c c y a y b x c ⎡⎤-±⎣⎦=-±45.设△ABC 三顶点分别在双曲线上,且AB 为的直径,为AB 的共轭直径所在的直ΓΓl 线,分别交直线AC 、BC 于E 和F ,又D 为上一点,则CD 与双曲线相切的充要条件l l Γ是D 为EF 的中点.46.过双曲线(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,22221x y a b-=弦MN 的垂直平分线交x 轴于P ,则. ||||2PF eMN =47.设A (x 1 ,y 1)是双曲线(a >0,b >0)上任一点,过A 作一条斜率为22221x y a b -=2121b x a y 的直线L ,又设d 是原点到直线 L 的距离, 分别是A 到双曲线两焦点的距离,则12,r r.ab =48.已知双曲线(a >0,b >0)和( ),一条直线顺次与22221x y a b -=2222x y a bλ-=01λ<<它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知双曲线(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分22221x y a b-=线与x 轴相交于点, 则或.0(,0)P x 220a b x a +≥220a b x a+≤-50.设P 点是双曲线(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记22221x y a b-=,则(1).(2) . 12F PF θ∠=2122||||1cos b PF PF θ=-122cot 2PF F S b θ∆=51.设过双曲线的实轴上一点B (m,o )作直线与双曲线相交于P 、Q 两点,A 为双曲线实轴的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :于M ,N 两点,则x n =. 90MBN ∠=()2222()a n m a m a m b n a --⇔=-++52.L 是经过双曲线(a >0,b >0)焦点F 且与实轴垂直的直线,A 、B 是双曲22221x y a b-=线的两个顶点,e 是离心率,点,若,则是锐角且或P L ∈APB α∠=α1sin eα≤(当且仅当时取等号).1sin arc eα≤||PF b =53.L 是经过双曲线(a >0,b >0)的实轴顶点A 且与x 轴垂直的直线,E 、F22221x y a b-=是双曲线的准线与x 轴交点,点,e 是离心率,,H 是L 与X 轴的交点cP L ∈EPF α∠=是半焦距,则是锐角且或(当且仅当时取等号).α1sin e α≤1sin arc e α≤||abPA c=54.L 是双曲线(a >0,b >0)焦点F 1且与x 轴垂直的直线,E 、F 是双曲线准22221x y a b-=线与x 轴交点,H 是L 与x 轴的交点,点,,离心率为e ,半焦距为c ,则P L ∈EPF α∠=为锐角且或(当且仅当时取等号).α21sin e α≤21sin arc e α≤1||PF =55.已知双曲线(a >0,b >0),直线L 通过其右焦点F 2,且与双曲线右支交于22221x y a b-=A 、B 两点,将A 、B 与双曲线左焦点F 1连结起来,则(当且仅222112(2)||||a b F A F B a+⋅≥当AB ⊥x 轴时取等号).56.设A 、B 是双曲线(a >0,b >0)的长轴两端点,P 是双曲线上的一点,22221x y a b-=, ,,c 、e 分别是双曲线的半焦距离心率,则有(1)PAB α∠=PBA β∠=BPA γ∠=.(2) .(3) . 22222|cos ||||s |ab PA a c co αα=-2tan tan 1e αβ=-22222cot PAB a b S b aγ∆=+57.设A 、B 是双曲线(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的22221x y a b-=区域)、外部的两点,且、的横坐标,(1)若过A 点引直线与双曲线这一A x B x 2A B x x a ⋅=支相交于P 、Q 两点,则;(2)若过B 引直线与双曲线这一支相交于P 、QPBA QBA ∠=∠两点,则.180PBA QBA ∠+∠=58.设A 、B 是双曲线(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的22221x y a b-=区域),外部的两点,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,(若B P 交双曲线这一支于两点,则P 、Q 不关于x 轴对称),且,则点A 、B 的横坐标PBA QBA ∠=∠、满足;(2)若过B 点引直线与双曲线这一支相交于P 、Q 两点,且A x B x 2A B x x a ⋅=,则点A 、B 的横坐标满足.180PBA QBA ∠+∠= 2A B x x a ⋅=59.设是双曲线的实轴的两个端点,是与垂直的弦,则直线',A A 22221x y a b-='QQ 'AA AQ与的交点P 的轨迹是双曲线.''AQ 22221x y a b+=60.过双曲线(a >0,b >0)的右焦点作互相垂直的两条弦AB 、CD,则22221x y a b -=F ;()2228||||||ab AB CD a b a b +≥≠-()22||||4c AB CD a a b a +≥==61.到双曲线(a >0,b >0)两焦点的距离之比等于(c 为半焦距)的动点22221x y a b -=c ab-M 的轨迹是姊妹圆.222()()x ec y eb ±+=62.到双曲线(a >0,b >0)的实轴两端点的距离之比等于(c 为半焦距)22221x y a b -=c ab-的动点M 的轨迹是姊妹圆.222()x c y b ±+=63.到双曲线(a >0,b >0)的两准线和x 轴的交点的距离之比为(c 为半22221x y a b -=c ab-焦距)的动点的轨迹是姊妹圆(e 为离心率).222()()b x a y e±+=64.已知P 是双曲线(a >0,b >0)上一个动点,是它实轴的两个端点,且22221x y a b-=',A A ,,则Q 点的轨迹方程是.AQ AP ⊥''AQ A P ⊥222241x b y a a-=65.双曲线的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和实轴之长的比例中项.66.设双曲线(a >0,b >0)实轴的端点为,是双曲线上的点过P22221x y a b -=',A A 11(,)P x y 作斜率为的直线,过分别作垂直于实轴的直线交于,则(1)2121b x a y l ',A A l ',M M.(2)四边形面积趋近于.''2||||AM A M b =''AMA M 2ab 67.已知双曲线(a >0,b >0)的右准线与x 轴相交于点,过双曲线右焦点22221x y a b-=l E F的直线与双曲线相交于A 、B 两点,点在右准线上,且轴,则直线AC 经过线段C l BC x ⊥EF 的中点.68.OA 、OB 是双曲线(a >0,b >0,且)的两条互相垂直的弦,O 为2222()1x a y a b--=a b ≠坐标原点,则(1)直线AB 必经过一个定点.(2) 以O A 、O B 为直径的两圆的2222(,0)ab b a-另一个交点Q 的轨迹方程是(除原点)。

双曲线二级结论大全

双曲线二级结论大全

双曲线1.122PF PF a -=2.标准方程22221x y a b -= 3.111PF e d =>4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相交.7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点.9.双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.10.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 11.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.12.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的中点,则22OM AB b k k a⋅=.13.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 14.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-. 15.若PQ 是双曲线22221x y a b-=(b >a >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22221x y a b-=(b >a >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b -=+;(2) 2222||L a A b B =-.17.给定双曲线1C :222222b x a y a b -=(a >b >0), 2C :222222222()a b b x a y ab a b+-=-,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 222202222(,)a b a b x y a b a b++---. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为双曲线22221x y a b-=(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1,PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=⋅-.19.过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).20.双曲线22221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122cot2F PF S b γ∆=,2(cot )2b Pc γ± . 21.若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+).22.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =--,20||MF ex a =-+.23.若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 1与PF 2的比例中项.24.P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线左支内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 在左支时,等号成立. 25.双曲线22221x y a b -=(a >0,b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()0a b a x k k a b k b +⎛⎫>≠≠± ⎪-⎝⎭且.26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直. 27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是双曲线sec tan x a y b ϕϕ=⎧⎨=⎩(a >0,b >0)上一点,则点P 对双曲线两焦点张直角的充要条件是2211tan e ϕ=-. 29.设A,B 为双曲线2222x y k a b-=(a >0,b >0,0,1k k >≠)上两点,其直线AB 与双曲线22221x y a b-=相交于,P Q ,则AP BQ =. 30.在双曲线22221x y a b-=中,定长为2m (0m >)的弦中点轨迹方程为()()222222222222222221cosh sinh ,coth ,001sinh cosh coth ,00x y ay a t b t t x t a b bx m x y bx a t b t t y t a b ay ⎧⎡⎤⎛⎫--+=-==⎪⎢⎥ ⎪⎝⎭⎪⎣⎦=⎨⎡⎤⎛⎫⎪--+=-==⎢⎥ ⎪⎪⎝⎭⎣⎦⎩时,弦两端点在两支上,时,弦两端点在同支上31.设S 为双曲线22221x y a b-=(a >0,b >0)的通径,定长线段L 的两端点A,B 在双曲线右支上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20min ()2a l x c e =+222(c a b =+,c e a =);当l S <Φ时,有0min ()x =32.双曲线22221x ya b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.33.双曲线220022()()1x x y y a b ---=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C -≤++.34.设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.35.经过双曲线22221x y a b-=(a >0,b >0)的实轴的两端点A 1和A 2的切线,与双曲线上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=. 36.已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -.37.MN 是经过双曲线22221x y a b-=(a >0,b >0)过焦点的任一弦(交于两支),若AB 是经过双曲线中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过双曲线22221x y a b-=(a >b >0)焦点的任一弦(交于同支),若过双曲线中心O 的半弦OP MN ⊥,则2222111||||a MN OP b a -=-. 39.设双曲线22221x y a b-=(a >0,b >0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,过M 引一条直线与双曲线相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为两顶点)的交点N在直线l :2a x m=上.40.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.41.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设双曲线方程22221x y a b-=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=.43.设A 、B 、C 、D 为双曲线22221x y a b-=(a >0,b >o )上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在双曲线上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅-=⋅-.44.已知双曲线22221x y a b-=(a >0,b >0),点P 为其上一点F 1, F 2为双曲线的焦点,12F PF ∠的内(外)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个双曲线时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤-±⎣⎦=-±). 45.设△ABC 三顶点分别在双曲线Γ上,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与双曲线Γ相切的充要条件是D 为EF 的中点.46.过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 47.设A (x 1 ,y 1)是双曲线22221x y a b -=(a >0,b >0)上任一点,过A 作一条斜率为2121b x a y 的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是A到双曲线两焦点的距离,则ab =.48.已知双曲线22221x y a b -=(a >0,b >0)和2222x y a bλ-=(01λ<< ),一条直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.50.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b θ∆=.51.设过双曲线的实轴上一点B (m,o )作直线与双曲线相交于P 、Q 两点,A 为双曲线实轴的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则90MBN ∠=o()2222()a n m a m a m b n a --⇔=-++. 52.L 是经过双曲线22221x y a b-=(a >0,b >0)焦点F 且与实轴垂直的直线,A 、B 是双曲线的两个顶点,e 是离心率,点P L ∈,若APB α∠=,则α是锐角且1sin eα≤或1sin arc eα≤(当且仅当||PF b =时取等号).53.L 是经过双曲线22221x y a b-=(a >0,b >0)的实轴顶点A 且与x 轴垂直的直线,E 、F是双曲线的准线与x 轴交点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c是半焦距,则α是锐角且1sin e α≤或1sin arc e α≤(当且仅当||abPA c=时取等号).54.L 是双曲线22221x y a b-=(a >0,b >0)焦点F 1且与x 轴垂直的直线,E 、F 是双曲线准线与x 轴交点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且21sin e α≤或21sin arc e α≤(当且仅当1||PF =.55.已知双曲线22221x y a b-=(a >0,b >0),直线L 通过其右焦点F 2,且与双曲线右支交于A 、B 两点,将A 、B 与双曲线左焦点F 1连结起来,则222112(2)||||a b F A F B a+⋅≥(当且仅当AB ⊥x 轴时取等号).56.设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b aγ∆=+. 57.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与双曲线这一支相交于P 、Q 两点,则180PBA QBA ∠+∠=o.58.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域),外部的两点,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,(若B P 交双曲线这一支于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与双曲线这一支相交于P 、Q 两点,且180PBA QBA ∠+∠=o ,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是双曲线22221x y a b-=的实轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ与''AQ 的交点P 的轨迹是双曲线22221x y a b+=.60.过双曲线22221x y a b -=(a >0,b >0)的右焦点F 作互相垂直的两条弦AB 、CD,则()2228||||||ab AB CD a b a b +≥≠-;()22||||4c AB CD a a b a +≥==61.到双曲线22221x y a b -=(a >0,b >0)两焦点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()()x ec y eb ±+=.62.到双曲线22221x y a b -=(a >0,b >0)的实轴两端点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()x c y b ±+=.63.到双曲线22221x y a b -=(a >0,b >0)的两准线和x 轴的交点的距离之比为c ab-(c 为半焦距)的动点的轨迹是姊妹圆222()()b x a y e±+=(e 为离心率).64.已知P 是双曲线22221x y a b-=(a >0,b >0)上一个动点,',A A 是它实轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a-=.65.双曲线的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和实轴之长的比例中项.66.设双曲线22221x y a b -=(a >0,b >0)实轴的端点为',A A ,11(,)P x y 是双曲线上的点过P作斜率为2121b x a y 的直线l ,过',A A 分别作垂直于实轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''AMA M 面积趋近于2ab .67.已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是双曲线2222()1x a y a b--=(a >0,b >0,且a b ≠)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab b a-.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y b a b a-+=--(除原点)。

高中数学双曲线二级结论大全

高中数学双曲线二级结论大全

双曲线二级结论大全1.122PF PF a -=2.标准方程22221x y a b -= 3.111PF e d =>4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相交.7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点.9.双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.10.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=.11.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b -=.12.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的中点,则22OM AB b k k a⋅=.13.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 14.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-. 15.若PQ 是双曲线22221x y a b-=(b > a >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22221x y a b-=(b >a >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1)222211A B a b -=+;(2) 2222||L a A b B =-. 17.给定双曲线1C :222222b x a y a b -=(a >b >0), 2C :222222222()a b b x a y ab a b+-=-,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 222202222(,)a b a b x y a b a b++---. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为双曲线22221x y a b-=(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=⋅-. 19.过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC 有定向且2020BC b x k a y =-(常数).20.双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122cot 2F PF S b γ∆=,2(cot )2b P c γ± . 21.若P 为双曲线22221x y a b -=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+).22.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =--,20||MF ex a =-+.23.若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 1与PF 2的比例中项.24.P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线左支内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 在左支时,等号成立.25.双曲线22221x y a b -=(a >0,b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()0a b a x k k a b k b +⎛⎫>≠≠± ⎪-⎝⎭且.26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 28.P 是双曲线sec tan x a y b ϕϕ=⎧⎨=⎩(a >0,b >0)上一点,则点P 对双曲线两焦点张直角的充要条件是2211tan e ϕ=-.29.设A,B 为双曲线2222x y k a b -=(a >0,b >0,0,1k k >≠)上两点,其直线AB 与双曲线22221x y a b-=相交于,P Q ,则AP BQ =.30.在双曲线22221x y a b-=中,定长为2m (0m >)的弦中点轨迹方程为()()222222222222222221cosh sinh ,coth ,001sinh cosh coth ,00x y ay a t b t t x t a b bx m x y bx a t b t t y t a b ay ⎧⎡⎤⎛⎫--+=-==⎪⎢⎥ ⎪⎝⎭⎪⎣⎦=⎨⎡⎤⎛⎫⎪--+=-==⎢⎥ ⎪⎪⎝⎭⎣⎦⎩时,弦两端点在两支上,时,弦两端点在同支上 31.设S 为双曲线22221x y a b-=(a >0,b >0)的通径,定长线段L 的两端点A,B 在双曲线右支上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20min ()2a l x c e =+222(c a b =+,ce a=);当l S <Φ时,有0min ()x =32.双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.33.双曲线220022()()1x x y y a b---=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C -≤++.34.设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce a αγβ==±-. 35.经过双曲线22221x y a b-=(a >0,b >0)的实轴的两端点A 1和A 2的切线,与双曲线上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=. 36.已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -. 37.MN 是经过双曲线22221x y a b-=(a >0,b >0)过焦点的任一弦(交于两支),若AB 是经过双曲线中心O且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过双曲线22221x y a b -=(a >b >0)焦点的任一弦(交于同支),若过双曲线中心O 的半弦OP MN ⊥,则2222111||||a MN OP b a -=-. 39.设双曲线22221x y a b-=(a >0,b >0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,过M 引一条直线与双曲线相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为两顶点)的交点N 在直线l :2a x m=上.40.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.41.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设双曲线方程22221x y a b-=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=.43.设A 、B 、C 、D 为双曲线22221x y a b-=(a >0,b >o )上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在双曲线上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅-=⋅-.44.已知双曲线22221x y a b-=(a >0,b >0),点P 为其上一点F 1, F 2为双曲线的焦点,12F PF ∠的内(外)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个双曲线时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤-±⎣⎦=-±). 45.设△ABC 三顶点分别在双曲线Γ上,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与双曲线Γ相切的充要条件是D 为EF 的中点.46.过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 47.设A (x 1 ,y 1)是双曲线22221x y a b -=(a >0,b >0)上任一点,过A 作一条斜率为2121b x a y 的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是Aab =.48.已知双曲线22221x y a b -=(a >0,b >0)和2222x y a bλ-=(01λ<< ),一条直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.50.设P 点是双曲线22221x y a b -=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b θ∆=.51.设过双曲线的实轴上一点B (m,o )作直线与双曲线相交于P 、Q 两点,A 为双曲线实轴的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则90MBN ∠=()2222()a n m a ma mb n a --⇔=-++. 52.L 是经过双曲线22221x y a b-=(a >0,b >0)焦点F 且与实轴垂直的直线,A 、B 是双曲线的两个顶点,e是离心率,点P L ∈,若APB α∠=,则α是锐角且1sin e α≤或1sin arc eα≤(当且仅当||PF b =时取等号).53.L 是经过双曲线22221x y a b-=(a >0,b >0)的实轴顶点A 且与x 轴垂直的直线,E 、F 是双曲线的准线与x 轴交点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且1sin eα≤或1sin arc e α≤(当且仅当||abPA c =时取等号).54.L 是双曲线22221x y a b-=(a >0,b >0)焦点F 1且与x 轴垂直的直线,E 、F 是双曲线准线与x 轴交点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且21sin eα≤或21sin arc e α≤(当且仅当1||PF =.55.已知双曲线22221x y a b-=(a >0,b >0),直线L 通过其右焦点F 2,且与双曲线右支交于A 、B 两点,将A 、B 与双曲线左焦点F 1连结起来,则222112(2)||||a b F A F B a +⋅≥(当且仅当AB ⊥x 轴时取等号).56.设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=+.57.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与双曲线这一支相交于P 、Q 两点,则180PBA QBA ∠+∠=. 58.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域),外部的两点,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,(若B P 交双曲线这一支于两点,则P 、Q不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与双曲线这一支相交于P 、Q 两点,且180PBA QBA ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是双曲线22221x y a b -=的实轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b +=.60.过双曲线22221x y a b -=(a >0,b >0)的右焦点F 作互相垂直的两条弦AB 、CD,则()2228||||||ab AB CD a b a b +≥≠-;()22||||4c AB CD a a b a +≥==61.到双曲线22221x y a b -=(a >0,b >0)两焦点的距离之比等于c ab -(c 为半焦距)的动点M 的轨迹是姊妹圆222()()x ec y eb ±+=.62.到双曲线22221x y a b -=(a >0,b >0)的实轴两端点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()x c y b ±+=.63.到双曲线22221x y a b -=(a >0,b >0)的两准线和x 轴的交点的距离之比为c ab-(c 为半焦距)的动点的轨迹是姊妹圆222()()b x a y e ±+=(e 为离心率).64.已知P 是双曲线22221x y a b-=(a >0,b >0)上一个动点,',A A 是它实轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a-=.65.双曲线的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和实轴之长的比例中项.66.设双曲线22221x y a b -=(a >0,b >0)实轴的端点为',A A ,11(,)P x y 是双曲线上的点过P 作斜率为2121b x a y 的直线l ,过',A A 分别作垂直于实轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''AMA M 面积趋近于2ab .67.已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是双曲线2222()1x a y a b--=(a >0,b >0,且a b ≠)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab b a-.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y b a b a-+=--(除原点)。

椭圆二级结论大全(附证明)

椭圆二级结论大全(附证明)

椭圆二级结论大全(附证明)双曲线常用二级结论内容如下:1、双曲线可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。

这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。

a还叫做双曲线的实半轴。

焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。

2、在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。

双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。

3、双曲线是由平面和双锥相交形成的三种圆锥截面之一。

(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。

4、双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。

对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。

所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。

5、双曲线共享许多椭圆的分析属性,如偏心度,焦点和方向图。

许多其他数学物体的起源于双曲线,例如双曲抛物面,双曲线几何,双曲线函数和陀螺仪矢量空间。

双曲线的标准方程推导:双曲线有两个焦点,两条准线。

注意:尽管定义2中只提到了一个焦点和一条准线。

但是给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,而两侧的焦点,准线和相同离心率得到的双曲线是相同的。

渐近线和双曲线不相交。

渐近线的方程求法是:将右边的常数设为0,即可用解二元二次的方法求出渐近线的解,例如:X2/2-Y2/4=1,令1=0,则X2/2=Y2/4,则双曲线的渐近线为Y=±(√2)X。

一般地把直线Y=±(b/a)X叫做双曲线的渐进线,焦点在y轴上直线为Y=±(a/b)X双曲线x2/a2-y2/b2=1上一点与两顶点连线的斜率之积为b2/a2。

双曲线必备二级结论

双曲线必备二级结论

双曲线必备二级结论
1. 双曲线的焦点和准线之间的距离是常数。

这个常数称为焦距,用f表示。

焦距与双曲线的方程有关,可以通过方程中的某些
参数计算出来。

2. 双曲线的两条渐近线是对称的,即它们与双曲线的对称轴关于垂直线对称。

3. 双曲线的离心率是一个重要的参数,用e表示。

离心率的值决定了双曲线的形状,越接近1,双曲线越“扁”,越接近无穷大,双曲线越“尖”。

4. 双曲线的焦点到双曲线上任意一点的距离与该点到准线的距离的差是常数。

换句话说,焦点到双曲线上任意一点的距离减去该点到准线的距离的差是常数。

5. 双曲线的众多形状中,最常见的是水平双曲线,其方程为
(x/a)^2-(y/b)^2=1或(y/b)^2-(x/a)^2=1,其中a和b是正实数。

这些二级结论是学习和理解双曲线的基础,对于解题和推导双曲线的性质非常重要。

双曲线的二级结论高中常用

双曲线的二级结论高中常用

双曲线的二级结论高中常用双曲线的高中常用二级结论。

一、双曲线的定义相关结论。

1. 双曲线上一点到两焦点距离之差的绝对值为定值。

- 对于双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1(a>0,b>0),其焦点为F_1,F_2,设双曲线上一点P,根据双曲线的定义|| PF_1|-| PF_2|| = 2a。

- 原因:双曲线是平面内到两个定点F_1,F_2(即焦点)的距离之差的绝对值为常数(小于| F_1F_2|)的点的轨迹。

这个常数就是2a,它反映了双曲线的形状特征,a越小,双曲线的开口越窄。

2. 焦点三角形面积公式。

- 设双曲线frac{x^2}{a^2}-frac{y^2}{b^2}=1(a > 0,b > 0)的两个焦点为F_1,F_2,双曲线上一点P,∠ F_1PF_2=θ,则焦点三角形PF_1F_2的面积S =b^2cot(θ)/(2)。

- 推导过程:- 根据双曲线定义|| PF_1|-| PF_2|| = 2a,两边平方得| PF_1|^2+| PF_2|^2-2| PF_1|| PF_2| = 4a^2。

- 在PF_1F_2中,根据余弦定理| F_1F_2|^2=| PF_1|^2+| PF_2|^2-2| PF_1|| PF_2|cosθ,又| F_1F_2| = 2c。

- 将| PF_1|^2+| PF_2|^2-2| PF_1|| PF_2| = 4a^2代入上式可得4c^2=4a^2+2| PF_1|| PF_2|(1 - cosθ),化简得| PF_1|| PF_2|=frac{2b^2}{1-cosθ}。

- 所以三角形面积S=(1)/(2)| PF_1|| PF_2|sinθ=b^2(sinθ)/(1 -cosθ)=b^2cot(θ)/(2)。

二、双曲线的渐近线相关结论。

1. 渐近线方程。

- 对于双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1(a>0,b>0),其渐近线方程为y=±(b)/(a)x;对于双曲线frac{y^2}{a^2}-frac{x^2}{b^2} = 1(a>0,b>0),其渐近线方程为y=±(a)/(b)x。

双曲线必备二级结论

双曲线必备二级结论

双曲线必备二级结论1. 什么是双曲线?双曲线是数学中的一种曲线,它是由平面上一条直线和一个固定点(称为焦点)及其到直线的距离比之于另一个固定点(称为准线)到直线的距离比等于一个常数的点的集合。

2. 双曲线的基本性质2.1 双曲线的定义双曲线是由一个点F(焦点)和一条直线L(准线)确定的,对于平面上的任意一点P,其到焦点F的距离与到准线L的距离之比等于一个常数e(离心率)。

2.2 双曲线的标准方程双曲线的标准方程为:x 2a2−y2b2=1,其中a为焦点到原点的距离,b为准线到原点的距离。

2.3 双曲线的对称轴、顶点和渐近线•对称轴:双曲线的对称轴是准线L的垂直平分线,方程为x=0。

•顶点:双曲线的顶点是焦点F和准线L的交点,坐标为(0,0)。

•渐近线:双曲线有两条渐近线,分别与双曲线无限延伸时的曲线趋于重合,方程为y=x。

2.4 双曲线的离心率和焦距•离心率:离心率e是一个常数,表示焦点到准线的距离与焦点到双曲线上任意一点的距离之比。

离心率的计算公式为e=。

•焦距:焦距c是焦点到准线的距离,计算公式为c=。

2.5 双曲线的渐近线斜率双曲线的渐近线斜率为。

2.6 双曲线的图像特点双曲线的图像特点包括:无界性、两支曲线、渐近线、对称性等。

3. 双曲线的分类双曲线根据离心率e的大小可以分为三种情况:e>1时为双曲线、e=1时为抛物线、e<1时为椭圆。

4. 双曲线的应用4.1 物理学中的应用双曲线在物理学中有广泛的应用,例如天体运动的轨道、电场和磁场的分布等都可以用双曲线来描述。

4.2 工程学中的应用双曲线在工程学中也有很多应用,例如桥梁设计、电子电路设计等都需要用到双曲线的知识。

4.3 经济学中的应用双曲线在经济学中也有一些应用,例如需求曲线和供给曲线的交点就可以用双曲线来描述。

5. 总结双曲线是数学中的一种重要曲线,具有许多特点和应用。

通过学习双曲线的定义、标准方程、基本性质和应用,我们可以更好地理解双曲线的几何特性和实际意义,为进一步的学习和应用打下坚实的基础。

双曲线 二级结论

双曲线 二级结论

双曲线二级结论双曲线二级结论有:1. 已知双曲线的离心率 e,半轴长 a 和 b,则双曲线的渐近线方程为 y = ±(b/a)x。

2. 已知双曲线的一个焦点和与其对应的准线方程,则可以确定双曲线的标准方程。

3. 已知双曲线的一个焦点和与其对应的顶点,则可以确定双曲线的标准方程。

4. 已知双曲线的一个顶点和与其对应的准线方程,则可以确定双曲线的标准方程。

5. 已知双曲线的一个顶点和与其对应的焦点,则可以确定双曲线的标准方程。

6. 已知双曲线的一个焦点和与其对应的渐近线方程,则可以确定双曲线的标准方程。

7. 已知双曲线的一个顶点和与其对应的渐近线方程,则可以确定双曲线的标准方程。

8. 双曲线过焦点的直线交双曲线于AB两点,并分别交准线于CD两点,那么有:|AB| * |CD| = |PF1| * |PF2| = 2b² / a。

9. 过点(m,0)作x轴的垂线,垂足为M,若直线y = kx + b与直线OM的斜率的乘积为-1,则:y = kx + b与双曲线只有一个交点;y = kx + b与双曲线相交于A、B两点,且点P是弦AB的中点,当PA与x轴垂直时,直线PA的斜率为k或-k。

10. 若以原点为中心,实轴在x轴上(2a<2c),右焦点为F(c,0),左焦点为F'(-c,0),过F作直线交双曲线于A、B两点,过F'作直线交双曲线于C、D 两点。

那么有:①当AB是垂直于x轴的直线时,CD是垂直于x轴的直线;当AB 不是垂直于x轴的直线时,CD不是垂直于x轴的直线。

②若直线AB和CD的斜率都存在且不为0,则有:若直线AB的斜率与CD的斜率互为相反数,则直线AB 与CD平行。

③若直线AB和CD的斜率都存在且不为0,则有:若直线AB的斜率与CD的斜率互为倒数,则直线AB与CD重合。

④若直线AB与CD相交于点Q,则有:点Q必在圆x² + y² = c²上。

双曲线二级结论总结

双曲线二级结论总结

双曲线二级结论总结
双曲线是数学中的一种重要曲线,它具有许多重要的性质和结论。

在这里,我将从多个角度对双曲线的二级结论进行总结。

首先,双曲线的定义是平面上满足特定数学方程的曲线。

它的数学方程通常可以写成x^2/a^2 y^2/b^2 = 1或者y^2/b^2
x^2/a^2 = 1的形式。

双曲线有两条渐近线,它们与曲线的距离趋于零,而且曲线在这两条渐近线的两侧无穷远处相交。

其次,双曲线的焦点和准线是双曲线的重要性质。

焦点是指平面上的一点,对于双曲线而言,所有到焦点的距离之差都是一个常数。

准线是与双曲线相切且与两焦点连线垂直的直线。

这两个概念是研究双曲线的二级结论时经常涉及的重要因素。

另外,双曲线还具有许多重要的性质和结论,比如双曲线的渐近线方程、曲率、焦点的坐标等。

这些性质和结论在数学和物理学中有着广泛的应用,特别是在几何光学、天文学、电磁学等领域。

总的来说,双曲线的二级结论涉及到双曲线的定义、性质、焦点、准线等方面,这些结论对于深入理解双曲线的特性和应用具有
重要意义。

通过综合多个角度对双曲线的二级结论进行总结,可以更好地理解和应用双曲线的相关知识。

7类二级结论双曲线小题应用全答案

7类二级结论双曲线小题应用全答案

7类二级结论双曲线应用全参考答案:1.1260F PF ∠=︒【详解】不妨设点()00,P x y 在双曲线的右支上.由题设易得12F F =121001122PF F S F F y ==⨯=解得02y =.又由22001x y -=,解得2200651142x y =+=+=.由双曲线的第二定义得21001a PF e x a ex c ⎡⎤⎛⎫=--=+=+⎢⎥ ⎪⎝⎭⎣⎦,及220001a PF e x ex a c ⎛⎫=-=-- ⎪⎝⎭.再由余弦定理得()()2222001220112218cos 221x F PF x +--+-∠==-2(51)812(51)2⨯+-==⨯-.故1260F PF ∠=︒.2.C【分析】根据题目条件求出双曲线方程,得到渐近线方程,可得两条渐近线的夹角.【详解】设1PF m =,2PF n =,由双曲线的定义可知2m n a -=,又1290F PF ∠=,2c =,123F PF S = ,可得2224m n c +=,6mn =,即()2222412416m n mn a c -+=+==,解得1a=,b==可得双曲线的渐近线方程为y=,两条渐近线的夹角为60 .故选:C 3【分析】利用余弦定理可得1PF =,然后利用双曲线的定义结合条件即得.【详解】因为2122PF F F c ==,21π6F F P ∠=,所以2112222211212cos PF PF F F PF F F F F P +⋅∠=-,即222112244c PF c PF c =-+⋅,所以1PF =,又122PF PF a -=,所以22c a -=,即e ==故答案为:.4.65因为1112+-+=λλk e所以6=5e =;5.6因为1112-++=λλk e所以e =6.D因为1112+-+=λλk e=;0k k >∴= 7.C【分析】由焦点到渐近线的距离得到b ,联立直线与双曲线的方程,用点差法可以得到两条直线的斜率,由116PA PB k k ⋅=,求a 的值,A ,B ,D 三个选项即可判断,C 选项考查双曲线的定义,用()2221212122PF PF PF PF PF PF +=-+得到12PF PF 的值,就可以计算三角形的面积.【详解】因为双曲线C :()222210,0x y a b a b-=>>的焦点到渐近线的距离为1,则1b =,所以双曲线方程为C :()22210x y a a -=>,由2221y kx x y a=⎧⎪⎨-=⎪⎩可得222110k x a ⎛⎫--= ⎪⎝⎭,设()11,A x y ,()22,B x y ,则120x x +=,即21x x =-,∴()11,B x y --,设()00,P x y 则221121x y a -=,220021x y a -=,所以222210102x x y y a -=-,即2210222101y y x x a -=-,又1010PA y y k x x -=-,1010PB y y k x x --=--,116PA PB k k ⋅=,所以221010012221010011116PA PBy y y y y y k k x x x x x x a ----⋅=⋅===----,∴216a =,即4a =,故A 错误;所以双曲线C :22116x y -=,1b =,c =双曲线C 的渐近线方程为14y x =±,离心率为4,故B 错误,D 错误;若12PF PF ⊥,则()(22221212122PF PF PF PF PF PF +=-+=,所以122PF PF =,12PF F △的面积为1,故C 正确.故选:C.8.B【分析】由题知()()4,0,4,0A B -,进而结合题意设()()0000,,,C x y D x y -,再结合()202091616x y -=,计算12k k 即可得答案.【详解】解:由题知()()4,0,4,0A B -,因为圆221:1169x y C -=与双曲线交于,C D 两点,所以,根据对称性可设()()0000,,,C x y D x y -,所以,001200,44y y k k x x -==+-,所以20001220004416y y y k k x x x --=⋅=+--,因为22001169x y -=,即()202091616x y -=,所以()2020001222000091691644161616x y y y k k x x x x ----=⋅===-+---故选:B 9.A【分析】设()00,P x y ,应用斜率两点式得到202202y x a =-,根据P 为双曲线C 上一点即可得双曲线参数关系,进而求其离心率.【详解】依题意12(,0),(,0)A a A a -,设()00,P x y ,则0012002y yk k x a x a⋅=⋅=+-,∴202202y x a =-,又()2222220220000222211b x a x y x y b a b a a -⎛⎫-=⇒=-= ⎪⎝⎭,∴222b a=,故22213b e a =+=,即e =故选:A 10.B【分析】首先根据题意得到a =1b =,c =x 轴,再根据点到直线的距离求解即可。

高中数学最全双曲线二级结论大全

高中数学最全双曲线二级结论大全

双曲线1.122PF PF a -=2.标准方程22221x y a b -= 3.111PF e d =>4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相交.7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点.9.双曲线22221x y a b -=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.10.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 11.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 12.AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的中点,则22OM ABb k k a⋅=. 13.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-.14.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-. 15.若PQ 是双曲线22221x y a b -=(b >a >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22221x y a b-=(b >a >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b -=+;(2) L =17.给定双曲线1C :222222b x a y a b -=(a >b >0), 2C :222222222()a b b x a y ab a b+-=-,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222002222(,)a b a b x y a b a b++---. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为双曲线22221x y a b-=(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1,PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a +⋅=⋅-.19.过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BCb x k a y =-(常数).20.双曲线22221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122cot 2F PF S b γ∆=,2(cot )2b Pc γ± . 21.若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 22.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =--,20||MF ex a =-+.23.若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 1与PF 2的比例中项.24.P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线左支内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 在左支时,等号成立.25.双曲线22221x y a b -=(a >0,b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()0a b a x k k a b k b +⎛⎫>≠≠± ⎪-⎝⎭且.26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 28.P 是双曲线sec tan x a y b ϕϕ=⎧⎨=⎩(a >0,b >0)上一点,则点P 对双曲线两焦点张直角的充要条件是2211tan e ϕ=-. 29.设A,B 为双曲线2222x y k a b -=(a >0,b >0,0,1k k >≠)上两点,其直线AB 与双曲线22221x y a b-=相交于,P Q ,则AP BQ =. 30.在双曲线22221x y a b-=中,定长为2m (0m >)的弦中点轨迹方程为()()222222222222222221cosh sinh ,coth ,001sinh cosh coth ,00x y ay a t b t t x t a b bx m x y bx a t b t t y t a b ay ⎧⎡⎤⎛⎫--+=-==⎪⎢⎥ ⎪⎝⎭⎪⎣⎦=⎨⎡⎤⎛⎫⎪--+=-==⎢⎥ ⎪⎪⎝⎭⎣⎦⎩时,弦两端点在两支上,时,弦两端点在同支上31.设S 为双曲线22221x y a b-=(a >0,b >0)的通径,定长线段L 的两端点A,B 在双曲线右支上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20min()2a l x c e =+222(c a b =+,c e a =);当l S <Φ时,有0min ()x =32.双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.33.双曲线220022()()1x x y y a b---=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C -≤++.34.设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.35.经过双曲线22221x y a b-=(a >0,b >0)的实轴的两端点A 1和A 2的切线,与双曲线上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=.36.已知双曲线22221x y a b -=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -.37.MN 是经过双曲线22221x y a b-=(a >0,b >0)过焦点的任一弦(交于两支),若AB 是经过双曲线中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过双曲线22221x y a b-=(a >b >0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP MN ⊥,则2222111||||a MN OP b a-=-. 39.设双曲线22221x y a b-=(a >0,b >0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,过M 引一条直线与双曲线相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为两顶点)的交点N在直线l :2a x m=上.40.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.41.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设双曲线方程22221x y a b-=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=.43.设A 、B 、C 、D 为双曲线22221x y a b-=(a >0,b >o )上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在双曲线上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅-=⋅-. 44.已知双曲线22221x y a b-=(a >0,b >0),点P 为其上一点F 1, F 2为双曲线的焦点,12F PF ∠的内(外)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个双曲线时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤-±⎣⎦=-±). 45.设△ABC 三顶点分别在双曲线Γ上,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与双曲线Γ相切的充要条件是D 为EF 的中点.46.过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1 ,y 1)是双曲线22221x y a b -=(a >0,b >0)上任一点,过A 作一条斜率为2121b x a y 的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是A到双曲线两焦点的距离,则ab =.48.已知双曲线22221x y a b -=(a >0,b >0)和2222x y a bλ-=(01λ<< ),一条直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.50.设P 点是双曲线22221x y a b -=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b θ∆=.51.设过双曲线的实轴上一点B (m,o )作直线与双曲线相交于P 、Q 两点,A 为双曲线实轴的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则90MBN ∠=()2222()a n m a ma mb n a --⇔=-++. 52.L 是经过双曲线22221x y a b-=(a >0,b >0)焦点F 且与实轴垂直的直线,A 、B 是双曲线的两个顶点,e 是离心率,点P L ∈,若APB α∠=,则α是锐角且1sin e α≤或1sin arc eα≤(当且仅当||PF b =时取等号).53.L 是经过双曲线22221x y a b-=(a >0,b >0)的实轴顶点A 且与x 轴垂直的直线,E 、F是双曲线的准线与x 轴交点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且1sin e α≤或1sin arc e α≤(当且仅当||ab PA c=时取等号). 54.L 是双曲线22221x y a b-=(a >0,b >0)焦点F 1且与x 轴垂直的直线,E 、F 是双曲线准线与x 轴交点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且21sin e α≤或21sin arc e α≤(当且仅当1||PF =. 55.已知双曲线22221x y a b -=(a >0,b >0),直线L 通过其右焦点F 2,且与双曲线右支交于A 、B 两点,将A 、B 与双曲线左焦点F 1连结起来,则222112(2)||||a b F A F B a+⋅≥(当且仅当AB ⊥x 轴时取等号).56.设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=+. 57.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与双曲线这一支相交于P 、Q 两点,则180PBA QBA ∠+∠=.58.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域),外部的两点,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,(若B P 交双曲线这一支于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与双曲线这一支相交于P 、Q 两点,且180PBA QBA ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是双曲线22221x y a b-=的实轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ与''AQ 的交点P 的轨迹是双曲线22221x y a b+=.60.过双曲线22221x y a b -=(a >0,b >0)的右焦点F 作互相垂直的两条弦AB 、CD,则()2228||||||ab AB CD a b a b +≥≠-; ()22||||4c AB CD a a b a+≥==61.到双曲线22221x y a b -=(a >0,b >0)两焦点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()()x ec y eb ±+=.62.到双曲线22221x y a b -=(a >0,b >0)的实轴两端点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()x c y b ±+=.63.到双曲线22221x y a b -=(a >0,b >0)的两准线和x 轴的交点的距离之比为c ab-(c 为半焦距)的动点的轨迹是姊妹圆222()()bx a y e±+=(e 为离心率).64.已知P 是双曲线22221x y a b -=(a >0,b >0)上一个动点,',A A 是它实轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a-=.65.双曲线的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和实轴之长的比例中项.66.设双曲线22221x y a b-=(a >0,b >0)实轴的端点为',A A ,11(,)P x y 是双曲线上的点过P作斜率为2121b x a y 的直线l ,过',A A 分别作垂直于实轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''AMA M 面积趋近于2ab .67.已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是双曲线2222()1x a y a b --=(a >0,b >0,且a b ≠)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab b a -.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y b a b a-+=--(除原点)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线1.122PF PF a -=2.标准方程22221x y a b -= 3.111PF e d =>4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相交.7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.8.设P 为双曲线上一点,则△PF 1F 2的内切圆必切于与P 在同侧的顶点.9.双曲线22221x y a b -=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.10.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 11.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 12.AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的中点,则22OM ABb k k a⋅=. 13.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-.14.若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-. 15.若PQ 是双曲线22221x y a b -=(b >a >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22221x y a b-=(b >a >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b -=+;(2) L =17.给定双曲线1C :222222b x a y a b -=(a >b >0), 2C :222222222()a b b x a y ab a b+-=-,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 2222002222(,)a b a b x y a b a b++---. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为双曲线22221x y a b-=(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1,PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a +⋅=⋅-.19.过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BCb x k a y =-(常数).20.双曲线22221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122cot 2F PF S b γ∆=,2(cot )2b Pc γ± . 21.若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 22.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =--,20||MF ex a =-+.23.若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 1与PF 2的比例中项.24.P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线左支内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 在左支时,等号成立.25.双曲线22221x y a b -=(a >0,b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()0a b a x k k a b k b +⎛⎫>≠≠± ⎪-⎝⎭且.26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 28.P 是双曲线sec tan x a y b ϕϕ=⎧⎨=⎩(a >0,b >0)上一点,则点P 对双曲线两焦点张直角的充要条件是2211tan e ϕ=-. 29.设A,B 为双曲线2222x y k a b -=(a >0,b >0,0,1k k >≠)上两点,其直线AB 与双曲线22221x y a b-=相交于,P Q ,则AP BQ =. 30.在双曲线22221x y a b-=中,定长为2m (0m >)的弦中点轨迹方程为()()222222222222222221cosh sinh ,coth ,001sinh cosh coth ,00x y ay a t b t t x t a b bx m x y bx a t b t t y t a b ay ⎧⎡⎤⎛⎫--+=-==⎪⎢⎥ ⎪⎝⎭⎪⎣⎦=⎨⎡⎤⎛⎫⎪--+=-==⎢⎥ ⎪⎪⎝⎭⎣⎦⎩时,弦两端点在两支上,时,弦两端点在同支上31.设S 为双曲线22221x y a b-=(a >0,b >0)的通径,定长线段L 的两端点A,B 在双曲线右支上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20min()2a l x c e =+222(c a b =+,c e a =);当l S <Φ时,有0min ()x =32.双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.33.双曲线220022()()1x x y y a b---=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C -≤++.34.设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.35.经过双曲线22221x y a b-=(a >0,b >0)的实轴的两端点A 1和A 2的切线,与双曲线上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=.36.已知双曲线22221x y a b -=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -.37.MN 是经过双曲线22221x y a b-=(a >0,b >0)过焦点的任一弦(交于两支),若AB 是经过双曲线中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过双曲线22221x y a b-=(a >b >0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP MN ⊥,则2222111||||a MN OP b a-=-. 39.设双曲线22221x y a b-=(a >0,b >0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,过M 引一条直线与双曲线相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为两顶点)的交点N在直线l :2a x m=上.40.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.41.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设双曲线方程22221x y a b-=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=.43.设A 、B 、C 、D 为双曲线22221x y a b-=(a >0,b >o )上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在双曲线上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅-=⋅-. 44.已知双曲线22221x y a b-=(a >0,b >0),点P 为其上一点F 1, F 2为双曲线的焦点,12F PF ∠的内(外)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个双曲线时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤-±⎣⎦=-±). 45.设△ABC 三顶点分别在双曲线Γ上,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与双曲线Γ相切的充要条件是D 为EF 的中点.46.过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1 ,y 1)是双曲线22221x y a b -=(a >0,b >0)上任一点,过A 作一条斜率为2121b x a y 的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是A到双曲线两焦点的距离,则ab =.48.已知双曲线22221x y a b -=(a >0,b >0)和2222x y a bλ-=(01λ<< ),一条直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.50.设P 点是双曲线22221x y a b -=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b θ∆=.51.设过双曲线的实轴上一点B (m,o )作直线与双曲线相交于P 、Q 两点,A 为双曲线实轴的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则90MBN ∠=()2222()a n m a ma mb n a --⇔=-++. 52.L 是经过双曲线22221x y a b-=(a >0,b >0)焦点F 且与实轴垂直的直线,A 、B 是双曲线的两个顶点,e 是离心率,点P L ∈,若APB α∠=,则α是锐角且1sin e α≤或1sin arc eα≤(当且仅当||PF b =时取等号).53.L 是经过双曲线22221x y a b-=(a >0,b >0)的实轴顶点A 且与x 轴垂直的直线,E 、F是双曲线的准线与x 轴交点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且1sin e α≤或1sin arc e α≤(当且仅当||ab PA c=时取等号). 54.L 是双曲线22221x y a b-=(a >0,b >0)焦点F 1且与x 轴垂直的直线,E 、F 是双曲线准线与x 轴交点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且21sin e α≤或21sin arc e α≤(当且仅当1||PF =. 55.已知双曲线22221x y a b -=(a >0,b >0),直线L 通过其右焦点F 2,且与双曲线右支交于A 、B 两点,将A 、B 与双曲线左焦点F 1连结起来,则222112(2)||||a b F A F B a+⋅≥(当且仅当AB ⊥x 轴时取等号).56.设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=+. 57.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与双曲线这一支相交于P 、Q 两点,则180PBA QBA ∠+∠=.58.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域),外部的两点,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,(若B P 交双曲线这一支于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与双曲线这一支相交于P 、Q 两点,且180PBA QBA ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是双曲线22221x y a b-=的实轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ与''AQ 的交点P 的轨迹是双曲线22221x y a b+=.60.过双曲线22221x y a b -=(a >0,b >0)的右焦点F 作互相垂直的两条弦AB 、CD,则()2228||||||ab AB CD a b a b +≥≠-; ()22||||4c AB CD a a b a+≥==61.到双曲线22221x y a b -=(a >0,b >0)两焦点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()()x ec y eb ±+=.62.到双曲线22221x y a b -=(a >0,b >0)的实轴两端点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()x c y b ±+=.63.到双曲线22221x y a b -=(a >0,b >0)的两准线和x 轴的交点的距离之比为c ab-(c 为半焦距)的动点的轨迹是姊妹圆222()()bx a y e±+=(e 为离心率).64.已知P 是双曲线22221x y a b -=(a >0,b >0)上一个动点,',A A 是它实轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a-=.65.双曲线的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和实轴之长的比例中项.66.设双曲线22221x y a b-=(a >0,b >0)实轴的端点为',A A ,11(,)P x y 是双曲线上的点过P作斜率为2121b x a y 的直线l ,过',A A 分别作垂直于实轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''AMA M 面积趋近于2ab .67.已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是双曲线2222()1x a y a b --=(a >0,b >0,且a b ≠)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab b a -.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y b a b a-+=--(除原点)。

相关文档
最新文档