考研高数及专业课讲义复习经验

合集下载

考研高数知识总结

考研高数知识总结

考研数学讲座(1)考好数学的基点“木桶原理”已经广为人所知晓。

但真要在做件事时找到自身的短处,下意识地有针对性地采取措施,以求得满意的结果。

实在是一件不容易的事。

非数学专业的本科学生与数学专业的学生的最基本差别,在于概念意识。

数学科学从最严密的定义出发,在准确的概念与严密的逻辑基础上层层叠叠,不断在深度与广度上发展。

形成一棵参天大树。

在《高等数学》中,出发点处就有函数,极限,连续,可导,可微等重要概念。

在《线性代数》的第一知识板块中,最核心的概念是矩阵的秩。

而第二知识板块中,则是矩阵的特征值与特征向量。

在《概率统计》中,第一重要的概念是分布函数。

不过,《概率》不是第一层次基础课程。

学习《概率》需要学生有较好的《高等数学》基础。

非数学专业的本科学生大多没有概念意识,记不住概念。

更不会从概念出发分析解决问题。

基础层次的概念不熟,下一层次就云里雾里了。

这是感到数学难学的关键。

大学数学教学目的,通常只是为了满足相关本科专业的需要。

教师们在授课时往往不会太重视,而且也没时间来进行概念训练。

考研数学目的在于选拔,考题中基本概念与基本方法并重。

这正好击中考生的软肋。

在考研指导课上,往往会有学生莫名惊诧,“大一那会儿学的不一样。

”原因就在于学过的概念早忘完了。

做考研数学复习,首先要在基本概念与基本运算上下足功夫。

按考试时间与分值来匹配,一个4分的选择题平均只有5分钟时间。

而这些选择题却分别来自三门数学课程,每个题又至少有两个概念。

你可以由此体验选拔考试要求你对概念的熟悉程度。

从牛顿在硕士生二年级的第一篇论文算起,微积分有近四百年历史。

文献浩如烟海,知识千锤百炼。

非数学专业的本科生们所接触的,只是初等微积分的一少部分。

方法十分经典,概念非常重要。

学生们要做的是接受,理解,记忆,学会简单推理。

当你面对一个题目时,你的自然反应是,“这个题目涉及的概念是 - - -”,而非“在哪儿做过这道题”,才能算是有点入门了。

你要考得满意吗?基点不在于你看了多少难题,关键在于你是否对基本概念与基本运算非常熟悉。

考研数学如何复习都有哪些有效复习的方法

考研数学如何复习都有哪些有效复习的方法

考研数学如何复习都有哪些有效复习的方法每年都有很多人参加研究生考试,那么考研数学该怎么复习?下面是由编辑为大家整理的“考研数学如何复习都有哪些有效复习的方法”,仅供参考,欢迎大家阅读本文。

考研数学怎么备考1.通过提纲来把握要点在今年的提纲出台之前,首先通过去年的提纲,总结了一些基本定理的概念和方法。

数学是一门逻辑科学,深刻理解基本概念,熟悉题型和常见考点的解题方法是非常重要的。

虽然这一点本身不能取得高分,但它是取得好成绩的基础和前提。

只有牢牢记住了基本定理和公式,在做题的时候才会有自己的思路和切入点,才能轻松处理。

近年考研数学的统计,在基本概念、定理和方法上的不足,是失分的一个要点,要想考高分,首先必须阐明这些基本的事情。

2.加强综合解决问题能力的训练把基础知识运用到实践中去,力求在解决问题的思路上有所突破。

具体来说,要把握好几个能反映和综合各个知识点的考点,做到重点突破。

试题练习将帮助你检测自己的复习效果,考虑到数学的特点,要求考生琢磨出所有的考点并给出相应的解法是很困难的。

这方面的问题通常可以通过咨询有经验的老师,或者参加信誉较好的辅导班,或阅读相关的辅导书来解决。

拓展阅读:考研数学一二三的区别1.考试难度不同考研数学一二三的考试难度排序是:考研数学一>考研数学三>考研数学二。

因此,备战考研数学的同学在数学一和数学三的科目上可以尽早开始着手复习,数学基础差一些的学生更需要多付出些时间。

2.适用专业不同考研考研数学一适用的专业主要是工学类的专业,例如力学专业、光学专业、机械工程专业、电子科学与技术专业、生物技术专业等授予工学学位的管理科学与工程的一级学科均要求使用考研数学一试卷。

考研数学二适用的专业是林业工程专业、食品科学专业、轻工技术与工程专业、纺织科学与工程专业等一级学科中的二级学科和专业均要求使用考研数学二试卷。

3.考试科目不同数一考高等数学,线性代数和概率统计;数二考高等数学和线性代数;数三考微积分,线性代数和概率论与数理统计。

考研数学高数的复习重点

考研数学高数的复习重点

考研数学高数的复习重点考研数学高数的复习重点我们在进行考研数学的高数复习时,需要了解清楚有什么复习的重点。

店铺为大家精心准备了考研数学高数的复习要点,欢迎大家前来阅读。

考研数学高数的复习知识点1.抓住主要矛盾,明确考试重点高数的基本内容包括极限,一元函数微积分,多元函数微积分(主要是二元函数),无穷级数与常微分方程,向量代数与空间解析几何等几个部分。

其中,多元函数微积分,无穷级数与常微分方程是高等数学考研出题的重点,向量代数与空间解析几何在历年真题中出现的很少。

因此,考生在高数的备考过程中要把重点放在极限、导数、不定积分、一元微积分的应用,还有中值定理、多元函数微积分、线面积分等内容。

比如高数第一章的不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,两个重要的极限和对函数的连续性的探讨也是考试的重点。

其次,导数的重点是导数的定义,也就是抽象函数的可导性。

积分部分重点是定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法。

同时求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。

对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。

如果考生能够围绕着以上几个方面进行有针对性地复习,数学取得高分也就不再是梦想了。

2.要学会看书,会读书,读“活书”首先,数学教材内容没有那么强的故事性,所论述的理论有一定的抽象性,阅读起来比较枯燥,有一种让人昏昏欲睡的感觉。

因此,考生在看书时要有耐心,不断思考其逻辑结构,把一个个知识点联系起来思考,形成固定的知识体系。

比如在学习函数极限的性质中的局部有界性时,考生如果联系其在几何上的表现来理解,并思考其实质含义及应用,学习效果就会事半功倍。

其次,看书的习惯也会影响学习的效果。

比如,背英语单词的同学常常会遇到这样一个问题,每天从以字母a开头的单词开始背,结果总看到前面的那些单词,后面的单词到考试之前常常也看不到。

考研如何备考数学高等代数

考研如何备考数学高等代数

考研如何备考数学高等代数数学高等代数是考研数学科目中的一门重要知识点,备考这门科目对于考生来说非常关键。

通过系统、有针对性的备考,考生可以提高自己的解题能力和应试技巧,从而在考试中取得好成绩。

本文将从以下几个方面为考生介绍如何备考数学高等代数。

一、制定合理的备考计划备考数学高等代数需要时间和耐心,考生应该合理安排自己的备考时间,并制定一个详细的备考计划。

备考计划可以包括每天的学习时间、学习内容、复习时间等,这样可以帮助考生充分利用时间,有条不紊地进行备考。

二、掌握知识点和考点数学高等代数的知识点众多,考生应该对每个知识点进行深入理解和掌握。

可以通过查阅教材、参加培训班、听课等方式来学习和掌握知识点。

此外,考生还要了解每个知识点在考试中的考查形式和出题规律,这样在备考中可以有针对性地进行学习和练习。

三、多做真题和模拟题做题是备考数学高等代数的重要环节,通过大量的练习可以提高解题的速度和准确率。

考生可以多做历年真题和模拟题,了解题型和难度,并注重错题的总结与复习。

在做题过程中,要注意理解题意,掌握解题方法,培养解题的思维方式和技巧。

四、加强笔记整理和复习备考过程中,考生应该加强对知识的整理和总结,及时将学习的内容进行归纳和总结,并做好笔记。

可以采用图表、思维导图等方式来整理笔记,以便于复习和记忆。

考生还应该定期进行复习,巩固已学知识,强化记忆。

五、找准自己的薄弱点每个考生在备考过程中都会有自己的薄弱点,针对这些薄弱点要加以重点关注和攻克。

可以通过查阅资料、请教老师、组队学习等方式来解决自己的问题。

充分了解自己的薄弱点,并加以针对性的练习和提高,可以在考试中避免失分。

六、保持良好的心态和健康的生活习惯备考数学高等代数是一个长时间的过程,考生需要保持良好的心态。

要克服困难和挫折,保持积极向上的信念和态度。

此外,考生还应该保持良好的生活习惯,保证充足的睡眠和饮食,避免过度疲劳和身体不适对备考造成的影响。

总之,备考数学高等代数需要坚持和耐心,同时也需要科学合理的方法和策略。

考研数学备考各个阶段的复习建议及资料

考研数学备考各个阶段的复习建议及资料

考研数学备考各个阶段的复习建议及资料考研数学备考各个阶段的复习建议及资料推荐数学是一个比较抽象的学科,复习起来并不容易,所以基础差的同学一定要早早地开始复习。

店铺为大家精心准备了考研数学备考阶段复习意见和资料指导,欢迎大家前来阅读。

考研数学备考阶段复习意见和资料基础阶段(现在——20xx.6)基础阶段的主要任务是复习基础知识,掌握基本解题能力。

主要工作是把课本上的重要公式、定理、定义概念等熟练掌握,将课本例题和习题研究透彻。

复习完基础知识之后要做课后习题,进行知识巩固,确保能够准确、深刻地理解每一个知识点。

【切忌】1.先做题再看书。

2.做难题。

这一阶段不易做难题。

难的题目往往会打击考生基础阶段复习的信心,即使答案弄懂了也达不到复习的效果。

【复习建议】1.以教材中的例题和习题为主,不适宜做综合性较强的题目。

做习题时一定要把题目中的考点与对应的基础知识结合起来,达到巩固基础知识的目的,切忌为了做题而做题。

2.在18考研大纲出来之前,不要轻易放弃任何一个知识点。

在基础复习阶段放弃的知识点,非常有可能成为后期备考的盲点,到最后往往需要花更多的时间来弥补。

3.准备一个笔记本,用来整理复习当中遇到过的不懂的知识点。

弄懂后,写上自己的理解,并且将一些易出错、易混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,避免遗忘出错。

4.对于基本知识、基本定理和基本方法,关键在理解,并且存在理解程度的问题。

所以不能仅仅停留在“看懂了”的层次上。

对一些易推导的定理,有时间一定要动手推一推;对一些基本问题的描述,特别是微积分中的一些术语的描述,一定要自己动手写一写。

这些基本功都很重要,到临场考试时就可以发挥作用了。

PS:复习不下去的时候建议看看数学视频。

【基础阶段复习教材】数学考试大纲:可先对照17考研大纲复习,一般变动不大。

高数:同济版,讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

考研高数总复习函数的极限(讲义)PPT课件

考研高数总复习函数的极限(讲义)PPT课件
无穷小是函数极限的必要条件,即如果函数在某点的极限存在,那么函数在该点的值必定是无穷小。
无穷小与函数极限的关系是相互依存的,无穷小是函数极限的一种表现形式,而函数极限又是无穷小的 一种表现形式。
无穷小在求极限中的应用
利用无穷小的性质,可以将复杂的函数极限转化为简单的无穷小量,从而 简化计算过程。
在求函数极限时,可以利用等价无穷小替换,将复杂的函数表达式替换为 简单的无穷小量,从而得到更易处理的极限表达式。
利用极限的四则运算法则,消去零因子,化 简函数形式,再求极限。
利用两个重要极限求解
利用重要极限$lim_{x to 0} frac{sin x}{x} = 1$求解:当函数 形式为$frac{sin x}{x}$时,可以利用此重要极限求解。
利用重要极限$lim_{x to infty} frac{1}{x} = 0$求解:当函数 形式为$frac{1}{x}$时,可以利用此重要极限求解。
考研高数总复习函数的极限(讲义 )ppt课件
contents
目录
• 函数极限的基本概念 • 函数极限的求解方法 • 函数极限的应用 • 函数极限的深入理解 • 总结与展望
01 函数极限的基本概念
函数极限的定义
1 2
函数极限的定义
当自变量趋近某一特定值时,函数值的变化趋势。
函数极限的表示方法
lim f(x) = A,表示当x趋近于某个值时,f(x)趋 近于A。
THANKS FOR WATCHING
感谢您的观看
在物理学中,函数极限被用来描述物体运动的速度、加速度等概念;在 工程中,函数极限被用来描述信号的变化趋势;在经济中,函数极限被
用来描述市场的变化趋势。
通过对函数极限的学习,我们可以更好地理解和应用这些概念,为未来 的学习和工作打下坚实的基础。

考研数学高等数学复习方法和重点

考研数学高等数学复习方法和重点

2018考研数学高等数学复习方法和重点考研数学之高等数学复习方法第一、要将数学基础备考进行到底数学150分,基础性的题目占到70%,也就是105分,这分数对于考生来讲是非常重要的,只要大家把基本概念、性质、公式和定理以及基本解题方法掌握了,这部分分数还是比较容易能拿到手的。

但是复习到现在,很多考生已经把基本知识点抛之脑后了,一味地在做题,甚至只是在看题。

但是我们必须清楚,不管做多少题,考场上都不会遇见你做过的题目,我们做题的目的是巩固知识点,检测对知识点的掌握程度、复习的效果,重要的是知识点本身,万变不离其宗,考场上题目无论如何变化都离不了知识点,所以如果你对基础知识还没用掌握,就一定要对照考试大纲对基本概念、基本理论和基本方法准确把握,或者对基础班的讲义进行复习。

因为只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。

第二、要处理好全面和重点的关系,不同层次的考生,要求不同考研预报名后,绝大部分学生已经确定好了院校和专业,那么数学这一学科到底要考多少分基本上也是确定的。

如果考生的分数要求比较高,130、140以上,那么在掌握常考的题型和解题方法的基础上,对照考试大纲对考研不常考的内容也要进行复习,比如说差分方程,只对数三同学做要求,这部分内容虽然已很久没考查,但是这确实是考试大纲上要求的内容,也要复习到。

况且这部分内容只要是花半个小时就可以掌握的,可以与二阶常系数线性微分方程的解法对比记忆。

如果考生的分数要求并不高,只要100-120分就可以的话,还是要对照暑期强化班的讲义重点把常考题型和解题方法掌握好,一些不常考的内容可以适当地放弃,比如说数一的估计的一致性、假设检验。

第三、重视真题,总结题型,熟练掌握常见的解题方法和技巧根据对历年真题的研究,我们发现每年的试卷高等数学内容都有较大的重复率,所以一定要重视对真题的研习,真题至少要做两遍,第一遍按年份做,第二份按章节做。

2024考研数学李林高等数学辅导讲义解析

2024考研数学李林高等数学辅导讲义解析

2024考研数学李林高等数学辅导讲义解析一、概述2024年考研数学高等数学一直是考研学子备战考试的焦点。

为帮助考生更好地掌握数学知识,提高解题能力,李林老师精心编写了高等数学辅导讲义。

本文将对李林老师的辅导讲义进行解析,帮助考生更好地理解和应用这些知识。

二、讲义内容概述李林老师的高等数学辅导讲义分为多个章节,涵盖了高等数学的各个知识点,包括微积分、多元函数、级数、常微分方程等内容。

讲义内容扎实,逻辑严谨,既包括基础知识的讲解,也包括典型例题的分析和解答,适合考生系统复习和巩固知识点。

三、微积分部分1.极限与连续讲义对极限与连续的概念进行了详细介绍,从基本概念到极限存在的条件,再到连续性的定义和性质,帮助考生理解和掌握这一重要知识点。

讲义中还包括了大量例题分析,帮助考生加深对极限与连续的理解,提高解题能力。

2.微分与微分中值定理针对微分的定义和微分中值定理等内容,讲义中提供了详细的公式推导和典型例题讲解,帮助考生掌握微分的概念和性质,熟练运用微分中值定理解决实际问题。

3.不定积分与定积分在不定积分与定积分部分,讲义重点讲解了换元积分法、分部积分法等解题技巧,并结合典型例题进行深入分析,帮助考生掌握积分的计算方法和技巧,提高解题效率。

四、多元函数部分1.多元函数的概念与性质讲义对多元函数的概念、多元函数的极限、连续性、偏导数等内容进行了系统介绍,并结合实际问题进行讲解,帮助考生理解多元函数的重要性及其在实际问题中的应用。

2.方向导数与梯度在方向导数与梯度的部分,讲义对方向导数的定义、计算方法和梯度的概念进行了详细讲解,并提供了大量例题进行分析,帮助考生掌握这一知识点的计算方法和应用技巧。

五、级数部分1.数项级数的收敛性与敛散性讲义对数项级数的收敛性与敛散性进行了全面介绍,包括正项级数的收敛判别法、一般项级数的审敛法等内容,帮助考生系统掌握级数收敛性的判别方法,提高解题能力。

2.幂级数与傅立叶级数在幂级数与傅立叶级数部分,讲义介绍了幂级数的收敛半径、函数展开成幂级数的方法,以及傅立叶级数的基本概念和性质,帮助考生理解级数在实际问题中的应用。

轻松备考 掌握考研数学复习技巧(通用6篇)

轻松备考 掌握考研数学复习技巧(通用6篇)

轻松备考掌握考研数学复习技巧〔通用6篇〕篇1:轻松备考掌握考研数学复习技巧轻松备考掌握考研数学复习技巧成功复习必备“两本”。

建议同学们从复习初期就开场为自己准备两个笔记本,一本用于专门整理自己在复习当中遇到过的不懂的知识点,并且将一些容易出错、容易发生混淆的概念、公式、定理内容记录在笔记本上,定期拿出来看一下,定会留下非常深化的印象,防止遗忘出错;另一本用来整理错题,同学们在复习全程中会遇到许多许多不同类型的题目,对自己曾经不会做的、做错了的题目不要看过标准答案后就轻易放过,应当及时地把它们整理一下,在正确解答过程的后面简单标注一下自己出错的原因、不会做的症结,以后再回头看的时候一定会起到很大的帮助,这也是循序渐进稳步进步解题才能的关键环节。

擅长总结,多多考虑。

总结是一个良好的复习方法,是使知识的掌握程度上升一个层次的.方法。

在单独复习好每一个知识点的同时一定要联络总结,建立一个完好的考研数学的知识体系构造。

比方,在复习好积分这个知识点的时候,要能建立一元积分、二重积分、多重积分之间的关联,由此及彼,深化理解掌握每一个知识点。

另外,要把根底阶段中遇到的问题,做错的题目,重新再整理一遍,总结自己的薄弱点,正确通过强化训练把遗留问题一一解决。

考研数学也就20多道题目,而且每种题目也就那几种类型,并且每年变化也不大,只要我们勤于总结,不久你会发现,考研数学不过如此。

数学考研题的重要特征之一就是综合性强、知识覆盖面广,一些稍有难度的试题一般比拟灵敏,对知识点串联的要求比拟高,只有通过逐步的训练,不断积累解题经历,在考试时才更有时机较快找到打破口。

建议的考生们平时要有针对性的训练,这样也有利于进一步理解并彻底弄清楚知识点的纵向与横向联络,转化为自己真正掌握了的东西,可以在理解的根底上灵敏运用、触类旁通。

考研数学的复习虽然困难,但是只要按部就班做好上述四件事情,你会发现复习越来越轻松,对自己也越来越有自信,最终的成功也一定非你莫属!考研教育网祝同学们复习顺利!。

考研高数总复习无穷小的比较(讲义)PPT课件

考研高数总复习无穷小的比较(讲义)PPT课件

导数的应用
在研究函数的单调性、极值和拐 点等问题时,需要利用导数的性 质和无穷小的关系。
在积分中的应用
积分的定义
积分是通过无穷小分割和 求和来定义的,无穷小在 积分定义中扮演着重要的 角色。
积分的几何意义
无穷小表示面积或体积的 微元,通过积分可以计算 曲线下的面积、曲面下的 体积等。
积分的应用
在解决实际问题时,如求 曲线的长度、物体的质量、 做功等,需要利用积分和 无穷小的关系。
无穷小的性质
总结词
无穷小具有一些重要的性质,这些性质在研究函数的极限、导数和积分等数学概念时非 常有用。
详细描述
1. 无穷小与任何常数的和、差、积仍然是无穷小。例如,如果 (x rightarrow 0) 时,(x) 是无穷小,那么 (x+2)、(x-2)、(3x) 和 (x^2) 也是无穷小。2. 无穷小与有界函数的乘 积仍然是无穷小。例如,如果 (x rightarrow 0) 时,(x) 是无穷小,而 (|f(x)| < M)(其
求解极限
在求解某些极限问题时, 可以利用无穷小的性质进 行化简,从而得出结果。
无穷小的等价替换
在某些极限计算中,可以 将无穷小替换为其他无穷 小,简化计算过程。
在导数中的应用
导数的定义
导数是通过无穷小增量和自变量 的比值来定义的,无穷小在导数 定义中起着关键作用。
导数的几何意义
无穷小表示函数图像在某一点的 切线斜率,通过导数可以研究函 数的几何性质。
05 习题与解析
基础习题
基础习题1
比较以下无穷小量的大小:$frac{1}{x}, frac{1}{x^2}, frac{1}{x^3}$ 当 $x to 0$。

考研高等数学复习要点

考研高等数学复习要点

考研高等数学复习要点考研高等数学复习要点(篇1)一、备考资料高等数学(上、下)第六版,同济大学数学系编高等数学习题全解指南(与上配套)工程数学-线性代数第五版,同济大学数学系编线性代数附册学习辅导与习题全解(与上配套)概率论与数理统计第四版,浙江大学盛骤概率论与数理统计习题全解指南(与上配套)考研数学复习全书考研数学复习全书分阶习题同步训练(与上配套)数学基础过关660题数学历年真题权威解析线性代数辅导讲义我用的都是最基础最核心的资料,没有买其它花哨的辅导书。

可能我整个备考规划中最明智的一个安排就是把大部分时间分配给了数学。

我想即使在一般情况下这也是个真理,应该把最多的时间花在最能拉开分数的科目上。

对一般人来说,在同等的付出下,数学拉开20分比英语拉开20分的可能性要大得多。

二、备考经验就备考经验来说,其实比起学习别人的经验,我认为大家更应该去努力养成自己良好的学习习惯。

就考研来说,我认为把你和别人区分开来的并不是一本二本三本,也不是你准备的时间有多长多短,而是你自己的学习态度和学习习惯。

这才是贯穿始终的东西。

1、钻研精神看书做题必须明白每一步是为什么,不懂得问题可以请教大神研友,实在不明白可以在旁边标注,也许下一轮复习再看时就想通了。

这样看书的确会很慢,但是学得很扎实。

后期做题时必会感激自己前期这样扎实的学习。

2、尽量独立做题包括第一轮看教材时,书上的例题也先盖住答案自己做。

包括教材的章节习题和复习全书的例题等等,切勿看完题目就看答案,给自己留时间思考。

拿出做不出来誓死不看答案的决心,和一些数学大神交流后我发现这是他们的共性,既然是大神们的共性,那必然有可取之处,就像我发现身边诸多英语口语很棒的大神都爱看美剧,于是想练口语的我自然就要多看美剧。

一些小伙伴像看小说一样全书,扫过题目和答案一页页翻过,貌似效率很高。

但看完之后把书拿开,会做的题目又有几道呢?不排除个别大神有特立独行的学习方式,但我认为对大多数人来说,拿出笔和纸,盖住答案先自己做题,做完拿自己的答案和例题答案比对,虽说看似低效,但做一道题就掌握一道题目其实是最高效的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档