13.1三角形中的边角关系
八年级数学《三角形中边的关系》课件
边的 三角形中任何两边的和___大__于__第三边
关系 三角形中任何两边的差___小__于__第三边
巩固练习
全频道第33页1~5题
当堂检测
全频道第34页第8、9、10、14、15题
第1课时 三角形中边的关系
课堂小结
三角形
不等边三角形 按边 分类 等腰三角形( __等_边_____三角形是等腰
三角形的特例)
13.1 三角形中的边角关系
第1课时 三角形中边的关系
第1课时 三角形中边的关系
基础训练
如图所示,点D是△ABC中边BC上一点.
(1)图中有多少个角,分别表示出来;
(2)图中有多少条线段,分别表示出来;
(3)图中有多少个三角形,分别表示出来;
(4)∠C所对的边是
,AD所对的角是 ;
(5)点B、C之间的距离是 ,为什么?
第1课时 三角形中边的关系
[归纳] (1)三角形的定义:由不在同__一__条__直__线__上__的三条 线段首尾依次相接所组成的封闭图形叫做三角形.组成三 角形的线段叫做__三_角__形__的__边___ ;相邻两边的公共点叫做 三角形的顶点;相邻两边所组成的角叫做三角形的 __内__角_____.理解三角形的定义必须注意三点:①不在同 一条直线上;②三条线段;③首尾依次相接.
导新定向
1、理解三角形的相关概念,掌握三角形的三边关系; 2、会根据三角形边的关系合理对三角形进行分类; 3、理解运用分类讨论的思想解决等腰三角形的问题.
尝试练习
1、判断:用下列长度的三条线段能否组成一个三角形 (1)1,2,3 (2)2,3,4 (3)4,5,6 (4)5,6,10 2、以长为4的线段为底构成一个等腰三角形,腰长x满足和条件 ? 3、已知等腰三角形的周长为20cm, (1)若腰长是底边长的2倍,求各边长? (2)如果一边长为6cm,求另两边长?
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计3
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计3一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13.1节的内容,本节课主要让学生掌握三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。
通过本节课的学习,学生能够进一步理解三角形的性质,为后续学习三角形的相关知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念,如三角形的定义、三角形的分类等。
同时,学生也已经学习了角的性质,如角的度量、角的分类等。
但是,学生对于三角形中的边角关系还没有深入的了解,需要通过本节课的学习来掌握。
三. 教学目标1.知识与技能:让学生掌握三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。
2.过程与方法:通过观察、操作、推理等方法,让学生发现并证明三角形中的边角关系。
3.情感态度与价值观:培养学生对数学的兴趣,让学生感受数学的美妙,培养学生的团队协作能力。
四. 教学重难点1.教学重点:让学生掌握三角形中的边角关系。
2.教学难点:证明三角形中的边角关系,并能够灵活运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生发现三角形中的边角关系。
2.探究教学法:让学生通过观察、操作、推理等方法,自主发现并证明三角形中的边角关系。
3.小组合作教学法:让学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.教学多媒体:PPT、视频等。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“在只知道三角形两边长度的情况下,如何判断第三边的长度?”来引导学生思考三角形中的边角关系。
2.呈现(10分钟)利用PPT或视频,展示三角形中的边角关系,包括三角形的内角和定理、三角形的两边之和大于第三边、三角形的两角之和大于第三角等。
同时,让学生观察并思考这些边角关系是否成立。
13.1三角形的边角关系(3)——高、中线与角平分线
你还记得 “过一点画已知直线的垂线” 吗?
画法
过三角形 的一个顶点,你能画出 它的对边的垂线吗?
42 5 3 4 5
A
B
C
0
1
2 0 3 1 4 205 31
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
三角形的高
从三角形的一个顶点 向它的对边所在直线作垂线, 顶点 和垂足之间的线段 叫做三角形这边的高, 简称三角形的高。 B 如图, 线段AD是BC边上的高. 任意画一个 A
3、填空: (1)如图(1),AD,BE,CF是ΔABC的三条中线,则 1 AB=2 AF ,BD= CD ,AE= 2 AC 。 (2)如图(2), AD,BE,CF是ΔABC的三条角平分线, 1 ∠2 则∠1= , ∠3= , ∠ACB=2 。 ∠ABC ∠4 2 A A
F B D 图1 E C
C
三角形 的高线
B
D
高线. ∴AD⊥BC ∠ADB=∠ADC=90°.
三角形的角平分线
在三角形中,一个内角的角平分线与它的对边相交,
A
这个角的顶点与交点之间的线段,叫做三角形的角平分线。 ∵AD是 △ ABC的角平分线 1 ∴∠ BAD = ∠ CAD = 2∠BAC
●
︶
1 2
● C B 三角形的三条角平分线相交于 D 一点,交点在三角形的内部
任意画一个三角形,然后利用量角器画出 这个三角形三个角的角平分线,你发现了什么?
A F
E O C
D
锐角三角形的三条高交于同一点.
锐角三角形的三条高都在三角形的内部。
在纸上画出一个直角三角形。 (1) 画出直角三角形的三条高, 它们有怎样的位置关系? 将你的结果与同伴进行交流. A
13.1.1三角形中的边角关系(1)
例题解析,再探新知
例:等腰三角形中周长为18cm 1、如果腰长是底边长的2倍,求各边的长; 2、如果一边长为4cm,求另两边的长。 解: (1)设等腰三角形的底边长为xcm, 则腰长为2xcm,根据题意,得
x+2x+2x=18
解方程,得 x=3.6
例题解析,再探新知
2x+4=18 解方程,得 x=7 若一条腰长为4cm,设底边长为xcm,则有 2×4+x=18 解方程,得 x=10
三角形中的边角关系(1)
有人说姚明一步能走3米,你相信吗?
下面请同学们仔细观察一组图 片,找出你熟悉 的几何图形
什么样的图形叫三角形?
由不在同一条直线上的
三条线段首尾依次相接所组成的 图形叫做三角形。
B
A
自学指导:
认真看书67页的内容。注意三角形边的表示方 法。 并思考下面问题: 1、知道三角形的顶点,角,边等概念,会用几何 符号表示一个三角形; 2、会把三角形按边进行分类,知道每类三角形 的特征; 3、知道等腰三角形的腰,底边,顶角,底角等概 念;
已知一个三角形的两条边长分别为 3cm和9cm,你能确定该三角形第三条边长 的范围吗? 解:设第三条边长为a cm,则
例
9-3<a<9+3
即 6<a<12
其它两边之差<三角形的一边<其它两边之和
( 1) ( 2) ( 3) ( 4)
思
下列长度的三条线段能否组成 三角形?为什么?
8, 4, 3 6, 2, 5 5,6,10 5, 8, 3 ( 不能 ( 能 ( 能 ( 不能 ) ) ) )
1.(1)4cm、6cm、10cm (2)4cm、6cm、12cm (3)4cm、10cm、12cm(4)6cm、10cm、12cm
八年级数学上册 13.1 三角形中的边角关系
13.1 三角形中的边角关系第一课时三角形中的边角关系(一)教学目标1、了解三角形的概念,掌握分类思想2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值重、难点与关键重点:了解三角形分类思想,弄清三角形三边关系难点:对两边之差小于第三边的领悟关键:从观察、联想入手,应用连结两点之间的线中,线段最短这一原理进行迁移教学过程一、情境合一,探究新知1、投影图片,把事先收集的与三角形有关系的生活图片,运用投影仪播放,让学生对三角形有一个感性认识.如下图:教师活动:通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性.学生讨论教师归纳,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.教师活动:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等.学生活动:学会运用大小写字母来表示三角形的边与角,如图的三角形可记作⊿ABC,三边可记作AB、AC、CA;三个角可记作∠A、∠B、∠C,或可用三个字母表示为∠BAC、∠ABC、∠ACB.注意:表示边时要两个大写字母,或一个小写字母.注意小写字母标注的规律:通常顶点大写字母所对的变就是这个顶点的小写字母.2、教师给出不同类型的三角形,引导学生从边和角两种角度观察、分类.(1)从边的角度来分类有:不等边三角形等腰三角形(包括等边三角形)说明:对于等腰三角形来说,相等的两边称为腰,第三边称为底边。
两腰所夹的角称为顶角,腰与底边的夹角称为底角:而等边三角形的三边都相等,它是等腰三角形的特例.(2)从角的角度来分类有:锐角三角形(三个内角均为小于900的角)直角三角形(有一个角是900)钝角三角形(有一个内角大于900)二、联系实际,合作探究1、问题牵引1.国庆节的晚上,小明从甲地到乙地后再往丙地走,并到达丙地,小红从甲地直接到丙地,如图所示,请你谈谈小明和小红谁走的路程长?依据是什么?学生活动:发现小红走的路程短,小明走的路程长。
13.1.1三角形中的边角关系1
三角形任意两边之差小于第三边
三角形具有稳定性.
同学们,再见!
大胆猜测:
三角形三边存在着怎样的数量关系? 也就是说,满足怎样的三条线 段,就能围成三角形呢? 我们一起来做个试验
探 究 ቤተ መጻሕፍቲ ባይዱ 围一围: 下面有4根木棒,请你任 意选三根围一围,可以怎么 选?每次都能围成三角形吗?
6cm 12cm
8cm
小颖要制作一个三角形木架,现有三 根长度为8cm、10cm、3cm的木棒, 能做成三角形吗?你是怎么考虑的?
在判断三条线段能否围成一个三 角形时,只要判断较小的两条线 段之和是否大于最长线段就可以 了。
1.下列长度的三条线段能否 组成三角形?为什么?
(1) (2) (3) (4) 3,4,8 5,2,6 10,6,5 8,3,5 ( 不能 ( 能 ( 能 ( 不能 ) ) ) )
你会画一个三角形吗?会用符号表示它吗?
三角形用符号“△”表 示 记作“△ ABC”读作 “三角形ABC” A B C
A
顶点
2、三角形的元素
三角形相邻两边的公共端点 叫做三角形的顶点。
B
C 边
组成三角形的三条线段叫做三角 角 形的边。 三角形相邻两边所组成的角叫做三角形的内角, 简称三角形的角。
★试说说△ABC三边所对的角,及三 角所对的边
18cm
2016/12/22
实验记录
同位合作: 一人操作,另一人按下表记录结果
组别 所选小棒的长度(厘米) 能否围成 三角形
1 2 3 4
(6) (8) (12) (6) (8) (18) (6) (12) (18) (8) (12) (18)
能
不能 不能
能
6厘米 8厘米 12厘米
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13章第1节的内容。
本节主要介绍三角形中的边角关系,包括三角形的内角和定理、三角形的边长关系等。
通过本节的学习,学生能够理解三角形的边角关系,并能够运用这些关系解决实际问题。
二. 学情分析八年级的学生已经学习了三角形的性质和角的度量,对于三角形的基本概念和性质有一定的了解。
但是,学生对于三角形边角关系的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,需要注重学生的参与和实践,通过操作和思考,引导学生理解和掌握三角形的边角关系。
三. 教学目标1.知识与技能:学生能够理解和运用三角形的内角和定理,掌握三角形的边长关系。
2.过程与方法:学生能够通过观察、操作和思考,探索三角形的边角关系,培养解决问题的能力。
3.情感态度与价值观:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。
四. 教学重难点1.教学重点:三角形的内角和定理,三角形的边长关系。
2.教学难点:三角形边角关系的运用和解决实际问题。
五. 教学方法1.引导法:通过问题引导,激发学生的思考,引导学生探索三角形的边角关系。
2.实践操作法:让学生通过实际操作,观察和分析三角形的边角关系,加深理解。
3.合作学习法:学生分组合作,共同解决问题,培养合作精神和沟通能力。
六. 教学准备1.教学课件:制作教学课件,包括三角形的内角和定理和边长关系的图片和示例。
2.教学用具:准备一些三角形模型和测量工具,供学生实践操作使用。
3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一些实际问题,引导学生思考三角形中的边角关系,激发学生的学习兴趣。
2.呈现(10分钟)利用课件呈现三角形的内角和定理和边长关系的图片和示例,引导学生观察和分析,探索三角形的边角关系。
3.操练(10分钟)学生分组合作,利用准备好的三角形模型和测量工具,进行实际操作,观察和分析三角形的边角关系。
沪科版八年级数学上册13.1三角形中的边角关系说课稿
4.边角关系:以具体实例为例,引导学生探究三角形的边角关系,如已知两边和一角或已知一边和两角求第三边等。
本节课面向的是八年级学生,这个年龄段的学生正处于青春期,思维活跃,好奇心强,求知欲旺盛。他们的认知水平逐渐从具体运算向形式运算转变,具备一定的抽象思维能力,但在几何直观和空间想象方面还有待提高。在学习兴趣上,学生对新鲜有趣、富有挑战性的内容更感兴趣,喜欢通过动手操作和合作交流的方式学习。然而,部分学生的学习习惯还需加强,如课堂专注度、课后复习等方面。
(二)媒体资源
在本节课中,我将使用以下教具、多媒体资源和技术工具:
1.教具:三角板、量角器、直尺等,用于学生实际操作和测量三角形的内角和。
2.多媒体资源:PPT、教学视频、几何画板等,用于展示三角形的性质、分类和边角关系,使抽象的知识形象化、体化。
3.技术工具:网络资源、在线学习平台等,为学生提供丰富的学习资料和互动空间。
3.课堂展示:鼓励学生将自己的发现和成果进行展示,提高学生的表达能力和自信心。
4.课后交流:利用网络学习平台,组织学生进行课后讨论和交流,分享学习心得,拓宽知识视野。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:向学生展示一幅包含三角形元素的图片,如埃及金字塔、自行车三角架等,引导学生观察并提问:“你们在生活中还见过哪些三角形?它们有什么共同特点?”通过这个问题,激发学生对三角形的好奇心。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设情境:以生活中的实际问题为背景,引导学生发现三角形在生活中的广泛应用,从而激发学生的学习兴趣。
13.1 三角形中的边角关系 第1课时 三角形的三边关系教案沪科版数学 八年级上册
13.1 三角形中的边角关系第1课时三角形的边关系教材分析:本节首先严格定义三角形的概念,强调“首尾顺次相接”。
为了加深理解这个条件,教学时可用图形说明定义中增加这几个字的必要性。
三角形的边、顶点、内角等概念,学生在小学已接触过,容易理解,只要学生理解它们的意义就可以了,不要求学生背它们的定义。
三角形任意两边的和大于第三边由两点之间,线段最短得到,可根据学生的实际情况,适当引导学生回忆七年级上册第四章中学过的这个基本事实。
本节的例题为巩固“三角形两边的和大于第三边”而设。
学生在前面学过线段、角以及相交线、平行线等知识,他们的空间观念得到了进一步的发展,现在继续学习三角形的有关知识,就有了更为充实的基础和准备。
通过本节的学习,可以丰富和加深学生对三角形的认识,同时为学习其他图形知识打好基础。
教学目标【知识与技能】1、认识三角形,理解三角形的边关系。
2、理解等腰三角形及其相关概念。
【过程与方法】1、经历三角形边长的数量关系的探索过程,理解三角形的三边关系。
2、掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题。
【情感、态度与价值观】1、带领学生探究三角形的边角关系问题,引起学生的好奇心,激发学生的求知欲。
2、帮助学生树立几何知识源于生活并服务于生活的意识。
重点难点【教学重点】理解并掌握三角形的三边关系。
【教学难点】三角形三边关系的应用教学方法讲授与探究结合法教学准备直尺、三角板、小木棍、课件教学过程一、创设情境,导入新知教师活动:通过播放图片,引导学生认识三角形师:在我们的生活中几乎随处可见三角形。
它简单,有趣,也十分有用。
三角形可以帮助我们更好认识周围世界,解决很多的实际问题。
那什么样的图形是三角形呢?教师多媒体出示:通过播放图片,引导学生认识三角形学生讨论,教师归纳得出三角形定义,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
教师板书:1、三角形定义:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形二、探究新知,了解三角形师:请同学们认真阅读课本第67页内容,完成下列学习任务:1、会用几何符号表示一个三角形2、知道三角形的顶点、角、边等概念3、会把三角形按边进行分类,知道每类三角形的特征4、知道等腰三角形的腰、底边、底角、顶角等概念教师多媒体出示:师:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等。
八年级数学上册第13章三角形中的边角关系第1课时三角形中边的关系上课pptx课件新版沪科版
其它两边之差<三角形的一边<其它两边之和
三角形中任何两边的和大于第三边. 三角形中任何两边的差小于第三边.
三角形。
等腰三角形中, 相等的两边叫做 腰,第三边叫做 底边,两腰的夹 角叫做顶角,腰 与底边的夹角叫
做底角.
顶角
腰
腰
底角 底
底角
等腰三角形
等边三角形Leabharlann 不等边三角形按边分类
不等边三角形
腰和底不等的三角形 等腰三角形
等边三角形
在一个三角形中,任意两边之和与第三边 的大小关系如何?你判断的根据是什么?
A
c b
B
C
a
A
c b
B
C
a
由“两点之间,线段最短”可以得到
AB+AC>BC
同理可得:AC+BC>AB,
三角形的三边有这样的关系: (1) 三角形中任何两边的和大于第三边. (2) 三角形中任何两边的差小于第三边.
例1 等腰三角形中,周长为18cm. (1)如果腰长是底边长的2倍,求各边长; (2)如果一边长为4cm,求另两边长.
2.一个等腰三角形的一边是2cm,另一边是 9cm,则这个三角形的周20长cm是______.
3. 一个等腰三角形的一边是5cm,另一边是9cm, 则这个三角形的周长是_1__9_c_m__或__2_3_c_m__
4.已知一个三角形的两条边长分别为3cm和 9cm,你能确定该三角形第三条边长的范围吗?
解:(1)设等腰三角形的底边长为xcm, 则腰长为2xcm,根据题意,得
x+2x+2x = 18 解方程,得 x = 3.6 所以三角形的三边长为3.6cm,7.2cm, 7.2cm.
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计2
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计2一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册13.1章节的内容,本节课的主要内容是研究三角形的边角关系。
在学习了角的度量、边的性质等基础知识后,本节课将这些知识综合起来,引导学生探究三角形中的边角关系,为后续学习三角形的全等、相似等知识打下基础。
二. 学情分析八年级的学生已经掌握了角的度量、边的性质等基础知识,具备一定的逻辑思维能力和探究能力。
但是,对于三角形中的边角关系,学生可能还存在着一定的困惑,因此需要通过实例引导学生探究,从而加深对知识的理解。
三. 教学目标1.理解三角形中的边角关系,掌握三角形中大边对大角、小边对小角的规律。
2.能够运用边角关系解决实际问题,提高学生的应用能力。
3.培养学生的探究能力、合作能力和解决问题的能力。
四. 教学重难点1.教学重点:三角形中的边角关系,三角形中大边对大角、小边对小角的规律。
2.教学难点:如何引导学生探究三角形中的边角关系,运用边角关系解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究三角形中的边角关系。
2.运用实例讲解法,让学生通过观察、操作、分析、归纳等过程,发现并理解三角形中的边角关系。
3.采用合作交流法,让学生在小组内讨论、分享,培养学生的合作能力。
4.运用练习法,巩固学生对三角形边角关系的理解。
六. 教学准备1.准备相关课件、教案、练习题等教学资源。
2.准备三角板、直尺、量角器等实验器材。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形图片,引导学生关注三角形中的边角关系。
2.呈现(10分钟)通过PPT展示三角形中的边角关系,让学生观察并思考:为什么在三角形中,大边对大角,小边对小角?3.操练(10分钟)让学生分组进行实验,利用三角板、直尺、量角器等器材,测量并记录不同三角形的边角关系。
然后,各小组分享实验结果,讨论三角形中的边角关系。
4.巩固(10分钟)出示一些练习题,让学生运用所学知识解决实际问题。
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1
沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册13.1章节的内容,本节课的主要内容是让学生掌握三角形的三边关系和三角形的内角和定理。
教材通过生活中的实例引入三角形的三边关系,让学生探讨和总结三角形的性质,从而培养学生独立思考和合作交流的能力。
二. 学情分析学生在学习本节课之前,已经掌握了多边形和角的概念,具备了一定的观察和思考能力。
然而,对于三角形的边角关系,学生可能还存在着一定的困惑,因此,在教学过程中,需要教师耐心引导,让学生在实践中掌握知识点。
三. 教学目标1.让学生了解三角形的三边关系,能运用三角形的边角关系解决实际问题。
2.引导学生探讨三角形的内角和定理,并能运用内角和定理解释生活中的现象。
3.培养学生的观察能力、思考能力和合作交流能力。
四. 教学重难点1.三角形的三边关系2.三角形的内角和定理五. 教学方法1.采用情境教学法,以生活中的实例引入三角形的三边关系,激发学生的学习兴趣。
2.采用探究式教学法,让学生通过合作交流,探讨三角形的内角和定理。
3.采用讲练结合的教学法,教师讲解知识点,学生练习巩固。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题,用于巩固知识点。
七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如:一个人在划船时,船和划桨的长度关系,引导学生观察和思考三角形的三边关系。
2.呈现(10分钟)教师通过讲解和展示相关的课件,向学生介绍三角形的三边关系,让学生理解和掌握。
3.操练(10分钟)教师给出一些练习题,让学生运用三角形的三边关系解决问题,教师及时进行指导和讲解。
4.巩固(10分钟)教师继续给出一些练习题,让学生巩固三角形的三边关系,教师进行点评和讲解。
5.拓展(10分钟)教师引导学生探讨三角形的内角和定理,让学生通过合作交流,共同探讨出结论。
6.小结(5分钟)教师对本节课的内容进行小结,让学生掌握三角形的三边关系和内角和定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论:在一个三角形中,它的三边具
有怎么样的关系呢?
B
A C
强化练习,应用新知
1 、下列长度的三条线段能组成三角形的是( C )
(A)1cm 2cm 3cm (B)1cm 3cm 4cm (C)4cm 5cm 6cm (D)5cm 6cm 13cm;
2 、三角形的三边分别为4cm、6cm、acm (1)第三边a 的取值范围为__2_c_m__<_a_<_1_0_c_m__; (2)a为偶数时,则a的取值为__4_c_m__或__6_c_m_或__8__c_m_;
14.1三角形中的边角关系
创设情境,引入新知
观察图形,归纳定义
由不在同一直线上的三条 线段首尾依次相接组成的 图形叫三角形
观察这些 图形有什么 共同特点?
阅读教材,回答问题:
A
1 用几何符号表示一个三角形;
2 说出图中三角形的顶点、角、 边;
3
把三角形按边进行分类,知 道每类三角形的特征;
4 知道等腰三角形的腰、底边、 底角等概念。
例题解析,再探新知
例:等腰三角形中周长为18cm 1、如果腰长是底边长的2倍,求各边的长; 2、如果一边长为4cm,求另两边的长。
解:(1)设等腰三角形的底边长为xcm, 则腰长为2xcm,根据题意,得
解方程,得
x+2x+2x=18 x=3.6
例题解析,再探新知
(2)若底边长为4cm,设腰长为xcm,则有
B
C
不等边三角形 等腰三角形
腰
腰底边Leabharlann 合作交流,应用新知如图,回答下列问题:
1、图中有_8_个__个三角形; 2、∠1是哪个三角形的角?
△BDO 和△BDC
D
1
O
B
A
E C
3、以CE为一条边的三角形有几个?分别是?
两个:△BCE 和△COE
合作交流,初探新知
思考:是否任意三条线段都能构成三角形?
并非任意长度的三条线段都能构一个三角形。
2x+4=18
解方程,得
x=7
若一条腰长为4cm,设底边长为xcm,则有 2×4+x=18
解方程,得
x=10
因为4+4<10,所以4cm为一腰不能构成三角形
所以,三角形的另两边长都是7cm
应用反思,拓展延伸
已知a、b、c是三角形的三条边 化简|a+b-c|+|c-b-a|
解:因为a、b、c是三角形的三边 所以 a+b-c>0(两边之和大于第三边) c-b-a <0(两边之差小于第三边) 所以|a+b-c|+|c-b-a|=a+b-c-c+b+a =2a+2b-2c